e00d82d07f
Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Matt Waddel <Matt.Waddel@freescale.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
134 lines
3.3 KiB
ArmAsm
134 lines
3.3 KiB
ArmAsm
|
|
|
| ssinh.sa 3.1 12/10/90
|
|
|
|
|
| The entry point sSinh computes the hyperbolic sine of
|
|
| an input argument; sSinhd does the same except for denormalized
|
|
| input.
|
|
|
|
|
| Input: Double-extended number X in location pointed to
|
|
| by address register a0.
|
|
|
|
|
| Output: The value sinh(X) returned in floating-point register Fp0.
|
|
|
|
|
| Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
| result is subsequently rounded to double precision. The
|
|
| result is provably monotonic in double precision.
|
|
|
|
|
| Speed: The program sSINH takes approximately 280 cycles.
|
|
|
|
|
| Algorithm:
|
|
|
|
|
| SINH
|
|
| 1. If |X| > 16380 log2, go to 3.
|
|
|
|
|
| 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
|
|
| y = |X|, sgn = sign(X), and z = expm1(Y),
|
|
| sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
|
|
| Exit.
|
|
|
|
|
| 3. If |X| > 16480 log2, go to 5.
|
|
|
|
|
| 4. (16380 log2 < |X| <= 16480 log2)
|
|
| sinh(X) = sign(X) * exp(|X|)/2.
|
|
| However, invoking exp(|X|) may cause premature overflow.
|
|
| Thus, we calculate sinh(X) as follows:
|
|
| Y := |X|
|
|
| sgn := sign(X)
|
|
| sgnFact := sgn * 2**(16380)
|
|
| Y' := Y - 16381 log2
|
|
| sinh(X) := sgnFact * exp(Y').
|
|
| Exit.
|
|
|
|
|
| 5. (|X| > 16480 log2) sinh(X) must overflow. Return
|
|
| sign(X)*Huge*Huge to generate overflow and an infinity with
|
|
| the appropriate sign. Huge is the largest finite number in
|
|
| extended format. Exit.
|
|
|
|
|
|
|
| Copyright (C) Motorola, Inc. 1990
|
|
| All Rights Reserved
|
|
|
|
|
| For details on the license for this file, please see the
|
|
| file, README, in this same directory.
|
|
|
|
|SSINH idnt 2,1 | Motorola 040 Floating Point Software Package
|
|
|
|
|section 8
|
|
|
|
T1: .long 0x40C62D38,0xD3D64634 | ... 16381 LOG2 LEAD
|
|
T2: .long 0x3D6F90AE,0xB1E75CC7 | ... 16381 LOG2 TRAIL
|
|
|
|
|xref t_frcinx
|
|
|xref t_ovfl
|
|
|xref t_extdnrm
|
|
|xref setox
|
|
|xref setoxm1
|
|
|
|
.global ssinhd
|
|
ssinhd:
|
|
|--SINH(X) = X FOR DENORMALIZED X
|
|
|
|
bra t_extdnrm
|
|
|
|
.global ssinh
|
|
ssinh:
|
|
fmovex (%a0),%fp0 | ...LOAD INPUT
|
|
|
|
movel (%a0),%d0
|
|
movew 4(%a0),%d0
|
|
movel %d0,%a1 | save a copy of original (compacted) operand
|
|
andl #0x7FFFFFFF,%d0
|
|
cmpl #0x400CB167,%d0
|
|
bgts SINHBIG
|
|
|
|
|--THIS IS THE USUAL CASE, |X| < 16380 LOG2
|
|
|--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
|
|
|
|
fabsx %fp0 | ...Y = |X|
|
|
|
|
moveml %a1/%d1,-(%sp)
|
|
fmovemx %fp0-%fp0,(%a0)
|
|
clrl %d1
|
|
bsr setoxm1 | ...FP0 IS Z = EXPM1(Y)
|
|
fmovel #0,%fpcr
|
|
moveml (%sp)+,%a1/%d1
|
|
|
|
fmovex %fp0,%fp1
|
|
fadds #0x3F800000,%fp1 | ...1+Z
|
|
fmovex %fp0,-(%sp)
|
|
fdivx %fp1,%fp0 | ...Z/(1+Z)
|
|
movel %a1,%d0
|
|
andl #0x80000000,%d0
|
|
orl #0x3F000000,%d0
|
|
faddx (%sp)+,%fp0
|
|
movel %d0,-(%sp)
|
|
|
|
fmovel %d1,%fpcr
|
|
fmuls (%sp)+,%fp0 |last fp inst - possible exceptions set
|
|
|
|
bra t_frcinx
|
|
|
|
SINHBIG:
|
|
cmpl #0x400CB2B3,%d0
|
|
bgt t_ovfl
|
|
fabsx %fp0
|
|
fsubd T1(%pc),%fp0 | ...(|X|-16381LOG2_LEAD)
|
|
movel #0,-(%sp)
|
|
movel #0x80000000,-(%sp)
|
|
movel %a1,%d0
|
|
andl #0x80000000,%d0
|
|
orl #0x7FFB0000,%d0
|
|
movel %d0,-(%sp) | ...EXTENDED FMT
|
|
fsubd T2(%pc),%fp0 | ...|X| - 16381 LOG2, ACCURATE
|
|
|
|
movel %d1,-(%sp)
|
|
clrl %d1
|
|
fmovemx %fp0-%fp0,(%a0)
|
|
bsr setox
|
|
fmovel (%sp)+,%fpcr
|
|
|
|
fmulx (%sp)+,%fp0 |possible exception
|
|
bra t_frcinx
|
|
|
|
|end
|