linux/drivers/mtd/nand/atmel_nand.c
Hong Xu 80b4f81a49 mtd: atmel_nand: use CPU I/O when buffer is in vmalloc(ed) region
The previous way of dealing with vmalloc(ed) region by walking
though the pages can not work well actually. We just fall back
to CPU I/O when the buffer address is higher than `high_memory'.

Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Signed-off-by: Hong Xu <hong.xu@atmel.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2011-04-01 17:25:24 +03:00

753 lines
18 KiB
C

/*
* Copyright (C) 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/gpio.h>
#include <linux/io.h>
#include <mach/board.h>
#include <mach/cpu.h>
#ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW
#define hard_ecc 1
#else
#define hard_ecc 0
#endif
#ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE
#define no_ecc 1
#else
#define no_ecc 0
#endif
static int use_dma = 1;
module_param(use_dma, int, 0);
static int on_flash_bbt = 0;
module_param(on_flash_bbt, int, 0);
/* Register access macros */
#define ecc_readl(add, reg) \
__raw_readl(add + ATMEL_ECC_##reg)
#define ecc_writel(add, reg, value) \
__raw_writel((value), add + ATMEL_ECC_##reg)
#include "atmel_nand_ecc.h" /* Hardware ECC registers */
/* oob layout for large page size
* bad block info is on bytes 0 and 1
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static struct nand_ecclayout atmel_oobinfo_large = {
.eccbytes = 4,
.eccpos = {60, 61, 62, 63},
.oobfree = {
{2, 58}
},
};
/* oob layout for small page size
* bad block info is on bytes 4 and 5
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static struct nand_ecclayout atmel_oobinfo_small = {
.eccbytes = 4,
.eccpos = {0, 1, 2, 3},
.oobfree = {
{6, 10}
},
};
struct atmel_nand_host {
struct nand_chip nand_chip;
struct mtd_info mtd;
void __iomem *io_base;
dma_addr_t io_phys;
struct atmel_nand_data *board;
struct device *dev;
void __iomem *ecc;
struct completion comp;
struct dma_chan *dma_chan;
};
static int cpu_has_dma(void)
{
return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
}
/*
* Enable NAND.
*/
static void atmel_nand_enable(struct atmel_nand_host *host)
{
if (host->board->enable_pin)
gpio_set_value(host->board->enable_pin, 0);
}
/*
* Disable NAND.
*/
static void atmel_nand_disable(struct atmel_nand_host *host)
{
if (host->board->enable_pin)
gpio_set_value(host->board->enable_pin, 1);
}
/*
* Hardware specific access to control-lines
*/
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_NCE)
atmel_nand_enable(host);
else
atmel_nand_disable(host);
}
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, host->io_base + (1 << host->board->cle));
else
writeb(cmd, host->io_base + (1 << host->board->ale));
}
/*
* Read the Device Ready pin.
*/
static int atmel_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
return gpio_get_value(host->board->rdy_pin) ^
!!host->board->rdy_pin_active_low;
}
/*
* Minimal-overhead PIO for data access.
*/
static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
}
static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
}
static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
}
static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
}
static void dma_complete_func(void *completion)
{
complete(completion);
}
static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
int is_read)
{
struct dma_device *dma_dev;
enum dma_ctrl_flags flags;
dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
struct dma_async_tx_descriptor *tx = NULL;
dma_cookie_t cookie;
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
void *p = buf;
int err = -EIO;
enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
if (buf >= high_memory)
goto err_buf;
dma_dev = host->dma_chan->device;
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
DMA_COMPL_SKIP_DEST_UNMAP;
phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
if (dma_mapping_error(dma_dev->dev, phys_addr)) {
dev_err(host->dev, "Failed to dma_map_single\n");
goto err_buf;
}
if (is_read) {
dma_src_addr = host->io_phys;
dma_dst_addr = phys_addr;
} else {
dma_src_addr = phys_addr;
dma_dst_addr = host->io_phys;
}
tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
dma_src_addr, len, flags);
if (!tx) {
dev_err(host->dev, "Failed to prepare DMA memcpy\n");
goto err_dma;
}
init_completion(&host->comp);
tx->callback = dma_complete_func;
tx->callback_param = &host->comp;
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(host->dev, "Failed to do DMA tx_submit\n");
goto err_dma;
}
dma_async_issue_pending(host->dma_chan);
wait_for_completion(&host->comp);
err = 0;
err_dma:
dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
err_buf:
if (err != 0)
dev_warn(host->dev, "Fall back to CPU I/O\n");
return err;
}
static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
if (use_dma && len > mtd->oobsize)
/* only use DMA for bigger than oob size: better performances */
if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
return;
if (host->board->bus_width_16)
atmel_read_buf16(mtd, buf, len);
else
atmel_read_buf8(mtd, buf, len);
}
static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
if (use_dma && len > mtd->oobsize)
/* only use DMA for bigger than oob size: better performances */
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
return;
if (host->board->bus_width_16)
atmel_write_buf16(mtd, buf, len);
else
atmel_write_buf8(mtd, buf, len);
}
/*
* Calculate HW ECC
*
* function called after a write
*
* mtd: MTD block structure
* dat: raw data (unused)
* ecc_code: buffer for ECC
*/
static int atmel_nand_calculate(struct mtd_info *mtd,
const u_char *dat, unsigned char *ecc_code)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
unsigned int ecc_value;
/* get the first 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, PR);
ecc_code[0] = ecc_value & 0xFF;
ecc_code[1] = (ecc_value >> 8) & 0xFF;
/* get the last 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
ecc_code[2] = ecc_value & 0xFF;
ecc_code[3] = (ecc_value >> 8) & 0xFF;
return 0;
}
/*
* HW ECC read page function
*
* mtd: mtd info structure
* chip: nand chip info structure
* buf: buffer to store read data
*/
static int atmel_nand_read_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
uint8_t *ecc_pos;
int stat;
/*
* Errata: ALE is incorrectly wired up to the ECC controller
* on the AP7000, so it will include the address cycles in the
* ECC calculation.
