linux/arch/x86/kvm/x86.c
Gerd Hoffmann 50d0a0f987 KVM: Make kvm host use the paravirt clocksource structs
This patch updates the kvm host code to use the pvclock structs.
It also makes the paravirt clock compatible with Xen.

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-06-24 21:02:32 +03:00

4049 lines
96 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* derived from drivers/kvm/kvm_main.c
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "i8254.h"
#include "tss.h"
#include <linux/clocksource.h>
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/mman.h>
#include <linux/highmem.h>
#include <asm/uaccess.h>
#include <asm/msr.h>
#include <asm/desc.h>
#define MAX_IO_MSRS 256
#define CR0_RESERVED_BITS \
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
/* EFER defaults:
* - enable syscall per default because its emulated by KVM
* - enable LME and LMA per default on 64 bit KVM
*/
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries);
struct kvm_x86_ops *kvm_x86_ops;
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "pf_fixed", VCPU_STAT(pf_fixed) },
{ "pf_guest", VCPU_STAT(pf_guest) },
{ "tlb_flush", VCPU_STAT(tlb_flush) },
{ "invlpg", VCPU_STAT(invlpg) },
{ "exits", VCPU_STAT(exits) },
{ "io_exits", VCPU_STAT(io_exits) },
{ "mmio_exits", VCPU_STAT(mmio_exits) },
{ "signal_exits", VCPU_STAT(signal_exits) },
{ "irq_window", VCPU_STAT(irq_window_exits) },
{ "halt_exits", VCPU_STAT(halt_exits) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "hypercalls", VCPU_STAT(hypercalls) },
{ "request_irq", VCPU_STAT(request_irq_exits) },
{ "irq_exits", VCPU_STAT(irq_exits) },
{ "host_state_reload", VCPU_STAT(host_state_reload) },
{ "efer_reload", VCPU_STAT(efer_reload) },
{ "fpu_reload", VCPU_STAT(fpu_reload) },
{ "insn_emulation", VCPU_STAT(insn_emulation) },
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
{ "mmu_flooded", VM_STAT(mmu_flooded) },
{ "mmu_recycled", VM_STAT(mmu_recycled) },
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages) },
{ NULL }
};
unsigned long segment_base(u16 selector)
{
struct descriptor_table gdt;
struct desc_struct *d;
unsigned long table_base;
unsigned long v;
if (selector == 0)
return 0;
asm("sgdt %0" : "=m"(gdt));
table_base = gdt.base;
if (selector & 4) { /* from ldt */
u16 ldt_selector;
asm("sldt %0" : "=g"(ldt_selector));
table_base = segment_base(ldt_selector);
}
d = (struct desc_struct *)(table_base + (selector & ~7));
v = d->base0 | ((unsigned long)d->base1 << 16) |
((unsigned long)d->base2 << 24);
#ifdef CONFIG_X86_64
if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
return v;
}
EXPORT_SYMBOL_GPL(segment_base);
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return vcpu->arch.apic_base;
else
return vcpu->arch.apic_base;
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
/* TODO: reserve bits check */
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_base(vcpu, data);
else
vcpu->arch.apic_base = data;
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
WARN_ON(vcpu->arch.exception.pending);
vcpu->arch.exception.pending = true;
vcpu->arch.exception.has_error_code = false;
vcpu->arch.exception.nr = nr;
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
u32 error_code)
{
++vcpu->stat.pf_guest;
if (vcpu->arch.exception.pending) {
if (vcpu->arch.exception.nr == PF_VECTOR) {
printk(KERN_DEBUG "kvm: inject_page_fault:"
" double fault 0x%lx\n", addr);
vcpu->arch.exception.nr = DF_VECTOR;
vcpu->arch.exception.error_code = 0;
} else if (vcpu->arch.exception.nr == DF_VECTOR) {
/* triple fault -> shutdown */
set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
}
return;
}
vcpu->arch.cr2 = addr;
kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
WARN_ON(vcpu->arch.exception.pending);
vcpu->arch.exception.pending = true;
vcpu->arch.exception.has_error_code = true;
vcpu->arch.exception.nr = nr;
vcpu->arch.exception.error_code = error_code;
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
static void __queue_exception(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code);
}
/*
* Load the pae pdptrs. Return true is they are all valid.
*/
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
int i;
int ret;
u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
offset * sizeof(u64), sizeof(pdpte));
if (ret < 0) {
ret = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
ret = 0;
goto out;
}
}
ret = 1;
memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
out:
return ret;
}
EXPORT_SYMBOL_GPL(load_pdptrs);
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
bool changed = true;
int r;
if (is_long_mode(vcpu) || !is_pae(vcpu))
return false;
r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
if (r < 0)
goto out;
changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
out:
return changed;
}
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (cr0 & CR0_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
cr0, vcpu->arch.cr0);
kvm_inject_gp(vcpu, 0);
return;
}
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
kvm_inject_gp(vcpu, 0);
return;
}
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
"and a clear PE flag\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
if ((vcpu->arch.shadow_efer & EFER_LME)) {
int cs_db, cs_l;
if (!is_pae(vcpu)) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while PAE is disabled\n");
kvm_inject_gp(vcpu, 0);
return;
}
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
if (cs_l) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while CS.L == 1\n");
kvm_inject_gp(vcpu, 0);
return;
}
} else
#endif
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
"reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
}
kvm_x86_ops->set_cr0(vcpu, cr0);
vcpu->arch.cr0 = cr0;
kvm_mmu_reset_context(vcpu);
return;
}
EXPORT_SYMBOL_GPL(kvm_set_cr0);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
KVMTRACE_1D(LMSW, vcpu,
(u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
handler);
}
EXPORT_SYMBOL_GPL(kvm_lmsw);
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
if (cr4 & CR4_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE)) {
printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
"in long mode\n");
kvm_inject_gp(vcpu, 0);
return;
}
} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
&& !load_pdptrs(vcpu, vcpu->arch.cr3)) {
printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (cr4 & X86_CR4_VMXE) {
printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
kvm_inject_gp(vcpu, 0);
return;
}
kvm_x86_ops->set_cr4(vcpu, cr4);
vcpu->arch.cr4 = cr4;
kvm_mmu_reset_context(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_set_cr4);
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
kvm_mmu_flush_tlb(vcpu);
return;
}
if (is_long_mode(vcpu)) {
if (cr3 & CR3_L_MODE_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
} else {
if (is_pae(vcpu)) {
if (cr3 & CR3_PAE_RESERVED_BITS) {
printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
"reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
}
/*
* We don't check reserved bits in nonpae mode, because
* this isn't enforced, and VMware depends on this.
