linux/drivers/net/wan/dscc4.c
Arnaldo Carvalho de Melo 27d7ff46a3 [SK_BUFF]: Introduce skb_copy_to_linear_data{_offset}
To clearly state the intent of copying to linear sk_buffs, _offset being a
overly long variant but interesting for the sake of saving some bytes.

Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
2007-04-25 22:28:29 -07:00

2075 lines
54 KiB
C

/*
* drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
*
* This software may be used and distributed according to the terms of the
* GNU General Public License.
*
* The author may be reached as romieu@cogenit.fr.
* Specific bug reports/asian food will be welcome.
*
* Special thanks to the nice people at CS-Telecom for the hardware and the
* access to the test/measure tools.
*
*
* Theory of Operation
*
* I. Board Compatibility
*
* This device driver is designed for the Siemens PEB20534 4 ports serial
* controller as found on Etinc PCISYNC cards. The documentation for the
* chipset is available at http://www.infineon.com:
* - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
* 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
* - Application Hint "Management of DSCC4 on-chip FIFO resources".
* - Errata sheet DS5 (courtesy of Michael Skerritt).
* Jens David has built an adapter based on the same chipset. Take a look
* at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
* driver.
* Sample code (2 revisions) is available at Infineon.
*
* II. Board-specific settings
*
* Pcisync can transmit some clock signal to the outside world on the
* *first two* ports provided you put a quartz and a line driver on it and
* remove the jumpers. The operation is described on Etinc web site. If you
* go DCE on these ports, don't forget to use an adequate cable.
*
* Sharing of the PCI interrupt line for this board is possible.
*
* III. Driver operation
*
* The rx/tx operations are based on a linked list of descriptors. The driver
* doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
* I tried to fix it, the more it started to look like (convoluted) software
* mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
* this a rfc2119 MUST.
*
* Tx direction
* When the tx ring is full, the xmit routine issues a call to netdev_stop.
* The device is supposed to be enabled again during an ALLS irq (we could
* use HI but as it's easy to lose events, it's fscked).
*
* Rx direction
* The received frames aren't supposed to span over multiple receiving areas.
* I may implement it some day but it isn't the highest ranked item.
*
* IV. Notes
* The current error (XDU, RFO) recovery code is untested.
* So far, RDO takes his RX channel down and the right sequence to enable it
* again is still a mistery. If RDO happens, plan a reboot. More details
* in the code (NB: as this happens, TX still works).
* Don't mess the cables during operation, especially on DTE ports. I don't
* suggest it for DCE either but at least one can get some messages instead
* of a complete instant freeze.
* Tests are done on Rev. 20 of the silicium. The RDO handling changes with
* the documentation/chipset releases.
*
* TODO:
* - test X25.
* - use polling at high irq/s,
* - performance analysis,
* - endianness.
*
* 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
* - Contribution to support the new generic HDLC layer.
*
* 2002/01 Ueimor
* - old style interface removal
* - dscc4_release_ring fix (related to DMA mapping)
* - hard_start_xmit fix (hint: TxSizeMax)
* - misc crapectomy.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <net/syncppp.h>
#include <linux/hdlc.h>
#include <linux/mutex.h>
/* Version */
static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
static int debug;
static int quartz;
#ifdef CONFIG_DSCC4_PCI_RST
static DEFINE_MUTEX(dscc4_mutex);
static u32 dscc4_pci_config_store[16];
#endif
#define DRV_NAME "dscc4"
#undef DSCC4_POLLING
/* Module parameters */
MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
MODULE_LICENSE("GPL");
module_param(debug, int, 0);
MODULE_PARM_DESC(debug,"Enable/disable extra messages");
module_param(quartz, int, 0);
MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
/* Structures */
struct thingie {
int define;
u32 bits;
};
struct TxFD {
u32 state;
u32 next;
u32 data;
u32 complete;
u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
};
struct RxFD {
u32 state1;
u32 next;
u32 data;
u32 state2;
u32 end;
};
#define DUMMY_SKB_SIZE 64
#define TX_LOW 8
#define TX_RING_SIZE 32
#define RX_RING_SIZE 32
#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
#define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
#define TX_TIMEOUT (HZ/10)
#define DSCC4_HZ_MAX 33000000
#define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
#define dev_per_card 4
#define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
#define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
#define TO_SIZE(state) (((state) >> 16) & 0x1fff)
/*
* Given the operating range of Linux HDLC, the 2 defines below could be
* made simpler. However they are a fine reminder for the limitations of
* the driver: it's better to stay < TxSizeMax and < RxSizeMax.
