linux/drivers/power/sbs-battery.c
Nikolaus Voss b1f092f648 sbs-battery.c: Capacity attr = remaining relative capacity
Currently, the capacity exported by this driver refers to reg 0x0e,
which is the absolute state of charge which according to SBS
refers to the design capacity/ energy of the battery. It can be
> 100 % and drops below 100 % for a fully charged battery with
the battery aging.

This is not what the user exspects of a remaining capacity
indication between 0 and 100 % with 100 % referring to
a fully charged battery. This is provided by SBS reg 0x0d,
which is the relative state of charge referring to the
full charge capacity.

Signed-off-by: Nikolaus Voss <n.voss@weinmann.de>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
2012-05-05 20:05:07 -07:00

858 lines
21 KiB
C

/*
* Gas Gauge driver for SBS Compliant Batteries
*
* Copyright (c) 2010, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/power_supply.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/power/sbs-battery.h>
enum {
REG_MANUFACTURER_DATA,
REG_TEMPERATURE,
REG_VOLTAGE,
REG_CURRENT,
REG_CAPACITY,
REG_TIME_TO_EMPTY,
REG_TIME_TO_FULL,
REG_STATUS,
REG_CYCLE_COUNT,
REG_SERIAL_NUMBER,
REG_REMAINING_CAPACITY,
REG_REMAINING_CAPACITY_CHARGE,
REG_FULL_CHARGE_CAPACITY,
REG_FULL_CHARGE_CAPACITY_CHARGE,
REG_DESIGN_CAPACITY,
REG_DESIGN_CAPACITY_CHARGE,
REG_DESIGN_VOLTAGE,
};
/* Battery Mode defines */
#define BATTERY_MODE_OFFSET 0x03
#define BATTERY_MODE_MASK 0x8000
enum sbs_battery_mode {
BATTERY_MODE_AMPS,
BATTERY_MODE_WATTS
};
/* manufacturer access defines */
#define MANUFACTURER_ACCESS_STATUS 0x0006
#define MANUFACTURER_ACCESS_SLEEP 0x0011
/* battery status value bits */
#define BATTERY_DISCHARGING 0x40
#define BATTERY_FULL_CHARGED 0x20
#define BATTERY_FULL_DISCHARGED 0x10
#define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
.psp = _psp, \
.addr = _addr, \
.min_value = _min_value, \
.max_value = _max_value, \
}
static const struct chip_data {
enum power_supply_property psp;
u8 addr;
int min_value;
int max_value;
} sbs_data[] = {
[REG_MANUFACTURER_DATA] =
SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
[REG_TEMPERATURE] =
SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
[REG_VOLTAGE] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
[REG_CURRENT] =
SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
[REG_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100),
[REG_REMAINING_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
[REG_REMAINING_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
[REG_FULL_CHARGE_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
[REG_FULL_CHARGE_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
[REG_TIME_TO_EMPTY] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
[REG_TIME_TO_FULL] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
[REG_STATUS] =
SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
[REG_CYCLE_COUNT] =
SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
[REG_DESIGN_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
[REG_DESIGN_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
[REG_DESIGN_VOLTAGE] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
[REG_SERIAL_NUMBER] =
SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
};
static enum power_supply_property sbs_properties[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
POWER_SUPPLY_PROP_SERIAL_NUMBER,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_ENERGY_FULL,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
};
struct sbs_info {
struct i2c_client *client;
struct power_supply power_supply;
struct sbs_platform_data *pdata;
bool is_present;
bool gpio_detect;
bool enable_detection;
int irq;
int last_state;
int poll_time;
struct delayed_work work;
int ignore_changes;
};
static int sbs_read_word_data(struct i2c_client *client, u8 address)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0;
int retries = 1;
if (chip->pdata)
retries = max(chip->pdata->i2c_retry_count + 1, 1);
while (retries > 0) {