*/
}
/*
* Does the new cr3 value map to physical memory? (Note, we
* catch an invalid cr3 even in real-mode, because it would
* cause trouble later on when we turn on paging anyway.)
*
* A real CPU would silently accept an invalid cr3 and would
* attempt to use it - with largely undefined (and often hard
* to debug) behavior on the guest side.
*/
if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
kvm_inject_gp(vcpu, 0);
else {
vcpu->arch.cr3 = cr3;
vcpu->arch.mmu.new_cr3(vcpu);
}
}
EXPORT_SYMBOL_GPL(kvm_set_cr3);
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (cr8 & CR8_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
kvm_inject_gp(vcpu, 0);
return;
}
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_tpr(vcpu, cr8);
else
vcpu->arch.cr8 = cr8;
}
EXPORT_SYMBOL_GPL(kvm_set_cr8);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return kvm_lapic_get_cr8(vcpu);
else
return vcpu->arch.cr8;
}
EXPORT_SYMBOL_GPL(kvm_get_cr8);
/*
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* capabilities of the host cpu.
*/
static u32 msrs_to_save[] = {
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_K6_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_IA32_PERF_STATUS,
};
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
MSR_IA32_MISC_ENABLE,
};
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & efer_reserved_bits) {
printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
efer);
kvm_inject_gp(vcpu, 0);
return;
}
if (is_paging(vcpu)
&& (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
kvm_inject_gp(vcpu, 0);
return;
}
kvm_x86_ops->set_efer(vcpu, efer);
efer &= ~EFER_LMA;
efer |= vcpu->arch.shadow_efer & EFER_LMA;
vcpu->arch.shadow_efer = efer;
}
void kvm_enable_efer_bits(u64 mask)
{
efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return kvm_set_msr(vcpu, index, *data);
}
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
static int version;
struct pvclock_wall_clock wc;
struct timespec now, sys, boot;
if (!wall_clock)
return;
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
/*
* The guest calculates current wall clock time by adding
* system time (updated by kvm_write_guest_time below) to the
* wall clock specified here. guest system time equals host
* system time for us, thus we must fill in host boot time here.
*/
now = current_kernel_time();
ktime_get_ts(&sys);
boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
wc.sec = boot.tv_sec;
wc.nsec = boot.tv_nsec;
wc.version = version;
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
uint32_t quotient, remainder;
/* Don't try to replace with do_div(), this one calculates
* "(dividend << 32) / divisor" */
__asm__ ( "divl %4"
: "=a" (quotient), "=d" (remainder)
: "0" (0), "1" (dividend), "r" (divisor) );
return quotient;
}
static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
uint64_t nsecs = 1000000000LL;
int32_t shift = 0;
uint64_t tps64;
uint32_t tps32;
tps64 = tsc_khz * 1000LL;
while (tps64 > nsecs*2) {
tps64 >>= 1;
shift--;
}
tps32 = (uint32_t)tps64;
while (tps32 <= (uint32_t)nsecs) {
tps32 <<= 1;
shift++;
}
hv_clock->tsc_shift = shift;
hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
__FUNCTION__, tsc_khz, hv_clock->tsc_shift,
hv_clock->tsc_to_system_mul);
}
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
struct timespec ts;
unsigned long flags;
struct kvm_vcpu_arch *vcpu = &v->arch;
void *shared_kaddr;
if ((!vcpu->time_page))
return;
if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
vcpu->hv_clock_tsc_khz = tsc_khz;
}
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
&vcpu->hv_clock.tsc_timestamp);
ktime_get_ts(&ts);
local_irq_restore(flags);
/* With all the info we got, fill in the values */
vcpu->hv_clock.system_time = ts.tv_nsec +
(NSEC_PER_SEC * (u64)ts.tv_sec);
/*
* The interface expects us to write an even number signaling that the
* update is finished. Since the guest won't see the intermediate
* state, we just increase by 2 at the end.
