linux/mm/percpu-vm.c
Tejun Heo a855b84c3d percpu: fix chunk range calculation
Percpu allocator recorded the cpus which map to the first and last
units in pcpu_first/last_unit_cpu respectively and used them to
determine the address range of a chunk - e.g. it assumed that the
first unit has the lowest address in a chunk while the last unit has
the highest address.

This simply isn't true.  Groups in a chunk can have arbitrary positive
or negative offsets from the previous one and there is no guarantee
that the first unit occupies the lowest offset while the last one the
highest.

Fix it by actually comparing unit offsets to determine cpus occupying
the lowest and highest offsets.  Also, rename pcu_first/last_unit_cpu
to pcpu_low/high_unit_cpu to avoid confusion.

The chunk address range is used to flush cache on vmalloc area
map/unmap and decide whether a given address is in the first chunk by
per_cpu_ptr_to_phys() and the bug was discovered by invalid
per_cpu_ptr_to_phys() translation for crash_note.

Kudos to Dave Young for tracking down the problem.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: WANG Cong <xiyou.wangcong@gmail.com>
Reported-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
LKML-Reference: <4EC21F67.10905@redhat.com>
Cc: stable @kernel.org
2011-11-22 08:09:46 -08:00

450 lines
13 KiB
C

/*
* mm/percpu-vm.c - vmalloc area based chunk allocation
*
* Copyright (C) 2010 SUSE Linux Products GmbH
* Copyright (C) 2010 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*
* Chunks are mapped into vmalloc areas and populated page by page.
* This is the default chunk allocator.
*/
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
unsigned int cpu, int page_idx)
{
/* must not be used on pre-mapped chunk */
WARN_ON(chunk->immutable);
return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
}
/**
* pcpu_get_pages_and_bitmap - get temp pages array and bitmap
* @chunk: chunk of interest
* @bitmapp: output parameter for bitmap
* @may_alloc: may allocate the array
*
* Returns pointer to array of pointers to struct page and bitmap,
* both of which can be indexed with pcpu_page_idx(). The returned
* array is cleared to zero and *@bitmapp is copied from
* @chunk->populated. Note that there is only one array and bitmap
* and access exclusion is the caller's responsibility.
*
* CONTEXT:
* pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
* Otherwise, don't care.
*
* RETURNS:
* Pointer to temp pages array on success, NULL on failure.
*/
static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
unsigned long **bitmapp,
bool may_alloc)
{
static struct page **pages;
static unsigned long *bitmap;
size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
sizeof(unsigned long);
if (!pages || !bitmap) {
if (may_alloc && !pages)
pages = pcpu_mem_zalloc(pages_size);
if (may_alloc && !bitmap)
bitmap = pcpu_mem_zalloc(bitmap_size);
if (!pages || !bitmap)
return NULL;
}
bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
*bitmapp = bitmap;
return pages;
}
/**
* pcpu_free_pages - free pages which were allocated for @chunk
* @chunk: chunk pages were allocated for
* @pages: array of pages to be freed, indexed by pcpu_page_idx()
* @populated: populated bitmap
* @page_start: page index of the first page to be freed
* @page_end: page index of the last page to be freed + 1
*
* Free pages [@page_start and @page_end) in @pages for all units.
* The pages were allocated for @chunk.
*/
static void pcpu_free_pages(struct pcpu_chunk *chunk,
struct page **pages, unsigned long *populated,
int page_start, int page_end)
{
unsigned int cpu;
int i;
for_each_possible_cpu(cpu) {
for (i = page_start; i < page_end; i++) {
struct page *page = pages[pcpu_page_idx(cpu, i)];
if (page)
__free_page(page);
}
}
}
/**
* pcpu_alloc_pages - allocates pages for @chunk
* @chunk: target chunk
* @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
* @populated: populated bitmap
* @page_start: page index of the first page to be allocated
* @page_end: page index of the last page to be allocated + 1
*
* Allocate pages [@page_start,@page_end) into @pages for all units.
* The allocation is for @chunk. Percpu core doesn't care about the
* content of @pages and will pass it verbatim to pcpu_map_pages().
*/
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
struct page **pages, unsigned long *populated,