*/
#define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
#define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
#define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
#define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
struct dscc4_pci_priv {
u32 *iqcfg;
int cfg_cur;
spinlock_t lock;
struct pci_dev *pdev;
struct dscc4_dev_priv *root;
dma_addr_t iqcfg_dma;
u32 xtal_hz;
};
struct dscc4_dev_priv {
struct sk_buff *rx_skbuff[RX_RING_SIZE];
struct sk_buff *tx_skbuff[TX_RING_SIZE];
struct RxFD *rx_fd;
struct TxFD *tx_fd;
u32 *iqrx;
u32 *iqtx;
/* FIXME: check all the volatile are required */
volatile u32 tx_current;
u32 rx_current;
u32 iqtx_current;
u32 iqrx_current;
volatile u32 tx_dirty;
volatile u32 ltda;
u32 rx_dirty;
u32 lrda;
dma_addr_t tx_fd_dma;
dma_addr_t rx_fd_dma;
dma_addr_t iqtx_dma;
dma_addr_t iqrx_dma;
u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
struct timer_list timer;
struct dscc4_pci_priv *pci_priv;
spinlock_t lock;
int dev_id;
volatile u32 flags;
u32 timer_help;
unsigned short encoding;
unsigned short parity;
struct net_device *dev;
sync_serial_settings settings;
void __iomem *base_addr;
u32 __pad __attribute__ ((aligned (4)));
};
/* GLOBAL registers definitions */
#define GCMDR 0x00
#define GSTAR 0x04
#define GMODE 0x08
#define IQLENR0 0x0C
#define IQLENR1 0x10
#define IQRX0 0x14
#define IQTX0 0x24
#define IQCFG 0x3c
#define FIFOCR1 0x44
#define FIFOCR2 0x48
#define FIFOCR3 0x4c
#define FIFOCR4 0x34
#define CH0CFG 0x50
#define CH0BRDA 0x54
#define CH0BTDA 0x58
#define CH0FRDA 0x98
#define CH0FTDA 0xb0
#define CH0LRDA 0xc8
#define CH0LTDA 0xe0
/* SCC registers definitions */
#define SCC_START 0x0100
#define SCC_OFFSET 0x80
#define CMDR 0x00
#define STAR 0x04
#define CCR0 0x08
#define CCR1 0x0c
#define CCR2 0x10
#define BRR 0x2C
#define RLCR 0x40
#define IMR 0x54
#define ISR 0x58
#define GPDIR 0x0400
#define GPDATA 0x0404
#define GPIM 0x0408
/* Bit masks */
#define EncodingMask 0x00700000
#define CrcMask 0x00000003
#define IntRxScc0 0x10000000
#define IntTxScc0 0x01000000
#define TxPollCmd 0x00000400
#define RxActivate 0x08000000
#define MTFi 0x04000000
#define Rdr 0x00400000
#define Rdt 0x00200000
#define Idr 0x00100000
#define Idt 0x00080000
#define TxSccRes 0x01000000
#define RxSccRes 0x00010000
#define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
#define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
#define Ccr0ClockMask 0x0000003f
#define Ccr1LoopMask 0x00000200
#define IsrMask 0x000fffff
#define BrrExpMask 0x00000f00
#define BrrMultMask 0x0000003f
#define EncodingMask 0x00700000
#define Hold 0x40000000
#define SccBusy 0x10000000
#define PowerUp 0x80000000
#define Vis 0x00001000
#define FrameOk (FrameVfr | FrameCrc)
#define FrameVfr 0x80
#define FrameRdo 0x40
#define FrameCrc 0x20
#define FrameRab 0x10
#define FrameAborted 0x00000200
#define FrameEnd 0x80000000
#define DataComplete 0x40000000
#define LengthCheck 0x00008000
#define SccEvt 0x02000000
#define NoAck 0x00000200
#define Action 0x00000001
#define HiDesc 0x20000000
/* SCC events */
#define RxEvt 0xf0000000
#define TxEvt 0x0f000000
#define Alls 0x00040000
#define Xdu 0x00010000
#define Cts 0x00004000
#define Xmr 0x00002000
#define Xpr 0x00001000
#define Rdo 0x00000080
#define Rfs 0x00000040
#define Cd 0x00000004
#define Rfo 0x00000002
#define Flex 0x00000001
/* DMA core events */
#define Cfg 0x00200000
#define Hi 0x00040000
#define Fi 0x00020000
#define Err 0x00010000
#define Arf 0x00000002
#define ArAck 0x00000001
/* State flags */
#define Ready 0x00000000
#define NeedIDR 0x00000001
#define NeedIDT 0x00000002
#define RdoSet 0x00000004
#define FakeReset 0x00000008
/* Don't mask RDO. Ever. */
#ifdef DSCC4_POLLING
#define EventsMask 0xfffeef7f
#else
#define EventsMask 0xfffa8f7a
#endif
/* Functions prototypes */
static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
static int dscc4_open(struct net_device *);
static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
static int dscc4_close(struct net_device *);
static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int dscc4_init_ring(struct net_device *);
static void dscc4_release_ring(struct dscc4_dev_priv *);
static void dscc4_timer(unsigned long);
static void dscc4_tx_timeout(struct net_device *);
static irqreturn_t dscc4_irq(int irq, void *dev_id);
static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
#ifdef DSCC4_POLLING
static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
#endif
static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
{
return dev_to_hdlc(dev)->priv;
}
static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
{
return p->dev;
}
static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
struct net_device *dev, int offset)
{
u32 state;
/* Cf scc_writel for concern regarding thread-safety */
state = dpriv->scc_regs[offset >> 2];
state &= ~mask;
state |= value;
dpriv->scc_regs[offset >> 2] = state;
writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
}
static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
struct net_device *dev, int offset)
{
/*
* Thread-UNsafe.
* As of 2002/02/16, there are no thread racing for access.
*/
dpriv->scc_regs[offset >> 2] = bits;
writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
}
static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
{
return dpriv->scc_regs[offset >> 2];
}
static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
/* Cf errata DS5 p.4 */
readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
}
static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
dpriv->ltda = dpriv->tx_fd_dma +
((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
/* Flush posted writes *NOW* */
readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
}
static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
dpriv->lrda = dpriv->rx_fd_dma +
((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
}
static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
{
return dpriv->tx_current == dpriv->tx_dirty;
}
static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
}
static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
struct net_device *dev, const char *msg)
{
int ret = 0;
if (debug > 1) {
if (SOURCE_ID(state) != dpriv->dev_id) {
printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
dev->name, msg, SOURCE_ID(state), state );
ret = -1;
}
if (state & 0x0df80c00) {
printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
dev->name, msg, state);
ret = -1;
}
}
return ret;
}
static void dscc4_tx_print(struct net_device *dev,
struct dscc4_dev_priv *dpriv,
char *msg)
{
printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
}
static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
{
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct TxFD *tx_fd = dpriv->tx_fd;
struct RxFD *rx_fd = dpriv->rx_fd;
struct sk_buff **skbuff;
int i;
pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
skbuff = dpriv->tx_skbuff;
for (i = 0; i < TX_RING_SIZE; i++) {
if (*skbuff) {
pci_unmap_single(pdev, tx_fd->data, (*skbuff)->len,
PCI_DMA_TODEVICE);
dev_kfree_skb(*skbuff);
}
skbuff++;
tx_fd++;
}
skbuff = dpriv->rx_skbuff;
for (i = 0; i < RX_RING_SIZE; i++) {
if (*skbuff) {
pci_unmap_single(pdev, rx_fd->data,
RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
dev_kfree_skb(*skbuff);
}
skbuff++;
rx_fd++;
}
}
static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
struct RxFD *rx_fd = dpriv->rx_fd + dirty;
const int len = RX_MAX(HDLC_MAX_MRU);
struct sk_buff *skb;
int ret = 0;
skb = dev_alloc_skb(len);
dpriv->rx_skbuff[dirty] = skb;
if (skb) {
skb->protocol = hdlc_type_trans(skb, dev);
rx_fd->data = pci_map_single(dpriv->pci_priv->pdev, skb->data,
len, PCI_DMA_FROMDEVICE);
} else {
rx_fd->data = (u32) NULL;
ret = -1;
}
return ret;
}
/*
* IRQ/thread/whatever safe
*/
static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
struct net_device *dev, char *msg)
{
s8 i = 0;
do {
if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
msg, i);
goto done;
}
schedule_timeout_uninterruptible(10);
rmb();
} while (++i > 0);
printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
done:
return (i >= 0) ? i : -EAGAIN;
}
static int dscc4_do_action(struct net_device *dev, char *msg)
{
void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
s16 i = 0;
writel(Action, ioaddr + GCMDR);
ioaddr += GSTAR;
do {
u32 state = readl(ioaddr);
if (state & ArAck) {
printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
writel(ArAck, ioaddr);
goto done;
} else if (state & Arf) {
printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
writel(Arf, ioaddr);
i = -1;
goto done;
}
rmb();
} while (++i > 0);
printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
done:
return i;
}
static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
{
int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
s8 i = 0;
do {
if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
(dpriv->iqtx[cur] & Xpr))
break;
smp_rmb();
schedule_timeout_uninterruptible(10);
} while (++i > 0);
return (i >= 0 ) ? i : -EAGAIN;
}
#if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
unsigned long flags;
spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
/* Cf errata DS5 p.6 */
writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
writel(Action, dpriv->base_addr + GCMDR);
spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
}
#endif
#if 0
static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
u16 i = 0;
/* Cf errata DS5 p.7 */
scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
scc_writel(0x00050000, dpriv, dev, CCR2);
/*
* Must be longer than the time required to fill the fifo.
