05dc8c02bf
This has not been any serious user of this ill conceived thing since the original invention in like '95. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
590 lines
13 KiB
C
590 lines
13 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995 Waldorf Electronics
|
|
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
|
|
* Copyright (C) 1996 Stoned Elipot
|
|
* Copyright (C) 1999 Silicon Graphics, Inc.
|
|
* Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/module.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/system.h>
|
|
|
|
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
|
|
|
|
EXPORT_SYMBOL(cpu_data);
|
|
|
|
#ifdef CONFIG_VT
|
|
struct screen_info screen_info;
|
|
#endif
|
|
|
|
/*
|
|
* Despite it's name this variable is even if we don't have PCI
|
|
*/
|
|
unsigned int PCI_DMA_BUS_IS_PHYS;
|
|
|
|
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
|
|
|
|
/*
|
|
* Setup information
|
|
*
|
|
* These are initialized so they are in the .data section
|
|
*/
|
|
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
|
|
|
|
EXPORT_SYMBOL(mips_machtype);
|
|
|
|
struct boot_mem_map boot_mem_map;
|
|
|
|
static char command_line[CL_SIZE];
|
|
char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
|
|
|
|
/*
|
|
* mips_io_port_base is the begin of the address space to which x86 style
|
|
* I/O ports are mapped.
|
|
*/
|
|
const unsigned long mips_io_port_base __read_mostly = -1;
|
|
EXPORT_SYMBOL(mips_io_port_base);
|
|
|
|
/*
|
|
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
|
|
* for the processor.
|
|
*/
|
|
unsigned long isa_slot_offset;
|
|
EXPORT_SYMBOL(isa_slot_offset);
|
|
|
|
static struct resource code_resource = { .name = "Kernel code", };
|
|
static struct resource data_resource = { .name = "Kernel data", };
|
|
|
|
void __init add_memory_region(phys_t start, phys_t size, long type)
|
|
{
|
|
int x = boot_mem_map.nr_map;
|
|
struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
|
|
|
|
/* Sanity check */
|
|
if (start + size < start) {
|
|
printk("Trying to add an invalid memory region, skipped\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Try to merge with previous entry if any. This is far less than
|
|
* perfect but is sufficient for most real world cases.
|
|
*/
|
|
if (x && prev->addr + prev->size == start && prev->type == type) {
|
|
prev->size += size;
|
|
return;
|
|
}
|
|
|
|
if (x == BOOT_MEM_MAP_MAX) {
|
|
printk("Ooops! Too many entries in the memory map!\n");
|
|
return;
|
|
}
|
|
|
|
boot_mem_map.map[x].addr = start;
|
|
boot_mem_map.map[x].size = size;
|
|
boot_mem_map.map[x].type = type;
|
|
boot_mem_map.nr_map++;
|
|
}
|
|
|
|
static void __init print_memory_map(void)
|
|
{
|
|
int i;
|
|
const int field = 2 * sizeof(unsigned long);
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
printk(" memory: %0*Lx @ %0*Lx ",
|
|
field, (unsigned long long) boot_mem_map.map[i].size,
|
|
field, (unsigned long long) boot_mem_map.map[i].addr);
|
|
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
printk("(usable)\n");
|
|
break;
|
|
case BOOT_MEM_ROM_DATA:
|
|
printk("(ROM data)\n");
|
|
break;
|
|
case BOOT_MEM_RESERVED:
|
|
printk("(reserved)\n");
|
|
break;
|
|
default:
|
|
printk("type %lu\n", boot_mem_map.map[i].type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manage initrd
|
|
*/
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
static int __init rd_start_early(char *p)
|
|
{
|
|
unsigned long start = memparse(p, &p);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* Guess if the sign extension was forgotten by bootloader */
|
|
if (start < XKPHYS)
|
|
start = (int)start;
|
|
#endif
|
|
initrd_start = start;
|
|
initrd_end += start;
|
|
return 0;
|
|
}
|
|
early_param("rd_start", rd_start_early);
|
|
|
|
static int __init rd_size_early(char *p)
|
|
{
|
|
initrd_end += memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("rd_size", rd_size_early);
|
|
|
|
/* it returns the next free pfn after initrd */
|
|
static unsigned long __init init_initrd(void)
|
|
{
|
|
unsigned long end;
|
|
u32 *initrd_header;
|
|
|
|
/*
|
|
* Board specific code or command line parser should have
|
|
* already set up initrd_start and initrd_end. In these cases
|
|
* perfom sanity checks and use them if all looks good.
