linux/security/selinux/ss/sidtab.c
Eric Paris 1167088938 SELinux: sidtab.c whitespace, syntax, and static declaraction cleanups
This patch changes sidtab.c to fix whitespace and syntax issues.  Things that
are fixed may include (does not not have to include)

whitespace at end of lines
spaces followed by tabs
spaces used instead of tabs
spacing around parenthesis
locateion of { around struct and else clauses
location of * in pointer declarations
removal of initialization of static data to keep it in the right section
useless {} in if statemetns
useless checking for NULL before kfree
fixing of the indentation depth of switch statements
and any number of other things I forgot to mention

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-04-21 19:09:09 +10:00

302 lines
5.5 KiB
C

/*
* Implementation of the SID table type.
*
* Author : Stephen Smalley, <sds@epoch.ncsc.mil>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include "flask.h"
#include "security.h"
#include "sidtab.h"
#define SIDTAB_HASH(sid) \
(sid & SIDTAB_HASH_MASK)
#define INIT_SIDTAB_LOCK(s) spin_lock_init(&s->lock)
#define SIDTAB_LOCK(s, x) spin_lock_irqsave(&s->lock, x)
#define SIDTAB_UNLOCK(s, x) spin_unlock_irqrestore(&s->lock, x)
int sidtab_init(struct sidtab *s)
{
int i;
s->htable = kmalloc(sizeof(*(s->htable)) * SIDTAB_SIZE, GFP_ATOMIC);
if (!s->htable)
return -ENOMEM;
for (i = 0; i < SIDTAB_SIZE; i++)
s->htable[i] = NULL;
s->nel = 0;
s->next_sid = 1;
s->shutdown = 0;
INIT_SIDTAB_LOCK(s);
return 0;
}
int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
{
int hvalue, rc = 0;
struct sidtab_node *prev, *cur, *newnode;
if (!s) {
rc = -ENOMEM;
goto out;
}
hvalue = SIDTAB_HASH(sid);
prev = NULL;
cur = s->htable[hvalue];
while (cur != NULL && sid > cur->sid) {
prev = cur;
cur = cur->next;
}
if (cur && sid == cur->sid) {
rc = -EEXIST;
goto out;
}
newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
if (newnode == NULL) {
rc = -ENOMEM;
goto out;
}
newnode->sid = sid;
if (context_cpy(&newnode->context, context)) {
kfree(newnode);
rc = -ENOMEM;
goto out;
}
if (prev) {
newnode->next = prev->next;
wmb();
prev->next = newnode;
} else {
newnode->next = s->htable[hvalue];
wmb();
s->htable[hvalue] = newnode;
}
s->nel++;
if (sid >= s->next_sid)
s->next_sid = sid + 1;
out:
return rc;
}
struct context *sidtab_search(struct sidtab *s, u32 sid)
{
int hvalue;
struct sidtab_node *cur;
if (!s)
return NULL;
hvalue = SIDTAB_HASH(sid);
cur = s->htable[hvalue];
while (cur != NULL && sid > cur->sid)
cur = cur->next;
if (cur == NULL || sid != cur->sid) {
/* Remap invalid SIDs to the unlabeled SID. */
sid = SECINITSID_UNLABELED;
hvalue = SIDTAB_HASH(sid);
cur = s->htable[hvalue];
while (cur != NULL && sid > cur->sid)
cur = cur->next;
if (!cur || sid != cur->sid)
return NULL;
}
return &cur->context;
}
int sidtab_map(struct sidtab *s,
int (*apply) (u32 sid,
struct context *context,
void *args),
void *args)
{
int i, rc = 0;
struct sidtab_node *cur;
if (!s)
goto out;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = s->htable[i];
while (cur != NULL) {
rc = apply(cur->sid, &cur->context, args);
if (rc)
goto out;
cur = cur->next;
}
}
out:
return rc;
}
void sidtab_map_remove_on_error(struct sidtab *s,
int (*apply) (u32 sid,
struct context *context,
void *args),
void *args)
{
int i, ret;
struct sidtab_node *last, *cur, *temp;
if (!s)
return;
for (i = 0; i < SIDTAB_SIZE; i++) {
last = NULL;
cur = s->htable[i];
while (cur != NULL) {
ret = apply(cur->sid, &cur->context, args);
if (ret) {
if (last)
last->next = cur->next;
else
s->htable[i] = cur->next;
temp = cur;
cur = cur->next;
context_destroy(&temp->context);
kfree(temp);
s->nel--;
} else {
last = cur;
cur = cur->next;
}
}
}
return;
}
static inline u32 sidtab_search_context(struct sidtab *s,
struct context *context)
{
int i;
struct sidtab_node *cur;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = s->htable[i];
while (cur != NULL) {
if (context_cmp(&cur->context, context))
return cur->sid;
cur = cur->next;
}
}
return 0;
}
int sidtab_context_to_sid(struct sidtab *s,
struct context *context,
u32 *out_sid)
{
u32 sid;
int ret = 0;
unsigned long flags;
*out_sid = SECSID_NULL;
sid = sidtab_search_context(s, context);
if (!sid) {
SIDTAB_LOCK(s, flags);
/* Rescan now that we hold the lock. */
sid = sidtab_search_context(s, context);
if (sid)
goto unlock_out;
/* No SID exists for the context. Allocate a new one. */
if (s->next_sid == UINT_MAX || s->shutdown) {
ret = -ENOMEM;
goto unlock_out;
}
sid = s->next_sid++;
ret = sidtab_insert(s, sid, context);
if (ret)
s->next_sid--;
unlock_out:
SIDTAB_UNLOCK(s, flags);
}
if (ret)
return ret;
*out_sid = sid;
return 0;
}
void sidtab_hash_eval(struct sidtab *h, char *tag)
{
int i, chain_len, slots_used, max_chain_len;
struct sidtab_node *cur;
slots_used = 0;
max_chain_len = 0;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = h->htable[i];
if (cur) {
slots_used++;
chain_len = 0;
while (cur) {
chain_len++;
cur = cur->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
}
}
printk(KERN_DEBUG "%s: %d entries and %d/%d buckets used, longest "
"chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
max_chain_len);
}
void sidtab_destroy(struct sidtab *s)
{
int i;
struct sidtab_node *cur, *temp;
if (!s)
return;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = s->htable[i];
while (cur != NULL) {
temp = cur;
cur = cur->next;
context_destroy(&temp->context);
kfree(temp);
}
s->htable[i] = NULL;
}
kfree(s->htable);
s->htable = NULL;
s->nel = 0;
s->next_sid = 1;
}
void sidtab_set(struct sidtab *dst, struct sidtab *src)
{
unsigned long flags;
SIDTAB_LOCK(src, flags);
dst->htable = src->htable;
dst->nel = src->nel;
dst->next_sid = src->next_sid;
dst->shutdown = 0;
SIDTAB_UNLOCK(src, flags);
}
void sidtab_shutdown(struct sidtab *s)
{
unsigned long flags;
SIDTAB_LOCK(s, flags);
s->shutdown = 1;
SIDTAB_UNLOCK(s, flags);
}