linux/arch/x86/xen/spinlock.c
Jeremy Fitzhardinge 1e696f638b xen: allow interrupts to be enabled while doing a blocking spin
If spin_lock is called in an interrupts-enabled context, we can safely
enable interrupts while spinning.  We don't bother for the actual spin
loop, but if we timeout and fall back to blocking, it's definitely
worthwhile enabling interrupts if possible.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-21 13:52:58 +02:00

401 lines
9.5 KiB
C

/*
* Split spinlock implementation out into its own file, so it can be
* compiled in a FTRACE-compatible way.
*/
#include <linux/kernel_stat.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/log2.h>
#include <asm/paravirt.h>
#include <xen/interface/xen.h>
#include <xen/events.h>
#include "xen-ops.h"
#include "debugfs.h"
#ifdef CONFIG_XEN_DEBUG_FS
static struct xen_spinlock_stats
{
u64 taken;
u32 taken_slow;
u32 taken_slow_nested;
u32 taken_slow_pickup;
u32 taken_slow_spurious;
u32 taken_slow_irqenable;
u64 released;
u32 released_slow;
u32 released_slow_kicked;
#define HISTO_BUCKETS 20
u32 histo_spin_fast[HISTO_BUCKETS+1];
u32 histo_spin[HISTO_BUCKETS+1];
u64 spinning_time;
u64 total_time;
} spinlock_stats;
static u8 zero_stats;
static unsigned lock_timeout = 1 << 10;
#define TIMEOUT lock_timeout
static inline void check_zero(void)
{
if (unlikely(zero_stats)) {
memset(&spinlock_stats, 0, sizeof(spinlock_stats));
zero_stats = 0;
}
}
#define ADD_STATS(elem, val) \
do { check_zero(); spinlock_stats.elem += (val); } while(0)
static inline u64 spin_time_start(void)
{
return xen_clocksource_read();
}
static void __spin_time_accum(u64 delta, u32 *array)
{
unsigned index = ilog2(delta);
check_zero();
if (index < HISTO_BUCKETS)
array[index]++;
else
array[HISTO_BUCKETS]++;
}
static inline void spin_time_accum_fast(u64 start)
{
u32 delta = xen_clocksource_read() - start;
__spin_time_accum(delta, spinlock_stats.histo_spin_fast);
spinlock_stats.spinning_time += delta;
}
static inline void spin_time_accum(u64 start)
{
u32 delta = xen_clocksource_read() - start;
__spin_time_accum(delta, spinlock_stats.histo_spin);
spinlock_stats.total_time += delta;
}
#else /* !CONFIG_XEN_DEBUG_FS */
#define TIMEOUT (1 << 10)
#define ADD_STATS(elem, val) do { (void)(val); } while(0)
static inline u64 spin_time_start(void)
{
return 0;
}
static inline void spin_time_accum_fast(u64 start)
{
}
static inline void spin_time_accum(u64 start)
{
}
#endif /* CONFIG_XEN_DEBUG_FS */
struct xen_spinlock {
unsigned char lock; /* 0 -> free; 1 -> locked */
unsigned short spinners; /* count of waiting cpus */
};
static int xen_spin_is_locked(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
return xl->lock != 0;
}
static int xen_spin_is_contended(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
/* Not strictly true; this is only the count of contended
lock-takers entering the slow path. */
return xl->spinners != 0;
}
static int xen_spin_trylock(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
u8 old = 1;
asm("xchgb %b0,%1"
: "+q" (old), "+m" (xl->lock) : : "memory");
return old == 0;
}
static DEFINE_PER_CPU(int, lock_kicker_irq) = -1;
static DEFINE_PER_CPU(struct xen_spinlock *, lock_spinners);
/*
* Mark a cpu as interested in a lock. Returns the CPU's previous
* lock of interest, in case we got preempted by an interrupt.
*/
static inline struct xen_spinlock *spinning_lock(struct xen_spinlock *xl)
{
struct xen_spinlock *prev;
prev = __get_cpu_var(lock_spinners);
__get_cpu_var(lock_spinners) = xl;
wmb(); /* set lock of interest before count */
asm(LOCK_PREFIX " incw %0"
: "+m" (xl->spinners) : : "memory");
return prev;
}
/*
* Mark a cpu as no longer interested in a lock. Restores previous
* lock of interest (NULL for none).
*/
static inline void unspinning_lock(struct xen_spinlock *xl, struct xen_spinlock *prev)
{
asm(LOCK_PREFIX " decw %0"
: "+m" (xl->spinners) : : "memory");
wmb(); /* decrement count before restoring lock */
__get_cpu_var(lock_spinners) = prev;
}
static noinline int xen_spin_lock_slow(struct raw_spinlock *lock, bool irq_enable)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
struct xen_spinlock *prev;
int irq = __get_cpu_var(lock_kicker_irq);
int ret;
unsigned long flags;
/* If kicker interrupts not initialized yet, just spin */
if (irq == -1)
return 0;
/* announce we're spinning */
prev = spinning_lock(xl);
flags = __raw_local_save_flags();
if (irq_enable) {
ADD_STATS(taken_slow_irqenable, 1);
raw_local_irq_enable();
}
ADD_STATS(taken_slow, 1);
ADD_STATS(taken_slow_nested, prev != NULL);
do {
/* clear pending */
xen_clear_irq_pending(irq);
/* check again make sure it didn't become free while
we weren't looking */
ret = xen_spin_trylock(lock);
if (ret) {
ADD_STATS(taken_slow_pickup, 1);
/*
* If we interrupted another spinlock while it
* was blocking, make sure it doesn't block
* without rechecking the lock.