ret = i2c_smbus_read_word_data(client, address);
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
return le16_to_cpu(ret);
}
static int sbs_write_word_data(struct i2c_client *client, u8 address,
u16 value)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0;
int retries = 1;
if (chip->pdata)
retries = max(chip->pdata->i2c_retry_count + 1, 1);
while (retries > 0) {
ret = i2c_smbus_write_word_data(client, address,
le16_to_cpu(value));
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c write to address 0x%x failed\n",
__func__, address);
return ret;
}
return 0;
}
static int sbs_get_battery_presence_and_health(
struct i2c_client *client, enum power_supply_property psp,
union power_supply_propval *val)
{
s32 ret;
struct sbs_info *chip = i2c_get_clientdata(client);
if (psp == POWER_SUPPLY_PROP_PRESENT &&
chip->gpio_detect) {
ret = gpio_get_value(chip->pdata->battery_detect);
if (ret == chip->pdata->battery_detect_present)
val->intval = 1;
else
val->intval = 0;
chip->is_present = val->intval;
return ret;
}
/* Write to ManufacturerAccess with
* ManufacturerAccess command and then
* read the status */
ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_STATUS);
if (ret < 0) {
if (psp == POWER_SUPPLY_PROP_PRESENT)
val->intval = 0; /* battery removed */
return ret;
}
ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
if (ret < 0)
return ret;
if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
val->intval = 0;
return 0;
}
/* Mask the upper nibble of 2nd byte and
* lower byte of response then
* shift the result by 8 to get status*/
ret &= 0x0F00;
ret >>= 8;
if (psp == POWER_SUPPLY_PROP_PRESENT) {
if (ret == 0x0F)
/* battery removed */
val->intval = 0;
else
val->intval = 1;
} else if (psp == POWER_SUPPLY_PROP_HEALTH) {
if (ret == 0x09)
val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
else if (ret == 0x0B)
val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else if (ret == 0x0C)
val->intval = POWER_SUPPLY_HEALTH_DEAD;
else
val->intval = POWER_SUPPLY_HEALTH_GOOD;
}
return 0;
}
static int sbs_get_battery_property(struct i2c_client *client,
int reg_offset, enum power_supply_property psp,
union power_supply_propval *val)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret;
ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0)
return ret;
/* returned values are 16 bit */
if (sbs_data[reg_offset].min_value < 0)
ret = (s16)ret;
if (ret >= sbs_data[reg_offset].min_value &&
ret <= sbs_data[reg_offset].max_value) {
val->intval = ret;
if (psp != POWER_SUPPLY_PROP_STATUS)
return 0;
if (ret & BATTERY_FULL_CHARGED)
val->intval = POWER_SUPPLY_STATUS_FULL;
else if (ret & BATTERY_FULL_DISCHARGED)
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
else if (ret & BATTERY_DISCHARGING)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
else
val->intval = POWER_SUPPLY_STATUS_CHARGING;
if (chip->poll_time == 0)
chip->last_state = val->intval;
else if (chip->last_state != val->intval) {
cancel_delayed_work_sync(&chip->work);
power_supply_changed(&chip->power_supply);
chip->poll_time = 0;
}
} else {
if (psp == POWER_SUPPLY_PROP_STATUS)
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
else
val->intval = 0;
}
return 0;
}
static void sbs_unit_adjustment(struct i2c_client *client,
enum power_supply_property psp, union power_supply_propval *val)
{
#define BASE_UNIT_CONVERSION 1000
#define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION)
#define TIME_UNIT_CONVERSION 60
#define TEMP_KELVIN_TO_CELSIUS 2731
switch (psp) {
case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
/* sbs provides energy in units of 10mWh.
* Convert to µWh
*/
val->intval *= BATTERY_MODE_CAP_MULT_WATT;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval *= BASE_UNIT_CONVERSION;
break;
case POWER_SUPPLY_PROP_TEMP:
/* sbs provides battery temperature in 0.1K
* so convert it to 0.1°C
*/
val->intval -= TEMP_KELVIN_TO_CELSIUS;
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
/* sbs provides time to empty and time to full in minutes.
