linux/kernel/events/uprobes.c
Ingo Molnar 35aa621b5a uprobes: Update copyright notices
Add Peter Zijlstra's copyright to the uprobes code, whose
contributions to the uprobes code are not visible in the Git
history, because they were backmerged.

Also update existing copyright notices to the year 2012.

Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/n/tip-vjqxst502pc1efz7ah8cyht4@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-22 11:37:29 +01:00

1026 lines
24 KiB
C

/*
* User-space Probes (UProbes)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2008-2012
* Authors:
* Srikar Dronamraju
* Jim Keniston
* Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*/
#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h> /* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h> /* anon_vma_prepare */
#include <linux/mmu_notifier.h> /* set_pte_at_notify */
#include <linux/swap.h> /* try_to_free_swap */
#include <linux/uprobes.h>
static struct rb_root uprobes_tree = RB_ROOT;
static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
#define UPROBES_HASH_SZ 13
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
/*
* uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
* events active at this time. Probably a fine grained per inode count is
* better?
*/
static atomic_t uprobe_events = ATOMIC_INIT(0);
/*
* Maintain a temporary per vma info that can be used to search if a vma
* has already been handled. This structure is introduced since extending
* vm_area_struct wasnt recommended.
*/
struct vma_info {
struct list_head probe_list;
struct mm_struct *mm;
loff_t vaddr;
};
struct uprobe {
struct rb_node rb_node; /* node in the rb tree */
atomic_t ref;
struct rw_semaphore consumer_rwsem;
struct list_head pending_list;
struct uprobe_consumer *consumers;
struct inode *inode; /* Also hold a ref to inode */
loff_t offset;
int flags;
struct arch_uprobe arch;
};
/*
* valid_vma: Verify if the specified vma is an executable vma
* Relax restrictions while unregistering: vm_flags might have
* changed after breakpoint was inserted.
* - is_register: indicates if we are in register context.
* - Return 1 if the specified virtual address is in an
* executable vma.
*/
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
if (!vma->vm_file)
return false;
if (!is_register)
return true;
if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
return true;
return false;
}
static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
loff_t vaddr;
vaddr = vma->vm_start + offset;
vaddr -= vma->vm_pgoff << PAGE_SHIFT;
return vaddr;
}
/**
* __replace_page - replace page in vma by new page.
* based on replace_page in mm/ksm.c
*
* @vma: vma that holds the pte pointing to page
* @page: the cowed page we are replacing by kpage
* @kpage: the modified page we replace page by
*
* Returns 0 on success, -EFAULT on failure.
*/
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep;
spinlock_t *ptl;
unsigned long addr;
int err = -EFAULT;
addr = page_address_in_vma(page, vma);
if (addr == -EFAULT)
goto out;
pgd = pgd_offset(mm, addr);
if (!pgd_present(*pgd))
goto out;
pud = pud_offset(pgd, addr);
if (!pud_present(*pud))
goto out;
pmd = pmd_offset(pud, addr);
if (!pmd_present(*pmd))
goto out;
ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
if (!ptep)
goto out;
get_page(kpage);
page_add_new_anon_rmap(kpage, vma, addr);
flush_cache_page(vma, addr, pte_pfn(*ptep));
ptep_clear_flush(vma, addr, ptep);
set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
page_remove_rmap(page);
if (!page_mapped(page))
try_to_free_swap(page);
put_page(page);
pte_unmap_unlock(ptep, ptl);
err = 0;
out:
return err;
}
/**
* is_bkpt_insn - check if instruction is breakpoint instruction.
* @insn: instruction to be checked.
* Default implementation of is_bkpt_insn
* Returns true if @insn is a breakpoint instruction.
*/
bool __weak is_bkpt_insn(uprobe_opcode_t *insn)
{
return *insn == UPROBES_BKPT_INSN;
}
/*
* NOTE:
* Expect the breakpoint instruction to be the smallest size instruction for
* the architecture. If an arch has variable length instruction and the
* breakpoint instruction is not of the smallest length instruction
* supported by that architecture then we need to modify read_opcode /
* write_opcode accordingly. This would never be a problem for archs that
* have fixed length instructions.