*/
while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
udelay(1);
wmb();
}
writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
if (dscc4_do_action(dev, "Rdt") < 0)
printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
}
#endif
/* TODO: (ab)use this function to refill a completely depleted RX ring. */
static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
struct net_device_stats *stats = hdlc_stats(dev);
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct sk_buff *skb;
int pkt_len;
skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
if (!skb) {
printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __FUNCTION__);
goto refill;
}
pkt_len = TO_SIZE(rx_fd->state2);
pci_unmap_single(pdev, rx_fd->data, RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
stats->rx_packets++;
stats->rx_bytes += pkt_len;
skb_put(skb, pkt_len);
if (netif_running(dev))
skb->protocol = hdlc_type_trans(skb, dev);
skb->dev->last_rx = jiffies;
netif_rx(skb);
} else {
if (skb->data[pkt_len] & FrameRdo)
stats->rx_fifo_errors++;
else if (!(skb->data[pkt_len] | ~FrameCrc))
stats->rx_crc_errors++;
else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
stats->rx_length_errors++;
else
stats->rx_errors++;
dev_kfree_skb_irq(skb);
}
refill:
while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
if (try_get_rx_skb(dpriv, dev) < 0)
break;
dpriv->rx_dirty++;
}
dscc4_rx_update(dpriv, dev);
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
}
static void dscc4_free1(struct pci_dev *pdev)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
int i;
ppriv = pci_get_drvdata(pdev);
root = ppriv->root;
for (i = 0; i < dev_per_card; i++)
unregister_hdlc_device(dscc4_to_dev(root + i));
pci_set_drvdata(pdev, NULL);
for (i = 0; i < dev_per_card; i++)
free_netdev(root[i].dev);
kfree(root);
kfree(ppriv);
}
static int __devinit dscc4_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct dscc4_pci_priv *priv;
struct dscc4_dev_priv *dpriv;
void __iomem *ioaddr;
int i, rc;
printk(KERN_DEBUG "%s", version);
rc = pci_enable_device(pdev);
if (rc < 0)
goto out;
rc = pci_request_region(pdev, 0, "registers");
if (rc < 0) {
printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
DRV_NAME);
goto err_disable_0;
}
rc = pci_request_region(pdev, 1, "LBI interface");
if (rc < 0) {
printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
DRV_NAME);
goto err_free_mmio_region_1;
}
ioaddr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!ioaddr) {
printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
(unsigned long long)pci_resource_start(pdev, 0));
rc = -EIO;
goto err_free_mmio_regions_2;
}
printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
(unsigned long long)pci_resource_start(pdev, 0),
(unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
/* Cf errata DS5 p.2 */
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
pci_set_master(pdev);
rc = dscc4_found1(pdev, ioaddr);
if (rc < 0)
goto err_iounmap_3;
priv = pci_get_drvdata(pdev);
rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
if (rc < 0) {
printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
goto err_release_4;
}
/* power up/little endian/dma core controlled via lrda/ltda */
writel(0x00000001, ioaddr + GMODE);
/* Shared interrupt queue */
{
u32 bits;
bits = (IRQ_RING_SIZE >> 5) - 1;
bits |= bits << 4;
bits |= bits << 8;
bits |= bits << 16;
writel(bits, ioaddr + IQLENR0);
}
/* Global interrupt queue */
writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
priv->iqcfg = (u32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &priv->iqcfg_dma);
if (!priv->iqcfg)
goto err_free_irq_5;
writel(priv->iqcfg_dma, ioaddr + IQCFG);
rc = -ENOMEM;
/*
* SCC 0-3 private rx/tx irq structures
* IQRX/TXi needs to be set soon. Learned it the hard way...