*/
if (prev != NULL)
xen_set_irq_pending(irq);
goto out;
}
/*
* Block until irq becomes pending. If we're
* interrupted at this point (after the trylock but
* before entering the block), then the nested lock
* handler guarantees that the irq will be left
* pending if there's any chance the lock became free;
* xen_poll_irq() returns immediately if the irq is
* pending.
*/
xen_poll_irq(irq);
ADD_STATS(taken_slow_spurious, !xen_test_irq_pending(irq));
} while (!xen_test_irq_pending(irq)); /* check for spurious wakeups */
kstat_this_cpu.irqs[irq]++;
out:
raw_local_irq_restore(flags);
unspinning_lock(xl, prev);
return ret;
}
static inline void __xen_spin_lock(struct raw_spinlock *lock, bool irq_enable)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
unsigned timeout;
u8 oldval;
u64 start_spin;
ADD_STATS(taken, 1);
start_spin = spin_time_start();
do {
u64 start_spin_fast = spin_time_start();
timeout = TIMEOUT;
asm("1: xchgb %1,%0\n"
" testb %1,%1\n"
" jz 3f\n"
"2: rep;nop\n"
" cmpb $0,%0\n"
" je 1b\n"
" dec %2\n"
" jnz 2b\n"
"3:\n"
: "+m" (xl->lock), "=q" (oldval), "+r" (timeout)
: "1" (1)
: "memory");
spin_time_accum_fast(start_spin_fast);
} while (unlikely(oldval != 0 &&
(TIMEOUT == ~0 || !xen_spin_lock_slow(lock, irq_enable))));
spin_time_accum(start_spin);
}
static void xen_spin_lock(struct raw_spinlock *lock)
{
__xen_spin_lock(lock, false);
}
static void xen_spin_lock_flags(struct raw_spinlock *lock, unsigned long flags)
{
__xen_spin_lock(lock, !raw_irqs_disabled_flags(flags));
}
static noinline void xen_spin_unlock_slow(struct xen_spinlock *xl)
{
int cpu;
ADD_STATS(released_slow, 1);
for_each_online_cpu(cpu) {
/* XXX should mix up next cpu selection */
if (per_cpu(lock_spinners, cpu) == xl) {
ADD_STATS(released_slow_kicked, 1);
xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR);
break;
}
}
}
static void xen_spin_unlock(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
ADD_STATS(released, 1);
smp_wmb(); /* make sure no writes get moved after unlock */
xl->lock = 0; /* release lock */
/* make sure unlock happens before kick */
barrier();
if (unlikely(xl->spinners))
xen_spin_unlock_slow(xl);
}
static irqreturn_t dummy_handler(int irq, void *dev_id)
{
BUG();
return IRQ_HANDLED;
}
void __cpuinit xen_init_lock_cpu(int cpu)
{
int irq;
const char *name;
name = kasprintf(GFP_KERNEL, "spinlock%d", cpu);
irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR,
cpu,
dummy_handler,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
name,
NULL);
if (irq >= 0) {
disable_irq(irq); /* make sure it's never delivered */
per_cpu(lock_kicker_irq, cpu) = irq;
}
printk("cpu %d spinlock event irq %d\n", cpu, irq);
}
void __init xen_init_spinlocks(void)
{
pv_lock_ops.spin_is_locked = xen_spin_is_locked;
pv_lock_ops.spin_is_contended = xen_spin_is_contended;
pv_lock_ops.spin_lock = xen_spin_lock;
pv_lock_ops.spin_lock_flags = xen_spin_lock_flags;
pv_lock_ops.spin_trylock = xen_spin_trylock;
pv_lock_ops.spin_unlock = xen_spin_unlock;
}
#ifdef CONFIG_XEN_DEBUG_FS
static struct dentry *d_spin_debug;
static int __init xen_spinlock_debugfs(void)
{
struct dentry *d_xen = xen_init_debugfs();
if (d_xen == NULL)
return -ENOMEM;
d_spin_debug = debugfs_create_dir("spinlocks", d_xen);
debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
debugfs_create_u32("timeout", 0644, d_spin_debug, &lock_timeout);
debugfs_create_u64("taken", 0444, d_spin_debug, &spinlock_stats.taken);
debugfs_create_u32("taken_slow", 0444, d_spin_debug,
&spinlock_stats.taken_slow);
debugfs_create_u32("taken_slow_nested", 0444, d_spin_debug,
&spinlock_stats.taken_slow_nested);
debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
&spinlock_stats.taken_slow_pickup);
debugfs_create_u32("taken_slow_spurious", 0444, d_spin_debug,
&spinlock_stats.taken_slow_spurious);
debugfs_create_u32("taken_slow_irqenable", 0444, d_spin_debug,
&spinlock_stats.taken_slow_irqenable);
debugfs_create_u64("released", 0444, d_spin_debug, &spinlock_stats.released);
debugfs_create_u32("released_slow", 0444, d_spin_debug,
&spinlock_stats.released_slow);
debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
&spinlock_stats.released_slow_kicked);
debugfs_create_u64("time_spinning", 0444, d_spin_debug,
&spinlock_stats.spinning_time);
debugfs_create_u64("time_total", 0444, d_spin_debug,
&spinlock_stats.total_time);
xen_debugfs_create_u32_array("histo_total", 0444, d_spin_debug,
spinlock_stats.histo_spin, HISTO_BUCKETS + 1);
xen_debugfs_create_u32_array("histo_spinning", 0444, d_spin_debug,
spinlock_stats.histo_spin_fast, HISTO_BUCKETS + 1);
return 0;
}
fs_initcall(xen_spinlock_debugfs);
#endif /* CONFIG_XEN_DEBUG_FS */