*/
/*
* write_opcode - write the opcode at a given virtual address.
* @mm: the probed process address space.
* @arch_uprobe: the breakpointing information.
* @vaddr: the virtual address to store the opcode.
* @opcode: opcode to be written at @vaddr.
*
* Called with mm->mmap_sem held (for read and with a reference to
* mm).
*
* For mm @mm, write the opcode at @vaddr.
* Return 0 (success) or a negative errno.
*/
static int write_opcode(struct mm_struct *mm, struct arch_uprobe *auprobe,
unsigned long vaddr, uprobe_opcode_t opcode)
{
struct page *old_page, *new_page;
struct address_space *mapping;
void *vaddr_old, *vaddr_new;
struct vm_area_struct *vma;
struct uprobe *uprobe;
loff_t addr;
int ret;
/* Read the page with vaddr into memory */
ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
if (ret <= 0)
return ret;
ret = -EINVAL;
/*
* We are interested in text pages only. Our pages of interest
* should be mapped for read and execute only. We desist from
* adding probes in write mapped pages since the breakpoints
* might end up in the file copy.
*/
if (!valid_vma(vma, is_bkpt_insn(&opcode)))
goto put_out;
uprobe = container_of(auprobe, struct uprobe, arch);
mapping = uprobe->inode->i_mapping;
if (mapping != vma->vm_file->f_mapping)
goto put_out;
addr = vma_address(vma, uprobe->offset);
if (vaddr != (unsigned long)addr)
goto put_out;
ret = -ENOMEM;
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
if (!new_page)
goto put_out;
__SetPageUptodate(new_page);
/*
* lock page will serialize against do_wp_page()'s
* PageAnon() handling
*/
lock_page(old_page);
/* copy the page now that we've got it stable */
vaddr_old = kmap_atomic(old_page);
vaddr_new = kmap_atomic(new_page);
memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
/* poke the new insn in, ASSUMES we don't cross page boundary */
vaddr &= ~PAGE_MASK;
BUG_ON(vaddr + UPROBES_BKPT_INSN_SIZE > PAGE_SIZE);
memcpy(vaddr_new + vaddr, &opcode, UPROBES_BKPT_INSN_SIZE);
kunmap_atomic(vaddr_new);
kunmap_atomic(vaddr_old);
ret = anon_vma_prepare(vma);
if (ret)
goto unlock_out;
lock_page(new_page);
ret = __replace_page(vma, old_page, new_page);
unlock_page(new_page);
unlock_out:
unlock_page(old_page);
page_cache_release(new_page);
put_out:
put_page(old_page);
return ret;
}
/**
* read_opcode - read the opcode at a given virtual address.
* @mm: the probed process address space.
* @vaddr: the virtual address to read the opcode.
* @opcode: location to store the read opcode.
*
* Called with mm->mmap_sem held (for read and with a reference to
* mm.
*
* For mm @mm, read the opcode at @vaddr and store it in @opcode.
* Return 0 (success) or a negative errno.
*/
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
{
struct page *page;
void *vaddr_new;
int ret;
ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
if (ret <= 0)
return ret;
lock_page(page);
vaddr_new = kmap_atomic(page);
vaddr &= ~PAGE_MASK;
memcpy(opcode, vaddr_new + vaddr, UPROBES_BKPT_INSN_SIZE);
kunmap_atomic(vaddr_new);
unlock_page(page);
put_page(page);
return 0;
}
static int is_bkpt_at_addr(struct mm_struct *mm, unsigned long vaddr)
{
uprobe_opcode_t opcode;
int result;
result = read_opcode(mm, vaddr, &opcode);
if (result)
return result;
if (is_bkpt_insn(&opcode))
return 1;
return 0;
}
/**
* set_bkpt - store breakpoint at a given address.
* @mm: the probed process address space.
* @uprobe: the probepoint information.
* @vaddr: the virtual address to insert the opcode.
*
* For mm @mm, store the breakpoint instruction at @vaddr.
* Return 0 (success) or a negative errno.