|
|
*/
|
|
if (initrd_start && initrd_end > initrd_start)
|
|
goto sanitize;
|
|
|
|
/*
|
|
* See if initrd has been added to the kernel image by
|
|
* arch/mips/boot/addinitrd.c. In that case a header is
|
|
* prepended to initrd and is made up by 8 bytes. The fisrt
|
|
* word is a magic number and the second one is the size of
|
|
* initrd. Initrd start must be page aligned in any cases.
|
|
*/
|
|
initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
|
|
if (initrd_header[0] != 0x494E5244)
|
|
goto disable;
|
|
initrd_start = (unsigned long)(initrd_header + 2);
|
|
initrd_end = initrd_start + initrd_header[1];
|
|
|
|
sanitize:
|
|
if (initrd_start & ~PAGE_MASK) {
|
|
printk(KERN_ERR "initrd start must be page aligned\n");
|
|
goto disable;
|
|
}
|
|
if (initrd_start < PAGE_OFFSET) {
|
|
printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
|
|
goto disable;
|
|
}
|
|
|
|
/*
|
|
* Sanitize initrd addresses. For example firmware
|
|
* can't guess if they need to pass them through
|
|
* 64-bits values if the kernel has been built in pure
|
|
* 32-bit. We need also to switch from KSEG0 to XKPHYS
|
|
* addresses now, so the code can now safely use __pa().
|
|
*/
|
|
end = __pa(initrd_end);
|
|
initrd_end = (unsigned long)__va(end);
|
|
initrd_start = (unsigned long)__va(__pa(initrd_start));
|
|
|
|
ROOT_DEV = Root_RAM0;
|
|
return PFN_UP(end);
|
|
disable:
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void __init finalize_initrd(void)
|
|
{
|
|
unsigned long size = initrd_end - initrd_start;
|
|
|
|
if (size == 0) {
|
|
printk(KERN_INFO "Initrd not found or empty");
|
|
goto disable;
|
|
}
|
|
if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
|
|
printk("Initrd extends beyond end of memory");
|
|
goto disable;
|
|
}
|
|
|
|
reserve_bootmem(__pa(initrd_start), size);
|
|
initrd_below_start_ok = 1;
|
|
|
|
printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
|
|
initrd_start, size);
|
|
return;
|
|
disable:
|
|
printk(" - disabling initrd\n");
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
}
|
|
|
|
#else /* !CONFIG_BLK_DEV_INITRD */
|
|
|
|
static unsigned long __init init_initrd(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#define finalize_initrd() do {} while (0)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the bootmem allocator. It also setup initrd related data
|
|
* if needed.
|
|
*/
|
|
#ifdef CONFIG_SGI_IP27
|
|
|
|
static void __init bootmem_init(void)
|
|
{
|
|
init_initrd();
|
|
finalize_initrd();
|
|
}
|
|
|
|
#else /* !CONFIG_SGI_IP27 */
|
|
|
|
static void __init bootmem_init(void)
|
|
{
|
|
unsigned long reserved_end;
|
|
unsigned long mapstart = ~0UL;
|
|
unsigned long bootmap_size;
|
|
int i;
|
|
|
|
/*
|
|
* Init any data related to initrd. It's a nop if INITRD is
|
|
* not selected. Once that done we can determine the low bound
|
|
* of usable memory.
|
|
*/
|
|
reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
|
|
|
|
/*
|
|
* max_low_pfn is not a number of pages. The number of pages
|
|
* of the system is given by 'max_low_pfn - min_low_pfn'.