*/
for (i = 0; i < dev_per_card; i++) {
dpriv = priv->root + i;
dpriv->iqtx = (u32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
if (!dpriv->iqtx)
goto err_free_iqtx_6;
writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
}
for (i = 0; i < dev_per_card; i++) {
dpriv = priv->root + i;
dpriv->iqrx = (u32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
if (!dpriv->iqrx)
goto err_free_iqrx_7;
writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
}
/* Cf application hint. Beware of hard-lock condition on threshold. */
writel(0x42104000, ioaddr + FIFOCR1);
//writel(0x9ce69800, ioaddr + FIFOCR2);
writel(0xdef6d800, ioaddr + FIFOCR2);
//writel(0x11111111, ioaddr + FIFOCR4);
writel(0x18181818, ioaddr + FIFOCR4);
// FIXME: should depend on the chipset revision
writel(0x0000000e, ioaddr + FIFOCR3);
writel(0xff200001, ioaddr + GCMDR);
rc = 0;
out:
return rc;
err_free_iqrx_7:
while (--i >= 0) {
dpriv = priv->root + i;
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqrx, dpriv->iqrx_dma);
}
i = dev_per_card;
err_free_iqtx_6:
while (--i >= 0) {
dpriv = priv->root + i;
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqtx, dpriv->iqtx_dma);
}
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
priv->iqcfg_dma);
err_free_irq_5:
free_irq(pdev->irq, priv->root);
err_release_4:
dscc4_free1(pdev);
err_iounmap_3:
iounmap (ioaddr);
err_free_mmio_regions_2:
pci_release_region(pdev, 1);
err_free_mmio_region_1:
pci_release_region(pdev, 0);
err_disable_0:
pci_disable_device(pdev);
goto out;
};
/*
* Let's hope the default values are decent enough to protect my
* feet from the user's gun - Ueimor
*/
static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
/* No interrupts, SCC core disabled. Let's relax */
scc_writel(0x00000000, dpriv, dev, CCR0);
scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
/*
* No address recognition/crc-CCITT/cts enabled
* Shared flags transmission disabled - cf errata DS5 p.11
* Carrier detect disabled - cf errata p.14
* FIXME: carrier detection/polarity may be handled more gracefully.
*/
scc_writel(0x02408000, dpriv, dev, CCR1);
/* crc not forwarded - Cf errata DS5 p.11 */
scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
// crc forwarded
//scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
}
static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
{
int ret = 0;
if ((hz < 0) || (hz > DSCC4_HZ_MAX))
ret = -EOPNOTSUPP;
else
dpriv->pci_priv->xtal_hz = hz;
return ret;
}
static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
int i, ret = -ENOMEM;
root = kmalloc(dev_per_card*sizeof(*root), GFP_KERNEL);
if (!root) {
printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
goto err_out;
}
memset(root, 0, dev_per_card*sizeof(*root));
for (i = 0; i < dev_per_card; i++) {
root[i].dev = alloc_hdlcdev(root + i);
if (!root[i].dev)
goto err_free_dev;
}
ppriv = kmalloc(sizeof(*ppriv), GFP_KERNEL);
if (!ppriv) {
printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
goto err_free_dev;
}
memset(ppriv, 0, sizeof(struct dscc4_pci_priv));
ppriv->root = root;
spin_lock_init(&ppriv->lock);
for (i = 0; i < dev_per_card; i++) {
struct dscc4_dev_priv *dpriv = root + i;
struct net_device *d = dscc4_to_dev(dpriv);
hdlc_device *hdlc = dev_to_hdlc(d);
d->base_addr = (unsigned long)ioaddr;
d->init = NULL;
d->irq = pdev->irq;
d->open = dscc4_open;
d->stop = dscc4_close;
d->set_multicast_list = NULL;
d->do_ioctl = dscc4_ioctl;
d->tx_timeout = dscc4_tx_timeout;
d->watchdog_timeo = TX_TIMEOUT;
SET_MODULE_OWNER(d);
SET_NETDEV_DEV(d, &pdev->dev);
dpriv->dev_id = i;
dpriv->pci_priv = ppriv;
dpriv->base_addr = ioaddr;
spin_lock_init(&dpriv->lock);
hdlc->xmit = dscc4_start_xmit;
hdlc->attach = dscc4_hdlc_attach;
dscc4_init_registers(dpriv, d);
dpriv->parity = PARITY_CRC16_PR0_CCITT;
dpriv->encoding = ENCODING_NRZ;
ret = dscc4_init_ring(d);
if (ret < 0)
goto err_unregister;
ret = register_hdlc_device(d);
if (ret < 0) {
printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
dscc4_release_ring(dpriv);
goto err_unregister;
}
}
ret = dscc4_set_quartz(root, quartz);
if (ret < 0)
goto err_unregister;
pci_set_drvdata(pdev, ppriv);
return ret;
err_unregister:
while (i-- > 0) {
dscc4_release_ring(root + i);
unregister_hdlc_device(dscc4_to_dev(root + i));
}
kfree(ppriv);
i = dev_per_card;
err_free_dev:
while (i-- > 0)
free_netdev(root[i].dev);
kfree(root);
err_out:
return ret;
};
/* FIXME: get rid of the unneeded code */
static void dscc4_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
// struct dscc4_pci_priv *ppriv;
goto done;
done:
dpriv->timer.expires = jiffies + TX_TIMEOUT;
add_timer(&dpriv->timer);
}
static void dscc4_tx_timeout(struct net_device *dev)
{
/* FIXME: something is missing there */
}
static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
{
sync_serial_settings *settings = &dpriv->settings;
if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
struct net_device *dev = dscc4_to_dev(dpriv);
printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
return -1;
}
return 0;
}
#ifdef CONFIG_DSCC4_PCI_RST
/*
* Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
* so as to provide a safe way to reset the asic while not the whole machine
* rebooting.
*
* This code doesn't need to be efficient. Keep It Simple
*/
static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
{
int i;
mutex_lock(&dscc4_mutex);
for (i = 0; i < 16; i++)
pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
/* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
writel(0x001c0000, ioaddr + GMODE);
/* Configure GPIO port as output */
writel(0x0000ffff, ioaddr + GPDIR);
/* Disable interruption */
writel(0x0000ffff, ioaddr + GPIM);
writel(0x0000ffff, ioaddr + GPDATA);
writel(0x00000000, ioaddr + GPDATA);
/* Flush posted writes */
readl(ioaddr + GSTAR);
schedule_timeout_uninterruptible(10);
for (i = 0; i < 16; i++)
pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
mutex_unlock(&dscc4_mutex);
}
#else
#define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
#endif /* CONFIG_DSCC4_PCI_RST */
static int dscc4_open(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
struct dscc4_pci_priv *ppriv;
int ret = -EAGAIN;
if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit)
goto err;
if ((ret = hdlc_open(dev)))
goto err;
ppriv = dpriv->pci_priv;
/*
* Due to various bugs, there is no way to reliably reset a
* specific port (manufacturer's dependant special PCI #RST wiring
* apart: it affects all ports). Thus the device goes in the best
* silent mode possible at dscc4_close() time and simply claims to
* be up if it's opened again. It still isn't possible to change
* the HDLC configuration without rebooting but at least the ports
* can be up/down ifconfig'ed without killing the host.