*/
int __weak set_bkpt(struct mm_struct *mm, struct arch_uprobe *auprobe, unsigned long vaddr)
{
int result;
result = is_bkpt_at_addr(mm, vaddr);
if (result == 1)
return -EEXIST;
if (result)
return result;
return write_opcode(mm, auprobe, vaddr, UPROBES_BKPT_INSN);
}
/**
* set_orig_insn - Restore the original instruction.
* @mm: the probed process address space.
* @uprobe: the probepoint information.
* @vaddr: the virtual address to insert the opcode.
* @verify: if true, verify existance of breakpoint instruction.
*
* For mm @mm, restore the original opcode (opcode) at @vaddr.
* Return 0 (success) or a negative errno.
*/
int __weak
set_orig_insn(struct mm_struct *mm, struct arch_uprobe *auprobe, unsigned long vaddr, bool verify)
{
if (verify) {
int result;
result = is_bkpt_at_addr(mm, vaddr);
if (!result)
return -EINVAL;
if (result != 1)
return result;
}
return write_opcode(mm, auprobe, vaddr, *(uprobe_opcode_t *)auprobe->insn);
}
static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
if (l->inode < r->inode)
return -1;
if (l->inode > r->inode)
return 1;
if (l->offset < r->offset)
return -1;
if (l->offset > r->offset)
return 1;
return 0;
}
static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
struct uprobe u = { .inode = inode, .offset = offset };
struct rb_node *n = uprobes_tree.rb_node;
struct uprobe *uprobe;
int match;
while (n) {
uprobe = rb_entry(n, struct uprobe, rb_node);
match = match_uprobe(&u, uprobe);
if (!match) {
atomic_inc(&uprobe->ref);
return uprobe;
}
if (match < 0)
n = n->rb_left;
else
n = n->rb_right;
}
return NULL;
}
/*
* Find a uprobe corresponding to a given inode:offset
* Acquires uprobes_treelock
*/
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
struct uprobe *uprobe;
unsigned long flags;
spin_lock_irqsave(&uprobes_treelock, flags);
uprobe = __find_uprobe(inode, offset);
spin_unlock_irqrestore(&uprobes_treelock, flags);
return uprobe;
}
static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
struct rb_node **p = &uprobes_tree.rb_node;
struct rb_node *parent = NULL;
struct uprobe *u;
int match;
while (*p) {
parent = *p;
u = rb_entry(parent, struct uprobe, rb_node);
match = match_uprobe(uprobe, u);
if (!match) {
atomic_inc(&u->ref);
return u;
}
if (match < 0)
p = &parent->rb_left;
else
p = &parent->rb_right;
}
u = NULL;
rb_link_node(&uprobe->rb_node, parent, p);
rb_insert_color(&uprobe->rb_node, &uprobes_tree);
/* get access + creation ref */
atomic_set(&uprobe->ref, 2);
return u;
}
/*
* Acquire uprobes_treelock.
* Matching uprobe already exists in rbtree;
* increment (access refcount) and return the matching uprobe.
*
* No matching uprobe; insert the uprobe in rb_tree;
* get a double refcount (access + creation) and return NULL.
*/
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
unsigned long flags;
struct uprobe *u;
spin_lock_irqsave(&uprobes_treelock, flags);
u = __insert_uprobe(uprobe);
spin_unlock_irqrestore(&uprobes_treelock, flags);
return u;
}
static void put_uprobe(struct uprobe *uprobe)
{
if (atomic_dec_and_test(&uprobe->ref))
kfree(uprobe);
}
static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
struct uprobe *uprobe, *cur_uprobe;
uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
if (!uprobe)
return NULL;
uprobe->inode = igrab(inode);
uprobe->offset = offset;
init_rwsem(&uprobe->consumer_rwsem);
INIT_LIST_HEAD(&uprobe->pending_list);
/* add to uprobes_tree, sorted on inode:offset */
cur_uprobe = insert_uprobe(uprobe);
/* a uprobe exists for this inode:offset combination */
if (cur_uprobe) {
kfree(uprobe);
uprobe = cur_uprobe;
iput(inode);
} else {
atomic_inc(&uprobe_events);
}
return uprobe;
}
/* Returns the previous consumer */
static struct uprobe_consumer *
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *consumer)
{
down_write(&uprobe->consumer_rwsem);
consumer->next = uprobe->consumers;
uprobe->consumers = consumer;
up_write(&uprobe->consumer_rwsem);
return consumer->next;
}
/*
* For uprobe @uprobe, delete the consumer @consumer.