*/
vcpu->hv_clock.version += 2;
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
sizeof(vcpu->hv_clock));
kunmap_atomic(shared_kaddr, KM_USER0);
mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
case MSR_EFER:
set_efer(vcpu, data);
break;
case MSR_IA32_MC0_STATUS:
pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
__func__, data);
break;
case MSR_IA32_MCG_STATUS:
pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
__func__, data);
break;
case MSR_IA32_MCG_CTL:
pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
__func__, data);
break;
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case 0x200 ... 0x2ff: /* MTRRs */
break;
case MSR_IA32_APICBASE:
kvm_set_apic_base(vcpu, data);
break;
case MSR_IA32_MISC_ENABLE:
vcpu->arch.ia32_misc_enable_msr = data;
break;
case MSR_KVM_WALL_CLOCK:
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data);
break;
case MSR_KVM_SYSTEM_TIME: {
if (vcpu->arch.time_page) {
kvm_release_page_dirty(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
vcpu->arch.time = data;
/* we verify if the enable bit is set... */
if (!(data & 1))
break;
/* ...but clean it before doing the actual write */
vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
down_read(&current->mm->mmap_sem);
vcpu->arch.time_page =
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
up_read(&current->mm->mmap_sem);
if (is_error_page(vcpu->arch.time_page)) {
kvm_release_page_clean(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
kvm_write_guest_time(vcpu);
break;
}
default:
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
switch (msr) {
case 0xc0010010: /* SYSCFG */
case 0xc0010015: /* HWCR */
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MC0_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MCG_CTL:
case MSR_IA32_MC0_MISC:
case MSR_IA32_MC0_MISC+4:
case MSR_IA32_MC0_MISC+8:
case MSR_IA32_MC0_MISC+12:
case MSR_IA32_MC0_MISC+16:
case MSR_IA32_UCODE_REV:
case MSR_IA32_EBL_CR_POWERON:
/* MTRR registers */
case 0xfe:
case 0x200 ... 0x2ff:
data = 0;
break;
case 0xcd: /* fsb frequency */
data = 3;
break;
case MSR_IA32_APICBASE:
data = kvm_get_apic_base(vcpu);
break;
case MSR_IA32_MISC_ENABLE:
data = vcpu->arch.ia32_misc_enable_msr;
break;
case MSR_IA32_PERF_STATUS:
/* TSC increment by tick */
data = 1000ULL;
/* CPU multiplier */
data |= (((uint64_t)4ULL) << 40);
break;
case MSR_EFER:
data = vcpu->arch.shadow_efer;
break;
case MSR_KVM_WALL_CLOCK:
data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_SYSTEM_TIME:
data = vcpu->arch.time;
break;
default:
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
int i;
vcpu_load(vcpu);
down_read(&vcpu->kvm->slots_lock);
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
up_read(&vcpu->kvm->slots_lock);
vcpu_put(vcpu);
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
r = -ENOMEM;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = vmalloc(size);
if (!entries)
goto out;
r = -EFAULT;
if (copy_from_user(entries, user_msrs->entries, size))
goto out_free;
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
vfree(entries);
out:
return r;
}
/*
* Make sure that a cpu that is being hot-unplugged does not have any vcpus
* cached on it.
*/
void decache_vcpus_on_cpu(int cpu)
{
struct kvm *vm;
struct kvm_vcpu *vcpu;
int i;
spin_lock(&kvm_lock);
list_for_each_entry(vm, &vm_list, vm_list)
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = vm->vcpus[i];
if (!vcpu)
continue;
/*
* If the vcpu is locked, then it is running on some
* other cpu and therefore it is not cached on the
* cpu in question.
*
* If it's not locked, check the last cpu it executed
* on.
*/
if (mutex_trylock(&vcpu->mutex)) {
if (vcpu->cpu == cpu) {
kvm_x86_ops->vcpu_decache(vcpu);
vcpu->cpu = -1;
}
mutex_unlock(&vcpu->mutex);
}
}
spin_unlock(&kvm_lock);
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_HLT:
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
case KVM_CAP_USER_MEMORY:
case KVM_CAP_SET_TSS_ADDR:
case KVM_CAP_EXT_CPUID:
case KVM_CAP_CLOCKSOURCE:
case KVM_CAP_PIT:
case KVM_CAP_NOP_IO_DELAY:
case KVM_CAP_MP_STATE:
r = 1;
break;
case KVM_CAP_VAPIC:
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
break;
case KVM_CAP_NR_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_MEMORY_SLOTS;
break;
case KVM_CAP_PV_MMU:
r = !tdp_enabled;
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
if (n < num_msrs_to_save)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices
+ num_msrs_to_save * sizeof(u32),
&emulated_msrs,
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_SUPPORTED_CPUID: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
kvm_x86_ops->vcpu_load(vcpu, cpu);
kvm_write_guest_time(vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->vcpu_put(vcpu);
kvm_put_guest_fpu(vcpu);
}
static int is_efer_nx(void)
{
u64 efer;
rdmsrl(MSR_EFER, efer);
return efer & EFER_NX;
}
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_cpuid_entry2 *e, *entry;
entry = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
if (e->function == 0x80000001) {
entry = e;
break;
}
}
if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
entry->edx &= ~(1 << 20);
printk(KERN_INFO "kvm: guest NX capability removed\n");
}
}
/* when an old userspace process fills a new kernel module */
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
struct kvm_cpuid_entry *cpuid_entries;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
if (!cpuid_entries)
goto out;
r = -EFAULT;
if (copy_from_user(cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
goto out_free;
for (i = 0; i < cpuid->nent; i++) {
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
vcpu->arch.cpuid_entries[i].index = 0;
vcpu->arch.cpuid_entries[i].flags = 0;
vcpu->arch.cpuid_entries[i].padding[0] = 0;
vcpu->arch.cpuid_entries[i].padding[1] = 0;
vcpu->arch.cpuid_entries[i].padding[2] = 0;
}
vcpu->arch.cpuid_nent = cpuid->nent;
cpuid_fix_nx_cap(vcpu);
r = 0;
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -EFAULT;
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
vcpu->arch.cpuid_nent = cpuid->nent;
return 0;
out:
return r;
}
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent < vcpu->arch.cpuid_nent)
goto out;
r = -EFAULT;
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
return 0;
out:
cpuid->nent = vcpu->arch.cpuid_nent;
return r;
}
static inline u32 bit(int bitno)
{
return 1 << (bitno & 31);
}
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index)
{
entry->function = function;
entry->index = index;
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
entry->flags = 0;
}