* Convert to seconds
*/
val->intval *= TIME_UNIT_CONVERSION;
break;
default:
dev_dbg(&client->dev,
"%s: no need for unit conversion %d\n", __func__, psp);
}
}
static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client,
enum sbs_battery_mode mode)
{
int ret, original_val;
original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
if (original_val < 0)
return original_val;
if ((original_val & BATTERY_MODE_MASK) == mode)
return mode;
if (mode == BATTERY_MODE_AMPS)
ret = original_val & ~BATTERY_MODE_MASK;
else
ret = original_val | BATTERY_MODE_MASK;
ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
if (ret < 0)
return ret;
return original_val & BATTERY_MODE_MASK;
}
static int sbs_get_battery_capacity(struct i2c_client *client,
int reg_offset, enum power_supply_property psp,
union power_supply_propval *val)
{
s32 ret;
enum sbs_battery_mode mode = BATTERY_MODE_WATTS;
if (power_supply_is_amp_property(psp))
mode = BATTERY_MODE_AMPS;
mode = sbs_set_battery_mode(client, mode);
if (mode < 0)
return mode;
ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0)
return ret;
if (psp == POWER_SUPPLY_PROP_CAPACITY) {
/* sbs spec says that this can be >100 %
* even if max value is 100 % */
val->intval = min(ret, 100);
} else
val->intval = ret;
ret = sbs_set_battery_mode(client, mode);
if (ret < 0)
return ret;
return 0;
}
static char sbs_serial[5];
static int sbs_get_battery_serial_number(struct i2c_client *client,
union power_supply_propval *val)
{
int ret;
ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
if (ret < 0)
return ret;
ret = sprintf(sbs_serial, "%04x", ret);
val->strval = sbs_serial;
return 0;
}
static int sbs_get_property_index(struct i2c_client *client,
enum power_supply_property psp)
{
int count;
for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
if (psp == sbs_data[count].psp)
return count;
dev_warn(&client->dev,
"%s: Invalid Property - %d\n", __func__, psp);
return -EINVAL;
}
static int sbs_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct sbs_info *chip = container_of(psy,
struct sbs_info, power_supply);
struct i2c_client *client = chip->client;
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_HEALTH:
ret = sbs_get_battery_presence_and_health(client, psp, val);
if (psp == POWER_SUPPLY_PROP_PRESENT)
return 0;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
case POWER_SUPPLY_PROP_CAPACITY:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_capacity(client, ret, psp, val);
break;
case POWER_SUPPLY_PROP_SERIAL_NUMBER:
ret = sbs_get_battery_serial_number(client, val);
break;
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CYCLE_COUNT:
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_property(client, ret, psp, val);
break;
default:
dev_err(&client->dev,
"%s: INVALID property\n", __func__);
return -EINVAL;
}
if (!chip->enable_detection)
goto done;
if (!chip->gpio_detect &&
chip->is_present != (ret >= 0)) {
chip->is_present = (ret >= 0);
power_supply_changed(&chip->power_supply);
}
done:
if (!ret) {
/* Convert units to match requirements for power supply class */
sbs_unit_adjustment(client, psp, val);
}
dev_dbg(&client->dev,
"%s: property = %d, value = %x\n", __func__, psp, val->intval);
if (ret && chip->is_present)
return ret;
/* battery not present, so return NODATA for properties */
if (ret)
return -ENODATA;
return 0;
}
static irqreturn_t sbs_irq(int irq, void *devid)
{
struct power_supply *battery = devid;
power_supply_changed(battery);
return IRQ_HANDLED;