*/
if (dpriv->flags & FakeReset) {
dpriv->flags &= ~FakeReset;
scc_patchl(0, PowerUp, dpriv, dev, CCR0);
scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
scc_writel(EventsMask, dpriv, dev, IMR);
printk(KERN_INFO "%s: up again.\n", dev->name);
goto done;
}
/* IDT+IDR during XPR */
dpriv->flags = NeedIDR | NeedIDT;
scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
/*
* The following is a bit paranoid...
*
* NB: the datasheet "...CEC will stay active if the SCC is in
* power-down mode or..." and CCR2.RAC = 1 are two different
* situations.
*/
if (scc_readl_star(dpriv, dev) & SccBusy) {
printk(KERN_ERR "%s busy. Try later\n", dev->name);
ret = -EAGAIN;
goto err_out;
} else
printk(KERN_INFO "%s: available. Good\n", dev->name);
scc_writel(EventsMask, dpriv, dev, IMR);
/* Posted write is flushed in the wait_ack loop */
scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
goto err_disable_scc_events;
/*
* I would expect XPR near CE completion (before ? after ?).
* At worst, this code won't see a late XPR and people
* will have to re-issue an ifconfig (this is harmless).
* WARNING, a really missing XPR usually means a hardware
* reset is needed. Suggestions anyone ?
*/
if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
goto err_disable_scc_events;
}
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Open");
done:
netif_start_queue(dev);
init_timer(&dpriv->timer);
dpriv->timer.expires = jiffies + 10*HZ;
dpriv->timer.data = (unsigned long)dev;
dpriv->timer.function = &dscc4_timer;
add_timer(&dpriv->timer);
netif_carrier_on(dev);
return 0;
err_disable_scc_events:
scc_writel(0xffffffff, dpriv, dev, IMR);
scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
err_out:
hdlc_close(dev);
err:
return ret;
}
#ifdef DSCC4_POLLING
static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
/* FIXME: it's gonna be easy (TM), for sure */
}
#endif /* DSCC4_POLLING */
static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
struct TxFD *tx_fd;
int next;
next = dpriv->tx_current%TX_RING_SIZE;
dpriv->tx_skbuff[next] = skb;
tx_fd = dpriv->tx_fd + next;
tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
tx_fd->data = pci_map_single(ppriv->pdev, skb->data, skb->len,
PCI_DMA_TODEVICE);
tx_fd->complete = 0x00000000;
tx_fd->jiffies = jiffies;
mb();
#ifdef DSCC4_POLLING
spin_lock(&dpriv->lock);
while (dscc4_tx_poll(dpriv, dev));
spin_unlock(&dpriv->lock);
#endif
dev->trans_start = jiffies;
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Xmit");
/* To be cleaned(unsigned int)/optimized. Later, ok ? */
if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
netif_stop_queue(dev);
if (dscc4_tx_quiescent(dpriv, dev))
dscc4_do_tx(dpriv, dev);
return 0;
}
static int dscc4_close(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
del_timer_sync(&dpriv->timer);
netif_stop_queue(dev);
scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
scc_writel(0xffffffff, dpriv, dev, IMR);
dpriv->flags |= FakeReset;
hdlc_close(dev);
return 0;
}
static inline int dscc4_check_clock_ability(int port)
{
int ret = 0;
#ifdef CONFIG_DSCC4_PCISYNC
if (port >= 2)
ret = -1;
#endif
return ret;
}
/*
* DS1 p.137: "There are a total of 13 different clocking modes..."
* ^^
* Design choices:
* - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
* Clock mode 3b _should_ work but the testing seems to make this point
* dubious (DIY testing requires setting CCR0 at 0x00000033).
* This is supposed to provide least surprise "DTE like" behavior.
* - if line rate is specified, clocks are assumed to be locally generated.
* A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
* between these it automagically done according on the required frequency
* scaling. Of course some rounding may take place.
* - no high speed mode (40Mb/s). May be trivial to do but I don't have an
* appropriate external clocking device for testing.
* - no time-slot/clock mode 5: shameless lazyness.
*
* The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
*
* BIG FAT WARNING: if the device isn't provided enough clocking signal, it
* won't pass the init sequence. For example, straight back-to-back DTE without
* external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
* called.
*
* Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
* DS0 for example)
*
* Clock mode related bits of CCR0:
* +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
* | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
* | | +-------- High Speed: say 0
* | | | +-+-+-- Clock Mode: 0..7
* | | | | | |
* -+-+-+-+-+-+-+-+
* x|x|5|4|3|2|1|0| lower bits
*
* Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
* +-+-+-+------------------ M (0..15)
* | | | | +-+-+-+-+-+-- N (0..63)
* 0 0 0 0 | | | | 0 0 | | | | | |
* ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
*
*/
static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
int ret = -1;
u32 brr;
*state &= ~Ccr0ClockMask;
if (*bps) { /* Clock generated - required for DCE */
u32 n = 0, m = 0, divider;
int xtal;
xtal = dpriv->pci_priv->xtal_hz;
if (!xtal)
goto done;
if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
goto done;
divider = xtal / *bps;
if (divider > BRR_DIVIDER_MAX) {
divider >>= 4;
*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
} else
*state |= 0x00000037; /* Clock mode 7b (BRG) */
if (divider >> 22) {
n = 63;
m = 15;
} else if (divider) {
/* Extraction of the 6 highest weighted bits */
m = 0;
while (0xffffffc0 & divider) {
m++;
divider >>= 1;
}
n = divider;
}
brr = (m << 8) | n;
divider = n << m;
if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
divider <<= 4;
*bps = xtal / divider;
} else {
/*
* External clock - DTE
* "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
* Nothing more to be done
*/
brr = 0;
}
scc_writel(brr, dpriv, dev, BRR);
ret = 0;
done:
return ret;
}
static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