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index, int *nent, int maxnent)
{
const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
bit(X86_FEATURE_PGE) |
bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
bit(X86_FEATURE_SYSCALL) |
(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
bit(X86_FEATURE_LM) |
#endif
bit(X86_FEATURE_MMXEXT) |
bit(X86_FEATURE_3DNOWEXT) |
bit(X86_FEATURE_3DNOW);
const u32 kvm_supported_word3_x86_features =
bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
const u32 kvm_supported_word6_x86_features =
bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
/* all func 2 cpuid_count() should be called on the same cpu */
get_cpu();
do_cpuid_1_ent(entry, function, index);
++*nent;
switch (function) {
case 0:
entry->eax = min(entry->eax, (u32)0xb);
break;
case 1:
entry->edx &= kvm_supported_word0_x86_features;
entry->ecx &= kvm_supported_word3_x86_features;
break;
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
* may return different values. This forces us to get_cpu() before
* issuing the first command, and also to emulate this annoying behavior
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
case 2: {
int t, times = entry->eax & 0xff;
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
for (t = 1; t < times && *nent < maxnent; ++t) {
do_cpuid_1_ent(&entry[t], function, 0);
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
++*nent;
}
break;
}
/* function 4 and 0xb have additional index. */
case 4: {
int i, cache_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until cache_type is zero */
for (i = 1; *nent < maxnent; ++i) {
cache_type = entry[i - 1].eax & 0x1f;
if (!cache_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xb: {
int i, level_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until level_type is zero */
for (i = 1; *nent < maxnent; ++i) {
level_type = entry[i - 1].ecx & 0xff;
if (!level_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0x80000000:
entry->eax = min(entry->eax, 0x8000001a);
break;
case 0x80000001:
entry->edx &= kvm_supported_word1_x86_features;
entry->ecx &= kvm_supported_word6_x86_features;
break;
}
put_cpu();
}
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
struct kvm_cpuid_entry2 *cpuid_entries;
int limit, nent = 0, r = -E2BIG;
u32 func;
if (cpuid->nent < 1)
goto out;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
if (!cpuid_entries)
goto out;
do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
limit = cpuid_entries[0].eax;
for (func = 1; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
&nent, cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
limit = cpuid_entries[nent - 1].eax;
for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
&nent, cpuid->nent);
r = -EFAULT;
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
goto out_free;
cpuid->nent = nent;
r = 0;
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
vcpu_load(vcpu);
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
vcpu_load(vcpu);
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
kvm_apic_post_state_restore(vcpu);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq < 0 || irq->irq >= 256)
return -EINVAL;
if (irqchip_in_kernel(vcpu->kvm))
return -ENXIO;
vcpu_load(vcpu);
set_bit(irq->irq, vcpu->arch.irq_pending);
set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
vcpu_put(vcpu);
return 0;
}
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
struct kvm_tpr_access_ctl *tac)
{
if (tac->flags)
return -EINVAL;
vcpu->arch.tpr_access_reporting = !!tac->enabled;
return 0;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
switch (ioctl) {
case KVM_GET_LAPIC: {
struct kvm_lapic_state lapic;
memset(&lapic, 0, sizeof lapic);
r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &lapic, sizeof lapic))
goto out;
r = 0;
break;
}
case KVM_SET_LAPIC: {
struct kvm_lapic_state lapic;
r = -EFAULT;
if (copy_from_user(&lapic, argp, sizeof lapic))
goto out;
r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
if (r)
goto out;
r = 0;
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof irq))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_SET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_GET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(vcpu, argp, kvm_get_msr, 1);
break;
case KVM_SET_MSRS:
r = msr_io(vcpu, argp, do_set_msr, 0);
break;
case KVM_TPR_ACCESS_REPORTING: {
struct kvm_tpr_access_ctl tac;
r = -EFAULT;
if (copy_from_user(&tac, argp, sizeof tac))
goto out;
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tac, sizeof tac))
goto out;
r = 0;
break;
};
case KVM_SET_VAPIC_ADDR: {
struct kvm_vapic_addr va;
r = -EINVAL;
if (!irqchip_in_kernel(vcpu->kvm))
goto out;
r = -EFAULT;
if (copy_from_user(&va, argp, sizeof va))
goto out;
r = 0;
kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
int ret;
if (addr > (unsigned int)(-3 * PAGE_SIZE))
return -1;
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
return ret;
}
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
u32 kvm_nr_mmu_pages)
{
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
return -EINVAL;
down_write(&kvm->slots_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
up_write(&kvm->slots_lock);
return 0;
}
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
return kvm->arch.n_alloc_mmu_pages;
}
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
int i;
struct kvm_mem_alias *alias;
for (i = 0; i < kvm->arch.naliases; ++i) {
alias = &kvm->arch.aliases[i];
if (gfn >= alias->base_gfn
&& gfn < alias->base_gfn + alias->npages)
return alias->target_gfn + gfn - alias->base_gfn;
}
return gfn;
}
/*
* Set a new alias region. Aliases map a portion of physical memory into
* another portion. This is useful for memory windows, for example the PC
* VGA region.
*/
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
struct kvm_memory_alias *alias)
{
int r, n;
struct kvm_mem_alias *p;
r = -EINVAL;
/* General sanity checks */
if (alias->memory_size & (PAGE_SIZE - 1))
goto out;
if (alias->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
if (alias->slot >= KVM_ALIAS_SLOTS)
goto out;
if (alias->guest_phys_addr + alias->memory_size
< alias->guest_phys_addr)
goto out;
if (alias->target_phys_addr + alias->memory_size
< alias->target_phys_addr)
goto out;
down_write(&kvm->slots_lock);
p = &kvm->arch.aliases[alias->slot];
p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
p->npages = alias->memory_size >> PAGE_SHIFT;
p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
for (n = KVM_ALIAS_SLOTS; n > 0; --n)
if (kvm->arch.aliases[n - 1].npages)
break;