|
|
*/
|
|
min_low_pfn = ~0UL;
|
|
max_low_pfn = 0;
|
|
|
|
/*
|
|
* Find the highest page frame number we have available.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end;
|
|
|
|
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
|
|
continue;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
if (end > max_low_pfn)
|
|
max_low_pfn = end;
|
|
if (start < min_low_pfn)
|
|
min_low_pfn = start;
|
|
if (end <= reserved_end)
|
|
continue;
|
|
if (start >= mapstart)
|
|
continue;
|
|
mapstart = max(reserved_end, start);
|
|
}
|
|
|
|
if (min_low_pfn >= max_low_pfn)
|
|
panic("Incorrect memory mapping !!!");
|
|
if (min_low_pfn > ARCH_PFN_OFFSET) {
|
|
printk(KERN_INFO
|
|
"Wasting %lu bytes for tracking %lu unused pages\n",
|
|
(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
|
|
min_low_pfn - ARCH_PFN_OFFSET);
|
|
} else if (min_low_pfn < ARCH_PFN_OFFSET) {
|
|
printk(KERN_INFO
|
|
"%lu free pages won't be used\n",
|
|
ARCH_PFN_OFFSET - min_low_pfn);
|
|
}
|
|
min_low_pfn = ARCH_PFN_OFFSET;
|
|
|
|
/*
|
|
* Determine low and high memory ranges
|
|
*/
|
|
if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
|
|
#ifdef CONFIG_HIGHMEM
|
|
highstart_pfn = PFN_DOWN(HIGHMEM_START);
|
|
highend_pfn = max_low_pfn;
|
|
#endif
|
|
max_low_pfn = PFN_DOWN(HIGHMEM_START);
|
|
}
|
|
|
|
/*
|
|
* Initialize the boot-time allocator with low memory only.
|
|
*/
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
|
|
min_low_pfn, max_low_pfn);
|
|
/*
|
|
* Register fully available low RAM pages with the bootmem allocator.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end, size;
|
|
|
|
/*
|
|
* Reserve usable memory.
|
|
*/
|
|
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
|
|
continue;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
/*
|
|
* We are rounding up the start address of usable memory
|
|
* and at the end of the usable range downwards.
|
|
*/
|
|
if (start >= max_low_pfn)
|
|
continue;
|
|
if (start < reserved_end)
|
|
start = reserved_end;
|
|
if (end > max_low_pfn)
|
|
end = max_low_pfn;
|
|
|
|
/*
|
|
* ... finally, is the area going away?
|
|
*/
|
|
if (end <= start)
|
|
continue;
|
|
size = end - start;
|
|
|
|
/* Register lowmem ranges */
|
|
free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
|
|
memory_present(0, start, end);
|
|
}
|
|
|
|
/*
|
|
* Reserve the bootmap memory.
|
|
*/
|
|
reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
|
|
|
|
/*
|
|
* Reserve initrd memory if needed.
|
|
*/
|
|
finalize_initrd();
|
|
}
|
|
|
|
#endif /* CONFIG_SGI_IP27 */
|
|
|
|
/*
|
|
* arch_mem_init - initialize memory managment subsystem
|
|
*
|
|
* o plat_mem_setup() detects the memory configuration and will record detected
|
|
* memory areas using add_memory_region.
|
|
*
|
|
* At this stage the memory configuration of the system is known to the
|
|
* kernel but generic memory managment system is still entirely uninitialized.
|
|
*
|
|
* o bootmem_init()
|
|
* o sparse_init()
|
|
* o paging_init()
|
|
*
|
|
* At this stage the bootmem allocator is ready to use.
|
|
*
|
|
* NOTE: historically plat_mem_setup did the entire platform initialization.
|
|
* This was rather impractical because it meant plat_mem_setup had to
|
|
* get away without any kind of memory allocator. To keep old code from
|
|
* breaking plat_setup was just renamed to plat_setup and a second platform
|
|
* initialization hook for anything else was introduced.
|
|
*/
|
|
|
|
static int usermem __initdata = 0;
|
|
|
|
static int __init early_parse_mem(char *p)
|
|
{
|
|
unsigned long start, size;
|
|
|
|
/*
|
|
* If a user specifies memory size, we
|
|
* blow away any automatically generated
|
|
* size.