* Return true if the @consumer is deleted successfully
* or return false.
*/
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *consumer)
{
struct uprobe_consumer **con;
bool ret = false;
down_write(&uprobe->consumer_rwsem);
for (con = &uprobe->consumers; *con; con = &(*con)->next) {
if (*con == consumer) {
*con = consumer->next;
ret = true;
break;
}
}
up_write(&uprobe->consumer_rwsem);
return ret;
}
static int __copy_insn(struct address_space *mapping,
struct vm_area_struct *vma, char *insn,
unsigned long nbytes, unsigned long offset)
{
struct file *filp = vma->vm_file;
struct page *page;
void *vaddr;
unsigned long off1;
unsigned long idx;
if (!filp)
return -EINVAL;
idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
off1 = offset &= ~PAGE_MASK;
/*
* Ensure that the page that has the original instruction is
* populated and in page-cache.
*/
page = read_mapping_page(mapping, idx, filp);
if (IS_ERR(page))
return PTR_ERR(page);
vaddr = kmap_atomic(page);
memcpy(insn, vaddr + off1, nbytes);
kunmap_atomic(vaddr);
page_cache_release(page);
return 0;
}
static int copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
{
struct address_space *mapping;
unsigned long nbytes;
int bytes;
addr &= ~PAGE_MASK;
nbytes = PAGE_SIZE - addr;
mapping = uprobe->inode->i_mapping;
/* Instruction at end of binary; copy only available bytes */
if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
bytes = uprobe->inode->i_size - uprobe->offset;
else
bytes = MAX_UINSN_BYTES;
/* Instruction at the page-boundary; copy bytes in second page */
if (nbytes < bytes) {
if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
bytes - nbytes, uprobe->offset + nbytes))
return -ENOMEM;
bytes = nbytes;
}
return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
}
static int install_breakpoint(struct mm_struct *mm, struct uprobe *uprobe,
struct vm_area_struct *vma, loff_t vaddr)
{
unsigned long addr;
int ret;
/*
* If probe is being deleted, unregister thread could be done with
* the vma-rmap-walk through. Adding a probe now can be fatal since
* nobody will be able to cleanup. Also we could be from fork or
* mremap path, where the probe might have already been inserted.
* Hence behave as if probe already existed.
*/
if (!uprobe->consumers)
return -EEXIST;
addr = (unsigned long)vaddr;
if (!(uprobe->flags & UPROBES_COPY_INSN)) {
ret = copy_insn(uprobe, vma, addr);
if (ret)
return ret;
if (is_bkpt_insn((uprobe_opcode_t *)uprobe->arch.insn))
return -EEXIST;
ret = arch_uprobes_analyze_insn(mm, &uprobe->arch);
if (ret)
return ret;
uprobe->flags |= UPROBES_COPY_INSN;
}
ret = set_bkpt(mm, &uprobe->arch, addr);
return ret;
}
static void remove_breakpoint(struct mm_struct *mm, struct uprobe *uprobe, loff_t vaddr)
{
set_orig_insn(mm, &uprobe->arch, (unsigned long)vaddr, true);
}
static void delete_uprobe(struct uprobe *uprobe)
{
unsigned long flags;
spin_lock_irqsave(&uprobes_treelock, flags);
rb_erase(&uprobe->rb_node, &uprobes_tree);
spin_unlock_irqrestore(&uprobes_treelock, flags);
iput(uprobe->inode);
put_uprobe(uprobe);
atomic_dec(&uprobe_events);
}
static struct vma_info *__find_next_vma_info(struct list_head *head,
loff_t offset, struct address_space *mapping,
struct vma_info *vi, bool is_register)
{
struct prio_tree_iter iter;
struct vm_area_struct *vma;
struct vma_info *tmpvi;
unsigned long pgoff;
int existing_vma;
loff_t vaddr;
pgoff = offset >> PAGE_SHIFT;
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
if (!valid_vma(vma, is_register))
continue;
existing_vma = 0;
vaddr = vma_address(vma, offset);
list_for_each_entry(tmpvi, head, probe_list) {
if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
existing_vma = 1;
break;
}
}
/*
* Another vma needs a probe to be installed. However skip
* installing the probe if the vma is about to be unlinked.