kvm->arch.naliases = n;
kvm_mmu_zap_all(kvm);
up_write(&kvm->slots_lock);
return 0;
out:
return r;
}
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[0],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[1],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
memcpy(&chip->chip.ioapic,
ioapic_irqchip(kvm),
sizeof(struct kvm_ioapic_state));
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&pic_irqchip(kvm)->pics[0],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&pic_irqchip(kvm)->pics[1],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
memcpy(ioapic_irqchip(kvm),
&chip->chip.ioapic,
sizeof(struct kvm_ioapic_state));
break;
default:
r = -EINVAL;
break;
}
kvm_pic_update_irq(pic_irqchip(kvm));
return r;
}
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
return r;
}
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
kvm_pit_load_count(kvm, 0, ps->channels[0].count);
return r;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r;
int n;
struct kvm_memory_slot *memslot;
int is_dirty = 0;
down_write(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
kvm_mmu_slot_remove_write_access(kvm, log->slot);
kvm_flush_remote_tlbs(kvm);
memslot = &kvm->memslots[log->slot];
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
up_write(&kvm->slots_lock);
return r;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -EINVAL;
switch (ioctl) {
case KVM_SET_TSS_ADDR:
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_MEMORY_REGION: {
struct kvm_memory_region kvm_mem;
struct kvm_userspace_memory_region kvm_userspace_mem;
r = -EFAULT;
if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
goto out;
kvm_userspace_mem.slot = kvm_mem.slot;
kvm_userspace_mem.flags = kvm_mem.flags;
kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
kvm_userspace_mem.memory_size = kvm_mem.memory_size;
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
if (r)
goto out;
break;
}
case KVM_SET_NR_MMU_PAGES:
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
if (r)
goto out;
break;
case KVM_GET_NR_MMU_PAGES:
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
break;
case KVM_SET_MEMORY_ALIAS: {
struct kvm_memory_alias alias;
r = -EFAULT;
if (copy_from_user(&alias, argp, sizeof alias))
goto out;
r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
if (r)
goto out;
break;
}
case KVM_CREATE_IRQCHIP:
r = -ENOMEM;
kvm->arch.vpic = kvm_create_pic(kvm);
if (kvm->arch.vpic) {
r = kvm_ioapic_init(kvm);
if (r) {
kfree(kvm->arch.vpic);
kvm->arch.vpic = NULL;
goto out;
}
} else
goto out;
break;
case KVM_CREATE_PIT:
r = -ENOMEM;
kvm->arch.vpit = kvm_create_pit(kvm);
if (kvm->arch.vpit)
r = 0;
break;
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof irq_event))
goto out;
if (irqchip_in_kernel(kvm)) {
mutex_lock(&kvm->lock);
if (irq_event.irq < 16)
kvm_pic_set_irq(pic_irqchip(kvm),
irq_event.irq,
irq_event.level);
kvm_ioapic_set_irq(kvm->arch.vioapic,
irq_event.irq,
irq_event.level);
mutex_unlock(&kvm->lock);
r = 0;
}
break;
}
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip chip;
r = -EFAULT;
if (copy_from_user(&chip, argp, sizeof chip))
goto out;
r = -ENXIO;
if (!irqchip_in_kernel(kvm))
goto out;
r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &chip, sizeof chip))
goto out;
r = 0;
break;
}
case KVM_SET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip chip;
r = -EFAULT;
if (copy_from_user(&chip, argp, sizeof chip))
goto out;
r = -ENXIO;
if (!irqchip_in_kernel(kvm))
goto out;
r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_PIT: {
struct kvm_pit_state ps;
r = -EFAULT;
if (copy_from_user(&ps, argp, sizeof ps))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit(kvm, &ps);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &ps, sizeof ps))
goto out;
r = 0;
break;
}
case KVM_SET_PIT: {
struct kvm_pit_state ps;
r = -EFAULT;
if (copy_from_user(&ps, argp, sizeof ps))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit(kvm, &ps);
if (r)
goto out;
r = 0;
break;
}
default:
;
}
out:
return r;
}
static void kvm_init_msr_list(void)
{
u32 dummy[2];
unsigned i, j;
for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
continue;
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
}
num_msrs_to_save = j;
}
/*
* Only apic need an MMIO device hook, so shortcut now..
*/
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
gpa_t addr)
{
struct kvm_io_device *dev;
if (vcpu->arch.apic) {
dev = &vcpu->arch.apic->dev;
if (dev->in_range(dev, addr))
return dev;
}
return NULL;
}
static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
gpa_t addr)
{
struct kvm_io_device *dev;
dev = vcpu_find_pervcpu_dev(vcpu, addr);
if (dev == NULL)
dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
return dev;
}
int emulator_read_std(unsigned long addr,
void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA) {
r = X86EMUL_PROPAGATE_FAULT;
goto out;
}
ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
if (ret < 0) {
r = X86EMUL_UNHANDLEABLE;
goto out;
}
bytes -= tocopy;
data += tocopy;
addr += tocopy;
}
out:
return r;
}
EXPORT_SYMBOL_GPL(emulator_read_std);
static int emulator_read_emulated(unsigned long addr,
void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
struct kvm_io_device *mmio_dev;
gpa_t gpa;
if (vcpu->mmio_read_completed) {
memcpy(val, vcpu->mmio_data, bytes);
vcpu->mmio_read_completed = 0;
return X86EMUL_CONTINUE;
}
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto mmio;
if (emulator_read_std(addr, val, bytes, vcpu)
== X86EMUL_CONTINUE)
return X86EMUL_CONTINUE;
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
mmio:
/*
* Is this MMIO handled locally?
*/
mutex_lock(&vcpu->kvm->lock);
mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
if (mmio_dev) {
kvm_iodevice_read(mmio_dev, gpa, bytes, val);
mutex_unlock(&vcpu->kvm->lock);
return X86EMUL_CONTINUE;
}
mutex_unlock(&vcpu->kvm->lock);
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 0;
return X86EMUL_UNHANDLEABLE;
}
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes)
{
int ret;
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
if (ret < 0)
return 0;
kvm_mmu_pte_write(vcpu, gpa, val, bytes);
return 1;
}
static int emulator_write_emulated_onepage(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
struct kvm_io_device *mmio_dev;
gpa_t gpa;
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA) {
kvm_inject_page_fault(vcpu, addr, 2);
return X86EMUL_PROPAGATE_FAULT;
}
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto mmio;
if (emulator_write_phys(vcpu, gpa, val, bytes))
return X86EMUL_CONTINUE;
mmio:
/*
* Is this MMIO handled locally?