}
static void sbs_external_power_changed(struct power_supply *psy)
{
struct sbs_info *chip;
chip = container_of(psy, struct sbs_info, power_supply);
if (chip->ignore_changes > 0) {
chip->ignore_changes--;
return;
}
/* cancel outstanding work */
cancel_delayed_work_sync(&chip->work);
schedule_delayed_work(&chip->work, HZ);
chip->poll_time = chip->pdata->poll_retry_count;
}
static void sbs_delayed_work(struct work_struct *work)
{
struct sbs_info *chip;
s32 ret;
chip = container_of(work, struct sbs_info, work.work);
ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
/* if the read failed, give up on this work */
if (ret < 0) {
chip->poll_time = 0;
return;
}
if (ret & BATTERY_FULL_CHARGED)
ret = POWER_SUPPLY_STATUS_FULL;
else if (ret & BATTERY_FULL_DISCHARGED)
ret = POWER_SUPPLY_STATUS_NOT_CHARGING;
else if (ret & BATTERY_DISCHARGING)
ret = POWER_SUPPLY_STATUS_DISCHARGING;
else
ret = POWER_SUPPLY_STATUS_CHARGING;
if (chip->last_state != ret) {
chip->poll_time = 0;
power_supply_changed(&chip->power_supply);
return;
}
if (chip->poll_time > 0) {
schedule_delayed_work(&chip->work, HZ);
chip->poll_time--;
return;
}
}
#if defined(CONFIG_OF)
#include <linux/of_device.h>
#include <linux/of_gpio.h>
static const struct of_device_id sbs_dt_ids[] = {
{ .compatible = "sbs,sbs-battery" },
{ .compatible = "ti,bq20z75" },
{ }
};
MODULE_DEVICE_TABLE(of, sbs_dt_ids);
static struct sbs_platform_data *sbs_of_populate_pdata(
struct i2c_client *client)
{
struct device_node *of_node = client->dev.of_node;
struct sbs_platform_data *pdata = client->dev.platform_data;
enum of_gpio_flags gpio_flags;
int rc;
u32 prop;
/* verify this driver matches this device */
if (!of_node)
return NULL;
/* if platform data is set, honor it */
if (pdata)
return pdata;
/* first make sure at least one property is set, otherwise
* it won't change behavior from running without pdata.
*/
if (!of_get_property(of_node, "sbs,i2c-retry-count", NULL) &&
!of_get_property(of_node, "sbs,poll-retry-count", NULL) &&
!of_get_property(of_node, "sbs,battery-detect-gpios", NULL))
goto of_out;
pdata = devm_kzalloc(&client->dev, sizeof(struct sbs_platform_data),
GFP_KERNEL);
if (!pdata)
goto of_out;
rc = of_property_read_u32(of_node, "sbs,i2c-retry-count", &prop);
if (!rc)
pdata->i2c_retry_count = prop;
rc = of_property_read_u32(of_node, "sbs,poll-retry-count", &prop);
if (!rc)
pdata->poll_retry_count = prop;
if (!of_get_property(of_node, "sbs,battery-detect-gpios", NULL)) {
pdata->battery_detect = -1;
goto of_out;
}
pdata->battery_detect = of_get_named_gpio_flags(of_node,
"sbs,battery-detect-gpios", 0, &gpio_flags);
if (gpio_flags & OF_GPIO_ACTIVE_LOW)
pdata->battery_detect_present = 0;
else
pdata->battery_detect_present = 1;
of_out:
return pdata;
}
#else
#define sbs_dt_ids NULL
static struct sbs_platform_data *sbs_of_populate_pdata(
struct i2c_client *client)
{
return client->dev.platform_data;
}
#endif
static int __devinit sbs_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct sbs_info *chip;
struct sbs_platform_data *pdata = client->dev.platform_data;
int rc;
int irq;
char *name;
name = kasprintf(GFP_KERNEL, "sbs-%s", dev_name(&client->dev));
if (!name) {
dev_err(&client->dev, "Failed to allocate device name\n");
return -ENOMEM;
}
chip = kzalloc(sizeof(struct sbs_info), GFP_KERNEL);
if (!chip) {
rc = -ENOMEM;
goto exit_free_name;
}
chip->client = client;
chip->enable_detection = false;
chip->gpio_detect = false;
chip->power_supply.name = name;