int page_start, int page_end)
{
const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
unsigned int cpu;
int i;
for_each_possible_cpu(cpu) {
for (i = page_start; i < page_end; i++) {
struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
if (!*pagep) {
pcpu_free_pages(chunk, pages, populated,
page_start, page_end);
return -ENOMEM;
}
}
}
return 0;
}
/**
* pcpu_pre_unmap_flush - flush cache prior to unmapping
* @chunk: chunk the regions to be flushed belongs to
* @page_start: page index of the first page to be flushed
* @page_end: page index of the last page to be flushed + 1
*
* Pages in [@page_start,@page_end) of @chunk are about to be
* unmapped. Flush cache. As each flushing trial can be very
* expensive, issue flush on the whole region at once rather than
* doing it for each cpu. This could be an overkill but is more
* scalable.
*/
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
flush_cache_vunmap(
pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
}
static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}
/**
* pcpu_unmap_pages - unmap pages out of a pcpu_chunk
* @chunk: chunk of interest
* @pages: pages array which can be used to pass information to free
* @populated: populated bitmap
* @page_start: page index of the first page to unmap
* @page_end: page index of the last page to unmap + 1
*
* For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
* Corresponding elements in @pages were cleared by the caller and can
* be used to carry information to pcpu_free_pages() which will be
* called after all unmaps are finished. The caller should call
* proper pre/post flush functions.
*/
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
struct page **pages, unsigned long *populated,
int page_start, int page_end)
{
unsigned int cpu;
int i;
for_each_possible_cpu(cpu) {
for (i = page_start; i < page_end; i++) {
struct page *page;
page = pcpu_chunk_page(chunk, cpu, i);
WARN_ON(!page);
pages[pcpu_page_idx(cpu, i)] = page;
}
__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
page_end - page_start);
}
for (i = page_start; i < page_end; i++)
__clear_bit(i, populated);
}
/**
* pcpu_post_unmap_tlb_flush - flush TLB after unmapping
* @chunk: pcpu_chunk the regions to be flushed belong to
* @page_start: page index of the first page to be flushed
* @page_end: page index of the last page to be flushed + 1
*
* Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
* TLB for the regions. This can be skipped if the area is to be
* returned to vmalloc as vmalloc will handle TLB flushing lazily.
*
* As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
* for the whole region.
*/
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
flush_tlb_kernel_range(
pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
}
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
int nr_pages)
{
return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
PAGE_KERNEL, pages);
}
/**
* pcpu_map_pages - map pages into a pcpu_chunk
* @chunk: chunk of interest
* @pages: pages array containing pages to be mapped
* @populated: populated bitmap
* @page_start: page index of the first page to map
* @page_end: page index of the last page to map + 1
*
* For each cpu, map pages [@page_start,@page_end) into @chunk. The
* caller is responsible for calling pcpu_post_map_flush() after all
* mappings are complete.
*
* This function is responsible for setting corresponding bits in
* @chunk->populated bitmap and whatever is necessary for reverse
* lookup (addr -> chunk).
*/
static int pcpu_map_pages(struct pcpu_chunk *chunk,
struct page **pages, unsigned long *populated,
int page_start, int page_end)
{
unsigned int cpu, tcpu;
int i, err;
for_each_possible_cpu(cpu) {
err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
&pages[pcpu_page_idx(cpu, page_start)],
page_end - page_start);
if (err < 0)
goto err;
}
/* mapping successful, link chunk and mark populated */
for (i = page_start; i < page_end; i++) {
for_each_possible_cpu(cpu)
pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
chunk);
__set_bit(i, populated);
}
return 0;
err:
for_each_possible_cpu(tcpu) {
if (tcpu == cpu)
break;
__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
page_end - page_start);
}
return err;
}
/**
* pcpu_post_map_flush - flush cache after mapping
* @chunk: pcpu_chunk the regions to be flushed belong to