*/
if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
vi->mm = vma->vm_mm;
vi->vaddr = vaddr;
list_add(&vi->probe_list, head);
return vi;
}
}
return NULL;
}
/*
* Iterate in the rmap prio tree and find a vma where a probe has not
* yet been inserted.
*/
static struct vma_info *
find_next_vma_info(struct list_head *head, loff_t offset, struct address_space *mapping,
bool is_register)
{
struct vma_info *vi, *retvi;
vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
if (!vi)
return ERR_PTR(-ENOMEM);
mutex_lock(&mapping->i_mmap_mutex);
retvi = __find_next_vma_info(head, offset, mapping, vi, is_register);
mutex_unlock(&mapping->i_mmap_mutex);
if (!retvi)
kfree(vi);
return retvi;
}
static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
struct list_head try_list;
struct vm_area_struct *vma;
struct address_space *mapping;
struct vma_info *vi, *tmpvi;
struct mm_struct *mm;
loff_t vaddr;
int ret;
mapping = uprobe->inode->i_mapping;
INIT_LIST_HEAD(&try_list);
ret = 0;
for (;;) {
vi = find_next_vma_info(&try_list, uprobe->offset, mapping, is_register);
if (!vi)
break;
if (IS_ERR(vi)) {
ret = PTR_ERR(vi);
break;
}
mm = vi->mm;
down_read(&mm->mmap_sem);
vma = find_vma(mm, (unsigned long)vi->vaddr);
if (!vma || !valid_vma(vma, is_register)) {
list_del(&vi->probe_list);
kfree(vi);
up_read(&mm->mmap_sem);
mmput(mm);
continue;
}
vaddr = vma_address(vma, uprobe->offset);
if (vma->vm_file->f_mapping->host != uprobe->inode ||
vaddr != vi->vaddr) {
list_del(&vi->probe_list);
kfree(vi);
up_read(&mm->mmap_sem);
mmput(mm);
continue;
}
if (is_register)
ret = install_breakpoint(mm, uprobe, vma, vi->vaddr);
else
remove_breakpoint(mm, uprobe, vi->vaddr);
up_read(&mm->mmap_sem);
mmput(mm);
if (is_register) {
if (ret && ret == -EEXIST)
ret = 0;
if (ret)
break;
}
}
list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
list_del(&vi->probe_list);
kfree(vi);
}
return ret;
}
static int __uprobe_register(struct uprobe *uprobe)
{
return register_for_each_vma(uprobe, true);
}
static void __uprobe_unregister(struct uprobe *uprobe)
{
if (!register_for_each_vma(uprobe, false))
delete_uprobe(uprobe);
/* TODO : cant unregister? schedule a worker thread */
}
/*
* uprobe_register - register a probe
* @inode: the file in which the probe has to be placed.
* @offset: offset from the start of the file.
* @consumer: information on howto handle the probe..
*
* Apart from the access refcount, uprobe_register() takes a creation
* refcount (thro alloc_uprobe) if and only if this @uprobe is getting
* inserted into the rbtree (i.e first consumer for a @inode:@offset
* tuple). Creation refcount stops uprobe_unregister from freeing the
* @uprobe even before the register operation is complete. Creation
* refcount is released when the last @consumer for the @uprobe
* unregisters.