*
* Workaround: Reset the parity registers before reading the
* actual data.
*/
if (cpu_is_at32ap7000()) {
struct atmel_nand_host *host = chip->priv;
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
}
/* read the page */
chip->read_buf(mtd, p, eccsize);
/* move to ECC position if needed */
if (eccpos[0] != 0) {
/* This only works on large pages
* because the ECC controller waits for
* NAND_CMD_RNDOUTSTART after the
* NAND_CMD_RNDOUT.
* anyway, for small pages, the eccpos[0] == 0
*/
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + eccpos[0], -1);
}
/* the ECC controller needs to read the ECC just after the data */
ecc_pos = oob + eccpos[0];
chip->read_buf(mtd, ecc_pos, eccbytes);
/* check if there's an error */
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
/* get back to oob start (end of page) */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
/* read the oob */
chip->read_buf(mtd, oob, mtd->oobsize);
return 0;
}
/*
* HW ECC Correction
*
* function called after a read
*
* mtd: MTD block structure
* dat: raw data read from the chip
* read_ecc: ECC from the chip (unused)
* isnull: unused
*
* Detect and correct a 1 bit error for a page
*/
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *isnull)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
unsigned int ecc_status;
unsigned int ecc_word, ecc_bit;
/* get the status from the Status Register */
ecc_status = ecc_readl(host->ecc, SR);
/* if there's no error */
if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
return 0;
/* get error bit offset (4 bits) */
ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
/* get word address (12 bits) */
ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
ecc_word >>= 4;
/* if there are multiple errors */
if (ecc_status & ATMEL_ECC_MULERR) {
/* check if it is a freshly erased block
* (filled with 0xff) */
if ((ecc_bit == ATMEL_ECC_BITADDR)
&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
/* the block has just been erased, return OK */
return 0;
}
/* it doesn't seems to be a freshly
* erased block.
* We can't correct so many errors */
dev_dbg(host->dev, "atmel_nand : multiple errors detected."
" Unable to correct.\n");
return -EIO;
}
/* if there's a single bit error : we can correct it */
if (ecc_status & ATMEL_ECC_ECCERR) {
/* there's nothing much to do here.
* the bit error is on the ECC itself.
*/
dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
" Nothing to correct\n");
return 0;
}
dev_dbg(host->dev, "atmel_nand : one bit error on data."
" (word offset in the page :"
" 0x%x bit offset : 0x%x)\n",
ecc_word, ecc_bit);
/* correct the error */
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* 16 bits words */
((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
} else {
/* 8 bits words */
dat[ecc_word] ^= (1 << ecc_bit);
}
dev_dbg(host->dev, "atmel_nand : error corrected\n");
return 1;
}
/*
* Enable HW ECC : unused on most chips
*/
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
{
if (cpu_is_at32ap7000()) {
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
}
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
/*
* Probe for the NAND device.