const size_t size = sizeof(dpriv->settings);
int ret = 0;
if (dev->flags & IFF_UP)
return -EBUSY;
if (cmd != SIOCWANDEV)
return -EOPNOTSUPP;
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE:
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
if (copy_to_user(line, &dpriv->settings, size))
return -EFAULT;
break;
case IF_IFACE_SYNC_SERIAL:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (dpriv->flags & FakeReset) {
printk(KERN_INFO "%s: please reset the device"
" before this command\n", dev->name);
return -EPERM;
}
if (copy_from_user(&dpriv->settings, line, size))
return -EFAULT;
ret = dscc4_set_iface(dpriv, dev);
break;
default:
ret = hdlc_ioctl(dev, ifr, cmd);
break;
}
return ret;
}
static int dscc4_match(struct thingie *p, int value)
{
int i;
for (i = 0; p[i].define != -1; i++) {
if (value == p[i].define)
break;
}
if (p[i].define == -1)
return -1;
else
return i;
}
static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
sync_serial_settings *settings = &dpriv->settings;
int ret = -EOPNOTSUPP;
u32 bps, state;
bps = settings->clock_rate;
state = scc_readl(dpriv, CCR0);
if (dscc4_set_clock(dev, &bps, &state) < 0)
goto done;
if (bps) { /* DCE */
printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
if (settings->clock_rate != bps) {
printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
dev->name, settings->clock_rate, bps);
settings->clock_rate = bps;
}
} else { /* DTE */
state |= PowerUp | Vis;
printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
}
scc_writel(state, dpriv, dev, CCR0);
ret = 0;
done:
return ret;
}
static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct thingie encoding[] = {
{ ENCODING_NRZ, 0x00000000 },
{ ENCODING_NRZI, 0x00200000 },
{ ENCODING_FM_MARK, 0x00400000 },
{ ENCODING_FM_SPACE, 0x00500000 },
{ ENCODING_MANCHESTER, 0x00600000 },
{ -1, 0}
};
int i, ret = 0;
i = dscc4_match(encoding, dpriv->encoding);
if (i >= 0)
scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
else
ret = -EOPNOTSUPP;
return ret;
}
static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
sync_serial_settings *settings = &dpriv->settings;
u32 state;
state = scc_readl(dpriv, CCR1);
if (settings->loopback) {
printk(KERN_DEBUG "%s: loopback\n", dev->name);
state |= 0x00000100;
} else {
printk(KERN_DEBUG "%s: normal\n", dev->name);
state &= ~0x00000100;
}
scc_writel(state, dpriv, dev, CCR1);
return 0;
}
static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct thingie crc[] = {
{ PARITY_CRC16_PR0_CCITT, 0x00000010 },
{ PARITY_CRC16_PR1_CCITT, 0x00000000 },
{ PARITY_CRC32_PR0_CCITT, 0x00000011 },
{ PARITY_CRC32_PR1_CCITT, 0x00000001 }
};
int i, ret = 0;
i = dscc4_match(crc, dpriv->parity);
if (i >= 0)
scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
else
ret = -EOPNOTSUPP;
return ret;
}
static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
struct {
int (*action)(struct dscc4_dev_priv *, struct net_device *);
} *p, do_setting[] = {
{ dscc4_encoding_setting },
{ dscc4_clock_setting },
{ dscc4_loopback_setting },
{ dscc4_crc_setting },
{ NULL }
};
int ret = 0;
for (p = do_setting; p->action; p++) {
if ((ret = p->action(dpriv, dev)) < 0)
break;
}
return ret;
}
static irqreturn_t dscc4_irq(int irq, void *token)
{
struct dscc4_dev_priv *root = token;
struct dscc4_pci_priv *priv;
struct net_device *dev;
void __iomem *ioaddr;
u32 state;
unsigned long flags;
int i, handled = 1;
priv = root->pci_priv;
dev = dscc4_to_dev(root);
spin_lock_irqsave(&priv->lock, flags);
ioaddr = root->base_addr;
state = readl(ioaddr + GSTAR);
if (!state) {
handled = 0;
goto out;
}
if (debug > 3)
printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
writel(state, ioaddr + GSTAR);
if (state & Arf) {
printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
dev->name);
goto out;
}
state &= ~ArAck;
if (state & Cfg) {
if (debug > 0)
printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & Arf)
printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
if (!(state &= ~Cfg))
goto out;
}
if (state & RxEvt) {
i = dev_per_card - 1;
do {
dscc4_rx_irq(priv, root + i);
} while (--i >= 0);
state &= ~RxEvt;
}
if (state & TxEvt) {
i = dev_per_card - 1;
do {
dscc4_tx_irq(priv, root + i);
} while (--i >= 0);
state &= ~TxEvt;
}
out:
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_RETVAL(handled);
}
static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
struct dscc4_dev_priv *dpriv)
{
struct net_device *dev = dscc4_to_dev(dpriv);
u32 state;
int cur, loop = 0;
try:
cur = dpriv->iqtx_current%IRQ_RING_SIZE;
state = dpriv->iqtx[cur];
if (!state) {
if (debug > 4)
printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
state);
if ((debug > 1) && (loop > 1))
printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
if (loop && netif_queue_stopped(dev))
if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
netif_wake_queue(dev);
if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
!dscc4_tx_done(dpriv))
dscc4_do_tx(dpriv, dev);
return;
}
loop++;
dpriv->iqtx[cur] = 0;
dpriv->iqtx_current++;
if (state_check(state, dpriv, dev, "Tx") < 0)
return;
if (state & SccEvt) {
if (state & Alls) {
struct net_device_stats *stats = hdlc_stats(dev);
struct sk_buff *skb;
struct TxFD *tx_fd;
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Alls");
/*
* DataComplete can't be trusted for Tx completion.
* Cf errata DS5 p.8
*/
cur = dpriv->tx_dirty%TX_RING_SIZE;
tx_fd = dpriv->tx_fd + cur;
skb = dpriv->tx_skbuff[cur];
if (skb) {
pci_unmap_single(ppriv->pdev, tx_fd->data,
skb->len, PCI_DMA_TODEVICE);
if (tx_fd->state & FrameEnd) {
stats->tx_packets++;
stats->tx_bytes += skb->len;
}
dev_kfree_skb_irq(skb);
dpriv->tx_skbuff[cur] = NULL;
++dpriv->tx_dirty;
} else {
if (debug > 1)
printk(KERN_ERR "%s Tx: NULL skb %d\n",
dev->name, cur);
}
/*
* If the driver ends sending crap on the wire, it
* will be way easier to diagnose than the (not so)
* random freeze induced by null sized tx frames.