*
* Return errno if it cannot successully install probes
* else return 0 (success)
*/
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *consumer)
{
struct uprobe *uprobe;
int ret;
if (!inode || !consumer || consumer->next)
return -EINVAL;
if (offset > i_size_read(inode))
return -EINVAL;
ret = 0;
mutex_lock(uprobes_hash(inode));
uprobe = alloc_uprobe(inode, offset);
if (uprobe && !consumer_add(uprobe, consumer)) {
ret = __uprobe_register(uprobe);
if (ret) {
uprobe->consumers = NULL;
__uprobe_unregister(uprobe);
} else {
uprobe->flags |= UPROBES_RUN_HANDLER;
}
}
mutex_unlock(uprobes_hash(inode));
put_uprobe(uprobe);
return ret;
}
/*
* uprobe_unregister - unregister a already registered probe.
* @inode: the file in which the probe has to be removed.
* @offset: offset from the start of the file.
* @consumer: identify which probe if multiple probes are colocated.
*/
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *consumer)
{
struct uprobe *uprobe;
if (!inode || !consumer)
return;
uprobe = find_uprobe(inode, offset);
if (!uprobe)
return;
mutex_lock(uprobes_hash(inode));
if (consumer_del(uprobe, consumer)) {
if (!uprobe->consumers) {
__uprobe_unregister(uprobe);
uprobe->flags &= ~UPROBES_RUN_HANDLER;
}
}
mutex_unlock(uprobes_hash(inode));
if (uprobe)
put_uprobe(uprobe);
}
/*
* Of all the nodes that correspond to the given inode, return the node
* with the least offset.
*/
static struct rb_node *find_least_offset_node(struct inode *inode)
{
struct uprobe u = { .inode = inode, .offset = 0};
struct rb_node *n = uprobes_tree.rb_node;
struct rb_node *close_node = NULL;
struct uprobe *uprobe;
int match;
while (n) {
uprobe = rb_entry(n, struct uprobe, rb_node);
match = match_uprobe(&u, uprobe);
if (uprobe->inode == inode)
close_node = n;
if (!match)
return close_node;
if (match < 0)
n = n->rb_left;
else
n = n->rb_right;
}
return close_node;
}
/*
* For a given inode, build a list of probes that need to be inserted.
*/
static void build_probe_list(struct inode *inode, struct list_head *head)
{
struct uprobe *uprobe;
unsigned long flags;
struct rb_node *n;
spin_lock_irqsave(&uprobes_treelock, flags);
n = find_least_offset_node(inode);
for (; n; n = rb_next(n)) {
uprobe = rb_entry(n, struct uprobe, rb_node);
if (uprobe->inode != inode)
break;
list_add(&uprobe->pending_list, head);
atomic_inc(&uprobe->ref);
}
spin_unlock_irqrestore(&uprobes_treelock, flags);
}
/*
* Called from mmap_region.
* called with mm->mmap_sem acquired.
*
* Return -ve no if we fail to insert probes and we cannot
* bail-out.
* Return 0 otherwise. i.e:
*
* - successful insertion of probes
* - (or) no possible probes to be inserted.
* - (or) insertion of probes failed but we can bail-out.
*/
int uprobe_mmap(struct vm_area_struct *vma)
{
struct list_head tmp_list;
struct uprobe *uprobe, *u;
struct inode *inode;
int ret;
if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
return 0;
inode = vma->vm_file->f_mapping->host;
if (!inode)
return 0;
INIT_LIST_HEAD(&tmp_list);
mutex_lock(uprobes_mmap_hash(inode));
build_probe_list(inode, &tmp_list);
ret = 0;
list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
loff_t vaddr;
list_del(&uprobe->pending_list);
if (!ret) {
vaddr = vma_address(vma, uprobe->offset);
if (vaddr >= vma->vm_start && vaddr < vma->vm_end) {
ret = install_breakpoint(vma->vm_mm, uprobe, vma, vaddr);
/* Ignore double add: */
if (ret == -EEXIST)
ret = 0;
}
}
put_uprobe(uprobe);
}
mutex_unlock(uprobes_mmap_hash(inode));
return ret;
}
static int __init init_uprobes(void)
{
int i;
for (i = 0; i < UPROBES_HASH_SZ; i++) {
mutex_init(&uprobes_mutex[i]);
mutex_init(&uprobes_mmap_mutex[i]);
}
return 0;
}
static void __exit exit_uprobes(void)
{
}
module_init(init_uprobes);
module_exit(exit_uprobes);