linux/include/asm-frv/pgtable.h
Nick Piggin 7e675137a8 mm: introduce pte_special pte bit
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most).  Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:

vm_normal_page()
{
	...
        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
                if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
			if (!mixedmap_refcount_pte(pte))
				return NULL;
#else
                        if (!pfn_valid(pfn))
                                return NULL;
#endif
                        goto out;
                }
	...
}

This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes.  So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):

vm_normal_page()
{
#ifdef s390
	if (!mixedmap_refcount_pte(pte))
		return NULL;
	return pte_page(pte);
#else
	...
#endif
}

And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits.  This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.

So introduce a pte_special pte state, and use it in mm/memory.c.  It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.

BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.

[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:23 -07:00

551 lines
17 KiB
C

/* pgtable.h: FR-V page table mangling
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Derived from:
* include/asm-m68knommu/pgtable.h
* include/asm-i386/pgtable.h
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
#include <asm/mem-layout.h>
#include <asm/setup.h>
#include <asm/processor.h>
#ifndef __ASSEMBLY__
#include <linux/threads.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
struct vm_area_struct;
#endif
#ifndef __ASSEMBLY__
#if defined(CONFIG_HIGHPTE)
typedef unsigned long pte_addr_t;
#else
typedef pte_t *pte_addr_t;
#endif
#endif
/*****************************************************************************/
/*
* MMU-less operation case first
*/
#ifndef CONFIG_MMU
#define pgd_present(pgd) (1) /* pages are always present on NO_MM */
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_clear(pgdp)
#define kern_addr_valid(addr) (1)
#define pmd_offset(a, b) ((void *) 0)
#define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
#define __swp_type(x) (0)
#define __swp_offset(x) (0)
#define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#ifndef __ASSEMBLY__
static inline int pte_file(pte_t pte) { return 0; }
#endif
#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
#define swapper_pg_dir ((pgd_t *) NULL)
#define pgtable_cache_init() do {} while (0)
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#define arch_enter_lazy_cpu_mode() do {} while (0)
#define arch_leave_lazy_cpu_mode() do {} while (0)
#else /* !CONFIG_MMU */
/*****************************************************************************/
/*
* then MMU operation
*/
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
#ifndef __ASSEMBLY__
extern unsigned long empty_zero_page;
#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
#endif
/*
* we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
* [see Documentation/frv/mmu-layout.txt]
*
* Page Directory:
* - Size: 16KB
* - 64 PGEs per PGD
* - Each PGE holds 1 PUD and covers 64MB
*
* Page Upper Directory:
* - Size: 256B
* - 1 PUE per PUD
* - Each PUE holds 1 PMD and covers 64MB
*
* Page Mid-Level Directory
* - Size: 256B
* - 1 PME per PMD
* - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
* - All STEs are instantiated at the same time
*
* Page Table
* - Size: 16KB
* - 4096 PTEs per PT
* - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
*
* Pages
* - Size: 4KB
*
* total PTEs
* = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
* = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
* = 262144 (or 256 * 1024)
*/
#define PGDIR_SHIFT 26
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE - 1))
#define PTRS_PER_PGD 64
#define PUD_SHIFT 26
#define PTRS_PER_PUD 1
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE - 1))
#define PUE_SIZE 256
#define PMD_SHIFT 26
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE - 1))
#define PTRS_PER_PMD 1
#define PME_SIZE 256
#define __frv_PT_SIZE 256
#define PTRS_PER_PTE 4096
#define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
#define TWOLEVEL_PGDIR_SHIFT 26
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
#define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
#ifndef __ASSEMBLY__
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pud_ERROR(e) \
printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) \
do { \
*(pteptr) = (pteval); \
asm volatile("dcf %M0" :: "U"(*pteptr)); \
} while(0)
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
/*
* pgd_offset() returns a (pgd_t *)
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pud is never bad, and a pud always exists (as it's folded
* into the pgd entry)
*/
static inline int pgd_none(pgd_t pgd) { return 0; }
static inline int pgd_bad(pgd_t pgd) { return 0; }
static inline int pgd_present(pgd_t pgd) { return 1; }
static inline void pgd_clear(pgd_t *pgd) { }
#define pgd_populate(mm, pgd, pud) do { } while (0)
/*
* (puds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pgd(pgdptr, pgdval) \
do { \
memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
} while(0)
static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
{
return (pud_t *) pgd;
}
#define pgd_page(pgd) (pud_page((pud_t){ pgd }))
#define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd }))
/*
* allocating and freeing a pud is trivial: the 1-entry pud is
* inside the pgd, so has no extra memory associated with it.
*/
#define pud_alloc_one(mm, address) NULL
#define pud_free(mm, x) do { } while (0)
#define __pud_free_tlb(tlb, x) do { } while (0)
/*
* The "pud_xxx()" functions here are trivial for a folded two-level
* setup: the pmd is never bad, and a pmd always exists (as it's folded
* into the pud entry)
*/
static inline int pud_none(pud_t pud) { return 0; }
static inline int pud_bad(pud_t pud) { return 0; }
static inline int pud_present(pud_t pud) { return 1; }
static inline void pud_clear(pud_t *pud) { }