*/
tx_fd->data = tx_fd->next;
tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
tx_fd->complete = 0x00000000;
tx_fd->jiffies = 0;
if (!(state &= ~Alls))
goto try;
}
/*
* Transmit Data Underrun
*/
if (state & Xdu) {
printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
dpriv->flags = NeedIDT;
/* Tx reset */
writel(MTFi | Rdt,
dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
writel(Action, dpriv->base_addr + GCMDR);
return;
}
if (state & Cts) {
printk(KERN_INFO "%s: CTS transition\n", dev->name);
if (!(state &= ~Cts)) /* DEBUG */
goto try;
}
if (state & Xmr) {
/* Frame needs to be sent again - FIXME */
printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
if (!(state &= ~Xmr)) /* DEBUG */
goto try;
}
if (state & Xpr) {
void __iomem *scc_addr;
unsigned long ring;
int i;
/*
* - the busy condition happens (sometimes);
* - it doesn't seem to make the handler unreliable.
*/
for (i = 1; i; i <<= 1) {
if (!(scc_readl_star(dpriv, dev) & SccBusy))
break;
}
if (!i)
printk(KERN_INFO "%s busy in irq\n", dev->name);
scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
/* Keep this order: IDT before IDR */
if (dpriv->flags & NeedIDT) {
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Xpr");
ring = dpriv->tx_fd_dma +
(dpriv->tx_dirty%TX_RING_SIZE)*
sizeof(struct TxFD);
writel(ring, scc_addr + CH0BTDA);
dscc4_do_tx(dpriv, dev);
writel(MTFi | Idt, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "IDT") < 0)
goto err_xpr;
dpriv->flags &= ~NeedIDT;
}
if (dpriv->flags & NeedIDR) {
ring = dpriv->rx_fd_dma +
(dpriv->rx_current%RX_RING_SIZE)*
sizeof(struct RxFD);
writel(ring, scc_addr + CH0BRDA);
dscc4_rx_update(dpriv, dev);
writel(MTFi | Idr, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "IDR") < 0)
goto err_xpr;
dpriv->flags &= ~NeedIDR;
smp_wmb();
/* Activate receiver and misc */
scc_writel(0x08050008, dpriv, dev, CCR2);
}
err_xpr:
if (!(state &= ~Xpr))
goto try;
}
if (state & Cd) {
if (debug > 0)
printk(KERN_INFO "%s: CD transition\n", dev->name);
if (!(state &= ~Cd)) /* DEBUG */
goto try;
}
} else { /* ! SccEvt */
if (state & Hi) {
#ifdef DSCC4_POLLING
while (!dscc4_tx_poll(dpriv, dev));
#endif
printk(KERN_INFO "%s: Tx Hi\n", dev->name);
state &= ~Hi;
}
if (state & Err) {
printk(KERN_INFO "%s: Tx ERR\n", dev->name);
hdlc_stats(dev)->tx_errors++;
state &= ~Err;
}
}
goto try;
}
static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
struct dscc4_dev_priv *dpriv)
{
struct net_device *dev = dscc4_to_dev(dpriv);
u32 state;
int cur;
try:
cur = dpriv->iqrx_current%IRQ_RING_SIZE;
state = dpriv->iqrx[cur];
if (!state)
return;
dpriv->iqrx[cur] = 0;
dpriv->iqrx_current++;
if (state_check(state, dpriv, dev, "Rx") < 0)
return;
if (!(state & SccEvt)){
struct RxFD *rx_fd;
if (debug > 4)
printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
state);
state &= 0x00ffffff;
if (state & Err) { /* Hold or reset */
printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
cur = dpriv->rx_current%RX_RING_SIZE;
rx_fd = dpriv->rx_fd + cur;
/*
* Presume we're not facing a DMAC receiver reset.
* As We use the rx size-filtering feature of the
* DSCC4, the beginning of a new frame is waiting in
* the rx fifo. I bet a Receive Data Overflow will
* happen most of time but let's try and avoid it.
* Btw (as for RDO) if one experiences ERR whereas
* the system looks rather idle, there may be a
* problem with latency. In this case, increasing
* RX_RING_SIZE may help.
*/
//while (dpriv->rx_needs_refill) {
while (!(rx_fd->state1 & Hold)) {
rx_fd++;
cur++;
if (!(cur = cur%RX_RING_SIZE))
rx_fd = dpriv->rx_fd;
}
//dpriv->rx_needs_refill--;
try_get_rx_skb(dpriv, dev);
if (!rx_fd->data)
goto try;
rx_fd->state1 &= ~Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
//}
goto try;
}
if (state & Fi) {
dscc4_rx_skb(dpriv, dev);
goto try;
}
if (state & Hi ) { /* HI bit */
printk(KERN_INFO "%s: Rx Hi\n", dev->name);
state &= ~Hi;
goto try;
}
} else { /* SccEvt */
if (debug > 1) {
//FIXME: verifier la presence de tous les evenements
static struct {
u32 mask;
const char *irq_name;
} evts[] = {
{ 0x00008000, "TIN"},
{ 0x00000020, "RSC"},
{ 0x00000010, "PCE"},
{ 0x00000008, "PLLA"},
{ 0, NULL}
}, *evt;
for (evt = evts; evt->irq_name; evt++) {
if (state & evt->mask) {
printk(KERN_DEBUG "%s: %s\n",
dev->name, evt->irq_name);
if (!(state &= ~evt->mask))
goto try;
}
}
} else {
if (!(state &= ~0x0000c03c))
goto try;
}
if (state & Cts) {
printk(KERN_INFO "%s: CTS transition\n", dev->name);
if (!(state &= ~Cts)) /* DEBUG */
goto try;
}
/*
* Receive Data Overflow (FIXME: fscked)
*/
if (state & Rdo) {
struct RxFD *rx_fd;
void __iomem *scc_addr;
int cur;
//if (debug)
// dscc4_rx_dump(dpriv);
scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
/*
* This has no effect. Why ?
* ORed with TxSccRes, one sees the CFG ack (for
* the TX part only).
*/
scc_writel(RxSccRes, dpriv, dev, CMDR);
dpriv->flags |= RdoSet;
/*
* Let's try and save something in the received data.
* rx_current must be incremented at least once to
* avoid HOLD in the BRDA-to-be-pointed desc.