*/
mutex_lock(&vcpu->kvm->lock);
mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
if (mmio_dev) {
kvm_iodevice_write(mmio_dev, gpa, bytes, val);
mutex_unlock(&vcpu->kvm->lock);
return X86EMUL_CONTINUE;
}
mutex_unlock(&vcpu->kvm->lock);
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 1;
memcpy(vcpu->mmio_data, val, bytes);
return X86EMUL_CONTINUE;
}
int emulator_write_emulated(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
/* Crossing a page boundary? */
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
int rc, now;
now = -addr & ~PAGE_MASK;
rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
if (rc != X86EMUL_CONTINUE)
return rc;
addr += now;
val += now;
bytes -= now;
}
return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);
static int emulator_cmpxchg_emulated(unsigned long addr,
const void *old,
const void *new,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
static int reported;
if (!reported) {
reported = 1;
printk(KERN_WARNING "kvm: emulating exchange as write\n");
}
#ifndef CONFIG_X86_64
/* guests cmpxchg8b have to be emulated atomically */
if (bytes == 8) {
gpa_t gpa;
struct page *page;
char *kaddr;
u64 val;
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA ||
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto emul_write;
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
goto emul_write;
val = *(u64 *)new;
down_read(&current->mm->mmap_sem);
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
up_read(&current->mm->mmap_sem);
kaddr = kmap_atomic(page, KM_USER0);
set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
kunmap_atomic(kaddr, KM_USER0);
kvm_release_page_dirty(page);
}
emul_write:
#endif
return emulator_write_emulated(addr, new, bytes, vcpu);
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_x86_ops->get_segment_base(vcpu, seg);
}
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
return X86EMUL_CONTINUE;
}
int emulate_clts(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
return X86EMUL_CONTINUE;
}
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch (dr) {
case 0 ... 3:
*dest = kvm_x86_ops->get_dr(vcpu, dr);
return X86EMUL_CONTINUE;
default:
pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
return X86EMUL_UNHANDLEABLE;
}
}
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
int exception;
kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
if (exception) {
/* FIXME: better handling */
return X86EMUL_UNHANDLEABLE;
}
return X86EMUL_CONTINUE;
}
void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
static int reported;
u8 opcodes[4];
unsigned long rip = vcpu->arch.rip;
unsigned long rip_linear;
rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
if (reported)
return;
emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
reported = 1;
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
static struct x86_emulate_ops emulate_ops = {
.read_std = emulator_read_std,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
};
int emulate_instruction(struct kvm_vcpu *vcpu,
struct kvm_run *run,
unsigned long cr2,
u16 error_code,
int emulation_type)
{
int r;
struct decode_cache *c;
vcpu->arch.mmio_fault_cr2 = cr2;
kvm_x86_ops->cache_regs(vcpu);
vcpu->mmio_is_write = 0;
vcpu->arch.pio.string = 0;
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
int cs_db, cs_l;
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
vcpu->arch.emulate_ctxt.vcpu = vcpu;
vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
vcpu->arch.emulate_ctxt.mode =
(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
? X86EMUL_MODE_REAL : cs_l
? X86EMUL_MODE_PROT64 : cs_db
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
vcpu->arch.emulate_ctxt.cs_base = 0;
vcpu->arch.emulate_ctxt.ds_base = 0;
vcpu->arch.emulate_ctxt.es_base = 0;
vcpu->arch.emulate_ctxt.ss_base = 0;
} else {
vcpu->arch.emulate_ctxt.cs_base =
get_segment_base(vcpu, VCPU_SREG_CS);
vcpu->arch.emulate_ctxt.ds_base =
get_segment_base(vcpu, VCPU_SREG_DS);
vcpu->arch.emulate_ctxt.es_base =
get_segment_base(vcpu, VCPU_SREG_ES);
vcpu->arch.emulate_ctxt.ss_base =
get_segment_base(vcpu, VCPU_SREG_SS);
}
vcpu->arch.emulate_ctxt.gs_base =
get_segment_base(vcpu, VCPU_SREG_GS);
vcpu->arch.emulate_ctxt.fs_base =
get_segment_base(vcpu, VCPU_SREG_FS);
r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
/* Reject the instructions other than VMCALL/VMMCALL when
* try to emulate invalid opcode */
c = &vcpu->arch.emulate_ctxt.decode;
if ((emulation_type & EMULTYPE_TRAP_UD) &&
(!(c->twobyte && c->b == 0x01 &&
(c->modrm_reg == 0 || c->modrm_reg == 3) &&
c->modrm_mod == 3 && c->modrm_rm == 1)))
return EMULATE_FAIL;
++vcpu->stat.insn_emulation;
if (r) {
++vcpu->stat.insn_emulation_fail;
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
return EMULATE_DONE;
return EMULATE_FAIL;
}
}
r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
if (vcpu->arch.pio.string)
return EMULATE_DO_MMIO;
if ((r || vcpu->mmio_is_write) && run) {
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = vcpu->mmio_phys_addr;
memcpy(run->mmio.data, vcpu->mmio_data, 8);
run->mmio.len = vcpu->mmio_size;
run->mmio.is_write = vcpu->mmio_is_write;
}
if (r) {
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
return EMULATE_DONE;
if (!vcpu->mmio_needed) {
kvm_report_emulation_failure(vcpu, "mmio");
return EMULATE_FAIL;
}
return EMULATE_DO_MMIO;
}
kvm_x86_ops->decache_regs(vcpu);
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
if (vcpu->mmio_is_write) {
vcpu->mmio_needed = 0;
return EMULATE_DO_MMIO;
}
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
if (vcpu->arch.pio.guest_pages[i]) {
kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
vcpu->arch.pio.guest_pages[i] = NULL;
}
}
static int pio_copy_data(struct kvm_vcpu *vcpu)
{
void *p = vcpu->arch.pio_data;
void *q;
unsigned bytes;
int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
PAGE_KERNEL);
if (!q) {
free_pio_guest_pages(vcpu);
return -ENOMEM;
}
q += vcpu->arch.pio.guest_page_offset;
bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
if (vcpu->arch.pio.in)
memcpy(q, p, bytes);
else
memcpy(p, q, bytes);
q -= vcpu->arch.pio.guest_page_offset;
vunmap(q);
free_pio_guest_pages(vcpu);
return 0;
}
int complete_pio(struct kvm_vcpu *vcpu)
{
struct kvm_pio_request *io = &vcpu->arch.pio;
long delta;
int r;
kvm_x86_ops->cache_regs(vcpu);
if (!io->string) {
if (io->in)
memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
io->size);
} else {
if (io->in) {
r = pio_copy_data(vcpu);
if (r) {
kvm_x86_ops->cache_regs(vcpu);
return r;
}
}
delta = 1;
if (io->rep) {
delta *= io->cur_count;
/*
* The size of the register should really depend on
* current address size.