chip->power_supply.type = POWER_SUPPLY_TYPE_BATTERY;
chip->power_supply.properties = sbs_properties;
chip->power_supply.num_properties = ARRAY_SIZE(sbs_properties);
chip->power_supply.get_property = sbs_get_property;
/* ignore first notification of external change, it is generated
* from the power_supply_register call back
*/
chip->ignore_changes = 1;
chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
chip->power_supply.external_power_changed = sbs_external_power_changed;
pdata = sbs_of_populate_pdata(client);
if (pdata) {
chip->gpio_detect = gpio_is_valid(pdata->battery_detect);
chip->pdata = pdata;
}
i2c_set_clientdata(client, chip);
if (!chip->gpio_detect)
goto skip_gpio;
rc = gpio_request(pdata->battery_detect, dev_name(&client->dev));
if (rc) {
dev_warn(&client->dev, "Failed to request gpio: %d\n", rc);
chip->gpio_detect = false;
goto skip_gpio;
}
rc = gpio_direction_input(pdata->battery_detect);
if (rc) {
dev_warn(&client->dev, "Failed to get gpio as input: %d\n", rc);
gpio_free(pdata->battery_detect);
chip->gpio_detect = false;
goto skip_gpio;
}
irq = gpio_to_irq(pdata->battery_detect);
if (irq <= 0) {
dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
gpio_free(pdata->battery_detect);
chip->gpio_detect = false;
goto skip_gpio;
}
rc = request_irq(irq, sbs_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
dev_name(&client->dev), &chip->power_supply);
if (rc) {
dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
gpio_free(pdata->battery_detect);
chip->gpio_detect = false;
goto skip_gpio;
}
chip->irq = irq;
skip_gpio:
rc = power_supply_register(&client->dev, &chip->power_supply);
if (rc) {
dev_err(&client->dev,
"%s: Failed to register power supply\n", __func__);
goto exit_psupply;
}
dev_info(&client->dev,
"%s: battery gas gauge device registered\n", client->name);
INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
chip->enable_detection = true;
return 0;
exit_psupply:
if (chip->irq)
free_irq(chip->irq, &chip->power_supply);
if (chip->gpio_detect)
gpio_free(pdata->battery_detect);
kfree(chip);
exit_free_name:
kfree(name);
return rc;
}
static int __devexit sbs_remove(struct i2c_client *client)
{
struct sbs_info *chip = i2c_get_clientdata(client);
if (chip->irq)
free_irq(chip->irq, &chip->power_supply);
if (chip->gpio_detect)
gpio_free(chip->pdata->battery_detect);
power_supply_unregister(&chip->power_supply);
cancel_delayed_work_sync(&chip->work);
kfree(chip->power_supply.name);
kfree(chip);
chip = NULL;
return 0;
}
#if defined CONFIG_PM
static int sbs_suspend(struct i2c_client *client,
pm_message_t state)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret;
if (chip->poll_time > 0)
cancel_delayed_work_sync(&chip->work);
/* write to manufacturer access with sleep command */
ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_SLEEP);
if (chip->is_present && ret < 0)
return ret;
return 0;
}
#else
#define sbs_suspend NULL
#endif
/* any smbus transaction will wake up sbs */
#define sbs_resume NULL
static const struct i2c_device_id sbs_id[] = {
{ "bq20z75", 0 },
{ "sbs-battery", 1 },
{}
};
MODULE_DEVICE_TABLE(i2c, sbs_id);
static struct i2c_driver sbs_battery_driver = {
.probe = sbs_probe,
.remove = __devexit_p(sbs_remove),
.suspend = sbs_suspend,
.resume = sbs_resume,
.id_table = sbs_id,
.driver = {
.name = "sbs-battery",
.of_match_table = sbs_dt_ids,
},
};
module_i2c_driver(sbs_battery_driver);
MODULE_DESCRIPTION("SBS battery monitor driver");
MODULE_LICENSE("GPL");