#define pud_populate(mm, pmd, pte) do { } while (0)
/*
* (pmds are folded into puds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
#define pud_page(pud) (pmd_page((pmd_t){ pud }))
#define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud }))
/*
* (pmds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
#define set_pmd(pmdptr, pmdval) \
do { \
__set_pmd((pmdptr), (pmdval).ste[0]); \
} while(0)
#define __pmd_index(address) 0
static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
{
return (pmd_t *) dir + __pmd_index(address);
}
#define pte_same(a, b) ((a).pte == (b).pte)
#define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
#define pte_none(x) (!(x).pte)
#define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define VMALLOC_VMADDR(x) ((unsigned long) (x))
#endif /* !__ASSEMBLY__ */
/*
* control flags in AMPR registers and TLB entries
*/
#define _PAGE_BIT_PRESENT xAMPRx_V_BIT
#define _PAGE_BIT_WP DAMPRx_WP_BIT
#define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
#define _PAGE_BIT_SUPER xAMPRx_S_BIT
#define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
#define _PAGE_BIT_DIRTY xAMPRx_M_BIT
#define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
#define _PAGE_PRESENT xAMPRx_V
#define _PAGE_WP DAMPRx_WP
#define _PAGE_NOCACHE xAMPRx_C
#define _PAGE_SUPER xAMPRx_S
#define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
#define _PAGE_DIRTY xAMPRx_M
#define _PAGE_NOTGLOBAL xAMPRx_NG
#define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
#define _PAGE_FILE 0x002 /* set:pagecache unset:swap */
#define _PAGE_PROTNONE 0x000 /* If not present */
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define __PGPROT_BASE \
(_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(__PGPROT_BASE)
#define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
#define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
#define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
#define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
#define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
#define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
#define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
#ifndef __ASSEMBLY__
/*
* The FR451 can do execute protection by virtue of having separate TLB miss handlers for
* instruction access and for data access. However, we don't have enough reserved bits to say
* "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
/*
* Define this to warn about kernel memory accesses that are
* done without a 'access_ok(VERIFY_WRITE,..)'
*/
#undef TEST_ACCESS_OK
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
#define pmd_none(x) (!pmd_val(x))
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
#define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
#define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
#define pmd_page_vaddr(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#ifndef CONFIG_DISCONTIGMEM
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#endif
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; }
static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); }
static inline int pte_special(pte_t pte) { return 0; }
static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; }
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
asm volatile("dcf %M0" :: "U"(*ptep));
return i;
}
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
unsigned long x = xchg(&ptep->pte, 0);
asm volatile("dcf %M0" :: "U"(*ptep));
return __pte(x);
}
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
set_bit(_PAGE_BIT_WP, ptep);
asm volatile("dcf %M0" :: "U"(*ptep));
}
/*
* Macro to mark a page protection value as "uncacheable"
*/
#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte.pte &= _PAGE_CHG_MASK;
pte.pte |= pgprot_val(newprot);
return pte;
}
/* to find an entry in a page-table-directory. */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#define pgd_index_k(addr) pgd_index(addr)
/* Find an entry in the bottom-level page table.. */
#define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
/*
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
*
* this macro returns the index of the entry in the pte page which would
* control the given virtual address
*/
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address) \
((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
#define pte_offset_map_nested(dir, address) \
((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
#else
#define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#endif
/*
* Handle swap and file entries
* - the PTE is encoded in the following format:
* bit 0: Must be 0 (!_PAGE_PRESENT)
* bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE)
* bits 2-7: Swap type
* bits 8-31: Swap offset
* bits 2-31: File pgoff
*/
#define __swp_type(x) (((x).val >> 2) & 0x1f)
#define __swp_offset(x) ((x).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
static inline int pte_file(pte_t pte)
{
return pte.pte & _PAGE_FILE;
}
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(PTE) ((PTE).pte >> 2)
#define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE)
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#include <asm-generic/pgtable.h>
/*
* preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
*/
static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
struct mm_struct *mm;
unsigned long ampr;
mm = current->mm;
if (mm) {
pgd_t *pge = pgd_offset(mm, address);
pud_t *pue = pud_offset(pge, address);
pmd_t *pme = pmd_offset(pue, address);
ampr = pme->ste[0] & 0xffffff00;
ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C |
xAMPRx_V;
} else {
address = ULONG_MAX;
ampr = 0;
}
asm volatile("movgs %0,scr0\n"
"movgs %0,scr1\n"
"movgs %1,dampr4\n"
"movgs %1,dampr5\n"
:
: "r"(address), "r"(ampr)
);
}
#ifdef CONFIG_PROC_FS
extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
#endif
extern void __init pgtable_cache_init(void);
#endif /* !__ASSEMBLY__ */
#endif /* !CONFIG_MMU */
#ifndef __ASSEMBLY__
extern void __init paging_init(void);
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_PGTABLE_H */