*/
vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
}
if (io->down)
delta = -delta;
delta *= io->size;
if (io->in)
vcpu->arch.regs[VCPU_REGS_RDI] += delta;
else
vcpu->arch.regs[VCPU_REGS_RSI] += delta;
}
kvm_x86_ops->decache_regs(vcpu);
io->count -= io->cur_count;
io->cur_count = 0;
return 0;
}
static void kernel_pio(struct kvm_io_device *pio_dev,
struct kvm_vcpu *vcpu,
void *pd)
{
/* TODO: String I/O for in kernel device */
mutex_lock(&vcpu->kvm->lock);
if (vcpu->arch.pio.in)
kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
vcpu->arch.pio.size,
pd);
else
kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
vcpu->arch.pio.size,
pd);
mutex_unlock(&vcpu->kvm->lock);
}
static void pio_string_write(struct kvm_io_device *pio_dev,
struct kvm_vcpu *vcpu)
{
struct kvm_pio_request *io = &vcpu->arch.pio;
void *pd = vcpu->arch.pio_data;
int i;
mutex_lock(&vcpu->kvm->lock);
for (i = 0; i < io->cur_count; i++) {
kvm_iodevice_write(pio_dev, io->port,
io->size,
pd);
pd += io->size;
}
mutex_unlock(&vcpu->kvm->lock);
}
static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
gpa_t addr)
{
return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
}
int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
int size, unsigned port)
{
struct kvm_io_device *pio_dev;
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = vcpu->arch.pio.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
vcpu->run->io.port = vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.string = 0;
vcpu->arch.pio.down = 0;
vcpu->arch.pio.guest_page_offset = 0;
vcpu->arch.pio.rep = 0;
if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
handler);
else
KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
handler);
kvm_x86_ops->cache_regs(vcpu);
memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
kvm_x86_ops->decache_regs(vcpu);
kvm_x86_ops->skip_emulated_instruction(vcpu);
pio_dev = vcpu_find_pio_dev(vcpu, port);
if (pio_dev) {
kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
complete_pio(vcpu);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);
int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
int size, unsigned long count, int down,
gva_t address, int rep, unsigned port)
{
unsigned now, in_page;
int i, ret = 0;
int nr_pages = 1;
struct page *page;
struct kvm_io_device *pio_dev;
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = vcpu->arch.pio.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
vcpu->run->io.port = vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.string = 1;
vcpu->arch.pio.down = down;
vcpu->arch.pio.guest_page_offset = offset_in_page(address);
vcpu->arch.pio.rep = rep;
if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
handler);
else
KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
handler);
if (!count) {
kvm_x86_ops->skip_emulated_instruction(vcpu);
return 1;
}
if (!down)
in_page = PAGE_SIZE - offset_in_page(address);
else
in_page = offset_in_page(address) + size;
now = min(count, (unsigned long)in_page / size);
if (!now) {
/*
* String I/O straddles page boundary. Pin two guest pages
* so that we satisfy atomicity constraints. Do just one
* transaction to avoid complexity.
*/
nr_pages = 2;
now = 1;
}
if (down) {
/*
* String I/O in reverse. Yuck. Kill the guest, fix later.
*/
pr_unimpl(vcpu, "guest string pio down\n");
kvm_inject_gp(vcpu, 0);
return 1;
}
vcpu->run->io.count = now;
vcpu->arch.pio.cur_count = now;
if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
kvm_x86_ops->skip_emulated_instruction(vcpu);
for (i = 0; i < nr_pages; ++i) {
page = gva_to_page(vcpu, address + i * PAGE_SIZE);
vcpu->arch.pio.guest_pages[i] = page;
if (!page) {
kvm_inject_gp(vcpu, 0);
free_pio_guest_pages(vcpu);
return 1;
}
}
pio_dev = vcpu_find_pio_dev(vcpu, port);
if (!vcpu->arch.pio.in) {
/* string PIO write */
ret = pio_copy_data(vcpu);
if (ret >= 0 && pio_dev) {
pio_string_write(pio_dev, vcpu);
complete_pio(vcpu);
if (vcpu->arch.pio.count == 0)
ret = 1;
}
} else if (pio_dev)
pr_unimpl(vcpu, "no string pio read support yet, "
"port %x size %d count %ld\n",
port, size, count);
return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
int kvm_arch_init(void *opaque)
{
int r;
struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
if (kvm_x86_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
r = -EEXIST;
goto out;
}
if (!ops->cpu_has_kvm_support()) {
printk(KERN_ERR "kvm: no hardware support\n");
r = -EOPNOTSUPP;
goto out;
}
if (ops->disabled_by_bios()) {
printk(KERN_ERR "kvm: disabled by bios\n");
r = -EOPNOTSUPP;
goto out;
}
r = kvm_mmu_module_init();
if (r)
goto out;
kvm_init_msr_list();
kvm_x86_ops = ops;
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0);
return 0;
out:
return r;
}
void kvm_arch_exit(void)
{
kvm_x86_ops = NULL;
kvm_mmu_module_exit();
}
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.halt_exits;
KVMTRACE_0D(HLT, vcpu, handler);
if (irqchip_in_kernel(vcpu->kvm)) {
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
up_read(&vcpu->kvm->slots_lock);
kvm_vcpu_block(vcpu);
down_read(&vcpu->kvm->slots_lock);
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
return -EINTR;
return 1;
} else {
vcpu->run->exit_reason = KVM_EXIT_HLT;
return 0;
}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
unsigned long a1)
{
if (is_long_mode(vcpu))
return a0;
else
return a0 | ((gpa_t)a1 << 32);
}
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
int r = 1;
kvm_x86_ops->cache_regs(vcpu);
nr = vcpu->arch.regs[VCPU_REGS_RAX];
a0 = vcpu->arch.regs[VCPU_REGS_RBX];
a1 = vcpu->arch.regs[VCPU_REGS_RCX];
a2 = vcpu->arch.regs[VCPU_REGS_RDX];
a3 = vcpu->arch.regs[VCPU_REGS_RSI];
KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
if (!is_long_mode(vcpu)) {
nr &= 0xFFFFFFFF;
a0 &= 0xFFFFFFFF;
a1 &= 0xFFFFFFFF;
a2 &= 0xFFFFFFFF;
a3 &= 0xFFFFFFFF;
}
switch (nr) {
case KVM_HC_VAPIC_POLL_IRQ:
ret = 0;
break;
case KVM_HC_MMU_OP:
r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
break;
default:
ret = -KVM_ENOSYS;
break;
}
vcpu->arch.regs[VCPU_REGS_RAX] = ret;
kvm_x86_ops->decache_regs(vcpu);
++vcpu->stat.hypercalls;
return r;
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
char instruction[3];
int ret = 0;
/*
* Blow out the MMU to ensure that no other VCPU has an active mapping
* to ensure that the updated hypercall appears atomically across all
* VCPUs.