*/
do {
cur = dpriv->rx_current++%RX_RING_SIZE;
rx_fd = dpriv->rx_fd + cur;
if (!(rx_fd->state2 & DataComplete))
break;
if (rx_fd->state2 & FrameAborted) {
hdlc_stats(dev)->rx_over_errors++;
rx_fd->state1 |= Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
} else
dscc4_rx_skb(dpriv, dev);
} while (1);
if (debug > 0) {
if (dpriv->flags & RdoSet)
printk(KERN_DEBUG
"%s: no RDO in Rx data\n", DRV_NAME);
}
#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
/*
* FIXME: must the reset be this violent ?
*/
#warning "FIXME: CH0BRDA"
writel(dpriv->rx_fd_dma +
(dpriv->rx_current%RX_RING_SIZE)*
sizeof(struct RxFD), scc_addr + CH0BRDA);
writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "RDR") < 0) {
printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
dev->name, "RDR");
goto rdo_end;
}
writel(MTFi|Idr, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "IDR") < 0) {
printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
dev->name, "IDR");
goto rdo_end;
}
rdo_end:
#endif
scc_patchl(0, RxActivate, dpriv, dev, CCR2);
goto try;
}
if (state & Cd) {
printk(KERN_INFO "%s: CD transition\n", dev->name);
if (!(state &= ~Cd)) /* DEBUG */
goto try;
}
if (state & Flex) {
printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
if (!(state &= ~Flex))
goto try;
}
}
}
/*
* I had expected the following to work for the first descriptor
* (tx_fd->state = 0xc0000000)
* - Hold=1 (don't try and branch to the next descripto);
* - No=0 (I want an empty data section, i.e. size=0);
* - Fe=1 (required by No=0 or we got an Err irq and must reset).
* It failed and locked solid. Thus the introduction of a dummy skb.
* Problem is acknowledged in errata sheet DS5. Joy :o/
*/
static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
{
struct sk_buff *skb;
skb = dev_alloc_skb(DUMMY_SKB_SIZE);
if (skb) {
int last = dpriv->tx_dirty%TX_RING_SIZE;
struct TxFD *tx_fd = dpriv->tx_fd + last;
skb->len = DUMMY_SKB_SIZE;
skb_copy_to_linear_data(skb, version,
strlen(version) % DUMMY_SKB_SIZE);
tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
tx_fd->data = pci_map_single(dpriv->pci_priv->pdev, skb->data,
DUMMY_SKB_SIZE, PCI_DMA_TODEVICE);
dpriv->tx_skbuff[last] = skb;
}
return skb;
}
static int dscc4_init_ring(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct TxFD *tx_fd;
struct RxFD *rx_fd;
void *ring;
int i;
ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
if (!ring)
goto err_out;
dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
if (!ring)
goto err_free_dma_rx;
dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
dpriv->tx_dirty = 0xffffffff;
i = dpriv->tx_current = 0;
do {
tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
tx_fd->complete = 0x00000000;
/* FIXME: NULL should be ok - to be tried */
tx_fd->data = dpriv->tx_fd_dma;
(tx_fd++)->next = (u32)(dpriv->tx_fd_dma +
(++i%TX_RING_SIZE)*sizeof(*tx_fd));
} while (i < TX_RING_SIZE);
if (!dscc4_init_dummy_skb(dpriv))
goto err_free_dma_tx;
memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
i = dpriv->rx_dirty = dpriv->rx_current = 0;
do {
/* size set by the host. Multiple of 4 bytes please */
rx_fd->state1 = HiDesc;
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
// FIXME: return value verifiee mais traitement suspect
if (try_get_rx_skb(dpriv, dev) >= 0)
dpriv->rx_dirty++;
(rx_fd++)->next = (u32)(dpriv->rx_fd_dma +
(++i%RX_RING_SIZE)*sizeof(*rx_fd));
} while (i < RX_RING_SIZE);
return 0;
err_free_dma_tx:
pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
err_free_dma_rx:
pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
err_out:
return -ENOMEM;
}
static void __devexit dscc4_remove_one(struct pci_dev *pdev)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
void __iomem *ioaddr;
int i;
ppriv = pci_get_drvdata(pdev);
root = ppriv->root;
ioaddr = root->base_addr;
dscc4_pci_reset(pdev, ioaddr);
free_irq(pdev->irq, root);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
ppriv->iqcfg_dma);
for (i = 0; i < dev_per_card; i++) {
struct dscc4_dev_priv *dpriv = root + i;
dscc4_release_ring(dpriv);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqrx, dpriv->iqrx_dma);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqtx, dpriv->iqtx_dma);
}
dscc4_free1(pdev);
iounmap(ioaddr);
pci_release_region(pdev, 1);
pci_release_region(pdev, 0);
pci_disable_device(pdev);
}
static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
if (encoding != ENCODING_NRZ &&
encoding != ENCODING_NRZI &&
encoding != ENCODING_FM_MARK &&
encoding != ENCODING_FM_SPACE &&
encoding != ENCODING_MANCHESTER)
return -EINVAL;
if (parity != PARITY_NONE &&
parity != PARITY_CRC16_PR0_CCITT &&
parity != PARITY_CRC16_PR1_CCITT &&
parity != PARITY_CRC32_PR0_CCITT &&
parity != PARITY_CRC32_PR1_CCITT)
return -EINVAL;
dpriv->encoding = encoding;
dpriv->parity = parity;
return 0;
}
#ifndef MODULE
static int __init dscc4_setup(char *str)
{
int *args[] = { &debug, &quartz, NULL }, **p = args;
while (*p && (get_option(&str, *p) == 2))
p++;
return 1;
}
__setup("dscc4.setup=", dscc4_setup);
#endif
static struct pci_device_id dscc4_pci_tbl[] = {
{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
PCI_ANY_ID, PCI_ANY_ID, },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
static struct pci_driver dscc4_driver = {
.name = DRV_NAME,
.id_table = dscc4_pci_tbl,
.probe = dscc4_init_one,
.remove = __devexit_p(dscc4_remove_one),
};
static int __init dscc4_init_module(void)
{
return pci_register_driver(&dscc4_driver);
}
static void __exit dscc4_cleanup_module(void)
{
pci_unregister_driver(&dscc4_driver);
}
module_init(dscc4_init_module);
module_exit(dscc4_cleanup_module);