|
|
*/
|
|
if (usermem == 0) {
|
|
boot_mem_map.nr_map = 0;
|
|
usermem = 1;
|
|
}
|
|
start = 0;
|
|
size = memparse(p, &p);
|
|
if (*p == '@')
|
|
start = memparse(p + 1, &p);
|
|
|
|
add_memory_region(start, size, BOOT_MEM_RAM);
|
|
return 0;
|
|
}
|
|
early_param("mem", early_parse_mem);
|
|
|
|
static void __init arch_mem_init(char **cmdline_p)
|
|
{
|
|
extern void plat_mem_setup(void);
|
|
|
|
/* call board setup routine */
|
|
plat_mem_setup();
|
|
|
|
printk("Determined physical RAM map:\n");
|
|
print_memory_map();
|
|
|
|
strlcpy(command_line, arcs_cmdline, sizeof(command_line));
|
|
strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
|
|
|
|
*cmdline_p = command_line;
|
|
|
|
parse_early_param();
|
|
|
|
if (usermem) {
|
|
printk("User-defined physical RAM map:\n");
|
|
print_memory_map();
|
|
}
|
|
|
|
bootmem_init();
|
|
sparse_init();
|
|
paging_init();
|
|
}
|
|
|
|
static void __init resource_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (UNCAC_BASE != IO_BASE)
|
|
return;
|
|
|
|
code_resource.start = __pa_symbol(&_text);
|
|
code_resource.end = __pa_symbol(&_etext) - 1;
|
|
data_resource.start = __pa_symbol(&_etext);
|
|
data_resource.end = __pa_symbol(&_edata) - 1;
|
|
|
|
/*
|
|
* Request address space for all standard RAM.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
struct resource *res;
|
|
unsigned long start, end;
|
|
|
|
start = boot_mem_map.map[i].addr;
|
|
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
|
|
if (start >= HIGHMEM_START)
|
|
continue;
|
|
if (end >= HIGHMEM_START)
|
|
end = HIGHMEM_START - 1;
|
|
|
|
res = alloc_bootmem(sizeof(struct resource));
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
case BOOT_MEM_ROM_DATA:
|
|
res->name = "System RAM";
|
|
break;
|
|
case BOOT_MEM_RESERVED:
|
|
default:
|
|
res->name = "reserved";
|
|
}
|
|
|
|
res->start = start;
|
|
res->end = end;
|
|
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
request_resource(&iomem_resource, res);
|
|
|
|
/*
|
|
* We don't know which RAM region contains kernel data,
|
|
* so we try it repeatedly and let the resource manager
|
|
* test it.
|
|
*/
|
|
request_resource(res, &code_resource);
|
|
request_resource(res, &data_resource);
|
|
}
|
|
}
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
cpu_probe();
|
|
prom_init();
|
|
|
|
#ifdef CONFIG_EARLY_PRINTK
|
|
{
|
|
extern void setup_early_printk(void);
|
|
|
|
setup_early_printk();
|
|
}
|
|
#endif
|
|
cpu_report();
|
|
|
|
#if defined(CONFIG_VT)
|
|
#if defined(CONFIG_VGA_CONSOLE)
|
|
conswitchp = &vga_con;
|
|
#elif defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
#endif
|
|
|
|
arch_mem_init(cmdline_p);
|
|
|
|
resource_init();
|
|
#ifdef CONFIG_SMP
|
|
plat_smp_setup();
|
|
#endif
|
|
}
|
|
|
|
static int __init fpu_disable(char *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
cpu_data[i].options &= ~MIPS_CPU_FPU;
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("nofpu", fpu_disable);
|
|
|
|
static int __init dsp_disable(char *s)
|
|
{
|
|
cpu_data[0].ases &= ~MIPS_ASE_DSP;
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("nodsp", dsp_disable);
|
|
|
|
unsigned long kernelsp[NR_CPUS];
|
|
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *mips_debugfs_dir;
|
|
static int __init debugfs_mips(void)
|
|
{
|
|
struct dentry *d;
|
|
|
|
d = debugfs_create_dir("mips", NULL);
|
|
if (IS_ERR(d))
|
|
return PTR_ERR(d);
|
|
mips_debugfs_dir = d;
|
|
return 0;
|
|
}
|
|
arch_initcall(debugfs_mips);
|
|
#endif
|