* @page_start: page index of the first page to be flushed
* @page_end: page index of the last page to be flushed + 1
*
* Pages [@page_start,@page_end) of @chunk have been mapped. Flush
* cache.
*
* As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
* for the whole region.
*/
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
flush_cache_vmap(
pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
}
/**
* pcpu_populate_chunk - populate and map an area of a pcpu_chunk
* @chunk: chunk of interest
* @off: offset to the area to populate
* @size: size of the area to populate in bytes
*
* For each cpu, populate and map pages [@page_start,@page_end) into
* @chunk. The area is cleared on return.
*
* CONTEXT:
* pcpu_alloc_mutex, does GFP_KERNEL allocation.
*/
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
int page_start = PFN_DOWN(off);
int page_end = PFN_UP(off + size);
int free_end = page_start, unmap_end = page_start;
struct page **pages;
unsigned long *populated;
unsigned int cpu;
int rs, re, rc;
/* quick path, check whether all pages are already there */
rs = page_start;
pcpu_next_pop(chunk, &rs, &re, page_end);
if (rs == page_start && re == page_end)
goto clear;
/* need to allocate and map pages, this chunk can't be immutable */
WARN_ON(chunk->immutable);
pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
if (!pages)
return -ENOMEM;
/* alloc and map */
pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
if (rc)
goto err_free;
free_end = re;
}
pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
rc = pcpu_map_pages(chunk, pages, populated, rs, re);
if (rc)
goto err_unmap;
unmap_end = re;
}
pcpu_post_map_flush(chunk, page_start, page_end);
/* commit new bitmap */
bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
clear:
for_each_possible_cpu(cpu)
memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
return 0;
err_unmap:
pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
pcpu_unmap_pages(chunk, pages, populated, rs, re);
pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
err_free:
pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
pcpu_free_pages(chunk, pages, populated, rs, re);
return rc;
}
/**
* pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
* @chunk: chunk to depopulate
* @off: offset to the area to depopulate
* @size: size of the area to depopulate in bytes
* @flush: whether to flush cache and tlb or not
*
* For each cpu, depopulate and unmap pages [@page_start,@page_end)
* from @chunk. If @flush is true, vcache is flushed before unmapping
* and tlb after.
*
* CONTEXT:
* pcpu_alloc_mutex.
*/
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
int page_start = PFN_DOWN(off);
int page_end = PFN_UP(off + size);
struct page **pages;
unsigned long *populated;
int rs, re;
/* quick path, check whether it's empty already */
rs = page_start;
pcpu_next_unpop(chunk, &rs, &re, page_end);
if (rs == page_start && re == page_end)
return;
/* immutable chunks can't be depopulated */
WARN_ON(chunk->immutable);
/*
* If control reaches here, there must have been at least one
* successful population attempt so the temp pages array must
* be available now.
*/
pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
BUG_ON(!pages);
/* unmap and free */
pcpu_pre_unmap_flush(chunk, page_start, page_end);
pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
pcpu_unmap_pages(chunk, pages, populated, rs, re);
/* no need to flush tlb, vmalloc will handle it lazily */
pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
pcpu_free_pages(chunk, pages, populated, rs, re);
/* commit new bitmap */
bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
}
static struct pcpu_chunk *pcpu_create_chunk(void)
{
struct pcpu_chunk *chunk;
struct vm_struct **vms;
chunk = pcpu_alloc_chunk();
if (!chunk)
return NULL;
vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
pcpu_nr_groups, pcpu_atom_size);
if (!vms) {
pcpu_free_chunk(chunk);
return NULL;
}
chunk->data = vms;
chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
return chunk;
}
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
{
if (chunk && chunk->data)
pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
pcpu_free_chunk(chunk);
}
static struct page *pcpu_addr_to_page(void *addr)
{
return vmalloc_to_page(addr);
}
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
{
/* no extra restriction */
return 0;
}