*/
static int __init atmel_nand_probe(struct platform_device *pdev)
{
struct atmel_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
struct resource *regs;
struct resource *mem;
int res;
#ifdef CONFIG_MTD_PARTITIONS
struct mtd_partition *partitions = NULL;
int num_partitions = 0;
#endif
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
return -ENXIO;
}
/* Allocate memory for the device structure (and zero it) */
host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
if (!host) {
printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
return -ENOMEM;
}
host->io_phys = (dma_addr_t)mem->start;
host->io_base = ioremap(mem->start, mem->end - mem->start + 1);
if (host->io_base == NULL) {
printk(KERN_ERR "atmel_nand: ioremap failed\n");
res = -EIO;
goto err_nand_ioremap;
}
mtd = &host->mtd;
nand_chip = &host->nand_chip;
host->board = pdev->dev.platform_data;
host->dev = &pdev->dev;
nand_chip->priv = host; /* link the private data structures */
mtd->priv = nand_chip;
mtd->owner = THIS_MODULE;
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = host->io_base;
nand_chip->IO_ADDR_W = host->io_base;
nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
if (host->board->rdy_pin)
nand_chip->dev_ready = atmel_nand_device_ready;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!regs && hard_ecc) {
printk(KERN_ERR "atmel_nand: can't get I/O resource "
"regs\nFalling back on software ECC\n");
}
nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */
if (no_ecc)
nand_chip->ecc.mode = NAND_ECC_NONE;
if (hard_ecc && regs) {
host->ecc = ioremap(regs->start, regs->end - regs->start + 1);
if (host->ecc == NULL) {
printk(KERN_ERR "atmel_nand: ioremap failed\n");
res = -EIO;
goto err_ecc_ioremap;
}
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.calculate = atmel_nand_calculate;
nand_chip->ecc.correct = atmel_nand_correct;
nand_chip->ecc.hwctl = atmel_nand_hwctl;
nand_chip->ecc.read_page = atmel_nand_read_page;
nand_chip->ecc.bytes = 4;
}
nand_chip->chip_delay = 20; /* 20us command delay time */
if (host->board->bus_width_16) /* 16-bit bus width */
nand_chip->options |= NAND_BUSWIDTH_16;
nand_chip->read_buf = atmel_read_buf;
nand_chip->write_buf = atmel_write_buf;
platform_set_drvdata(pdev, host);
atmel_nand_enable(host);
if (host->board->det_pin) {
if (gpio_get_value(host->board->det_pin)) {
printk(KERN_INFO "No SmartMedia card inserted.\n");
res = -ENXIO;
goto err_no_card;
}
}
if (on_flash_bbt) {
printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
nand_chip->options |= NAND_USE_FLASH_BBT;
}
if (!cpu_has_dma())
use_dma = 0;
if (use_dma) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
host->dma_chan = dma_request_channel(mask, 0, NULL);
if (!host->dma_chan) {
dev_err(host->dev, "Failed to request DMA channel\n");
use_dma = 0;
}
}
if (use_dma)
dev_info(host->dev, "Using %s for DMA transfers.\n",
dma_chan_name(host->dma_chan));
else
dev_info(host->dev, "No DMA support for NAND access.\n");
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1, NULL)) {
res = -ENXIO;
goto err_scan_ident;
}
if (nand_chip->ecc.mode == NAND_ECC_HW) {
/* ECC is calculated for the whole page (1 step) */
nand_chip->ecc.size = mtd->writesize;
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
nand_chip->ecc.layout = &atmel_oobinfo_small;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
break;
case 1024:
nand_chip->ecc.layout = &atmel_oobinfo_large;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
break;
case 2048:
nand_chip->ecc.layout = &atmel_oobinfo_large;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
break;
case 4096:
nand_chip->ecc.layout = &atmel_oobinfo_large;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
break;
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.calculate = NULL;
nand_chip->ecc.correct = NULL;
nand_chip->ecc.hwctl = NULL;
nand_chip->ecc.read_page = NULL;
nand_chip->ecc.postpad = 0;
nand_chip->ecc.prepad = 0;
nand_chip->ecc.bytes = 0;
break;
}
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
res = -ENXIO;
goto err_scan_tail;
}
#ifdef CONFIG_MTD_PARTITIONS
#ifdef CONFIG_MTD_CMDLINE_PARTS
mtd->name = "atmel_nand";
num_partitions = parse_mtd_partitions(mtd, part_probes,
&partitions, 0);
#endif
if (num_partitions <= 0 && host->board->partition_info)
partitions = host->board->partition_info(mtd->size,
&num_partitions);
if ((!partitions) || (num_partitions == 0)) {
printk(KERN_ERR "atmel_nand: No partitions defined, or unsupported device.\n");
res = -ENXIO;
goto err_no_partitions;
}
res = add_mtd_partitions(mtd, partitions, num_partitions);
#else
res = add_mtd_device(mtd);
#endif
if (!res)
return res;
#ifdef CONFIG_MTD_PARTITIONS
err_no_partitions:
#endif
nand_release(mtd);
err_scan_tail:
err_scan_ident:
err_no_card:
atmel_nand_disable(host);
platform_set_drvdata(pdev, NULL);
if (host->dma_chan)
dma_release_channel(host->dma_chan);
if (host->ecc)
iounmap(host->ecc);
err_ecc_ioremap:
iounmap(host->io_base);
err_nand_ioremap:
kfree(host);
return res;
}
/*
* Remove a NAND device.
*/
static int __exit atmel_nand_remove(struct platform_device *pdev)
{
struct atmel_nand_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = &host->mtd;
nand_release(mtd);
atmel_nand_disable(host);
if (host->ecc)
iounmap(host->ecc);
if (host->dma_chan)
dma_release_channel(host->dma_chan);
iounmap(host->io_base);
kfree(host);
return 0;
}
static struct platform_driver atmel_nand_driver = {
.remove = __exit_p(atmel_nand_remove),
.driver = {
.name = "atmel_nand",
.owner = THIS_MODULE,
},
};
static int __init atmel_nand_init(void)
{
return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
}
static void __exit atmel_nand_exit(void)
{
platform_driver_unregister(&atmel_nand_driver);
}
module_init(atmel_nand_init);
module_exit(atmel_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rick Bronson");
MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
MODULE_ALIAS("platform:atmel_nand");