*/
kvm_mmu_zap_all(vcpu->kvm);
kvm_x86_ops->cache_regs(vcpu);
kvm_x86_ops->patch_hypercall(vcpu, instruction);
if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
!= X86EMUL_CONTINUE)
ret = -EFAULT;
return ret;
}
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_x86_ops->set_gdt(vcpu, &dt);
}
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_x86_ops->set_idt(vcpu, &dt);
}
void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
unsigned long *rflags)
{
kvm_lmsw(vcpu, msw);
*rflags = kvm_x86_ops->get_rflags(vcpu);
}
unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
switch (cr) {
case 0:
return vcpu->arch.cr0;
case 2:
return vcpu->arch.cr2;
case 3:
return vcpu->arch.cr3;
case 4:
return vcpu->arch.cr4;
case 8:
return kvm_get_cr8(vcpu);
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
return 0;
}
}
void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
unsigned long *rflags)
{
switch (cr) {
case 0:
kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
*rflags = kvm_x86_ops->get_rflags(vcpu);
break;
case 2:
vcpu->arch.cr2 = val;
break;
case 3:
kvm_set_cr3(vcpu, val);
break;
case 4:
kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
break;
case 8:
kvm_set_cr8(vcpu, val & 0xfUL);
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
}
}
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
int j, nent = vcpu->arch.cpuid_nent;
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; j == i; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
return j;
}
}
return 0; /* silence gcc, even though control never reaches here */
}
/* find an entry with matching function, matching index (if needed), and that
* should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
u32 function, u32 index)
{
if (e->function != function)
return 0;
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
return 0;
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
return 0;
return 1;
}
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
int i;
u32 function, index;
struct kvm_cpuid_entry2 *e, *best;
kvm_x86_ops->cache_regs(vcpu);
function = vcpu->arch.regs[VCPU_REGS_RAX];
index = vcpu->arch.regs[VCPU_REGS_RCX];
vcpu->arch.regs[VCPU_REGS_RAX] = 0;
vcpu->arch.regs[VCPU_REGS_RBX] = 0;
vcpu->arch.regs[VCPU_REGS_RCX] = 0;
vcpu->arch.regs[VCPU_REGS_RDX] = 0;
best = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
if (is_matching_cpuid_entry(e, function, index)) {
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
move_to_next_stateful_cpuid_entry(vcpu, i);
best = e;
break;
}
/*
* Both basic or both extended?
*/
if (((e->function ^ function) & 0x80000000) == 0)
if (!best || e->function > best->function)
best = e;
}
if (best) {
vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
}
kvm_x86_ops->decache_regs(vcpu);
kvm_x86_ops->skip_emulated_instruction(vcpu);
KVMTRACE_5D(CPUID, vcpu, function,
(u32)vcpu->arch.regs[VCPU_REGS_RAX],
(u32)vcpu->arch.regs[VCPU_REGS_RBX],
(u32)vcpu->arch.regs[VCPU_REGS_RCX],
(u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
/*
* Check if userspace requested an interrupt window, and that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
return (!vcpu->arch.irq_summary &&
kvm_run->request_interrupt_window &&
vcpu->arch.interrupt_window_open &&
(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
kvm_run->cr8 = kvm_get_cr8(vcpu);
kvm_run->apic_base = kvm_get_apic_base(vcpu);
if (irqchip_in_kernel(vcpu->kvm))
kvm_run->ready_for_interrupt_injection = 1;
else
kvm_run->ready_for_interrupt_injection =
(vcpu->arch.interrupt_window_open &&
vcpu->arch.irq_summary == 0);
}
static void vapic_enter(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
struct page *page;
if (!apic || !apic->vapic_addr)
return;
down_read(&current->mm->mmap_sem);
page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
up_read(&current->mm->mmap_sem);
vcpu->arch.apic->vapic_page = page;
}
static void vapic_exit(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic || !apic->vapic_addr)
return;
kvm_release_page_dirty(apic->vapic_page);
mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
}
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
pr_debug("vcpu %d received sipi with vector # %x\n",
vcpu->vcpu_id, vcpu->arch.sipi_vector);
kvm_lapic_reset(vcpu);
r = kvm_x86_ops->vcpu_reset(vcpu);
if (r)
return r;
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
down_read(&vcpu->kvm->slots_lock);
vapic_enter(vcpu);
preempted:
if (vcpu->guest_debug.enabled)
kvm_x86_ops->guest_debug_pre(vcpu);
again:
if (vcpu->requests)
if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
kvm_mmu_unload(vcpu);
r = kvm_mmu_reload(vcpu);
if (unlikely(r))
goto out;
if (vcpu->requests) {
if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
__kvm_migrate_timers(vcpu);
if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
kvm_x86_ops->tlb_flush(vcpu);
if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
&vcpu->requests)) {
kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
r = 0;
goto out;
}
if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
r = 0;
goto out;
}
}
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
kvm_inject_pending_timer_irqs(vcpu);
preempt_disable();
kvm_x86_ops->prepare_guest_switch(vcpu);
kvm_load_guest_fpu(vcpu);
local_irq_disable();
if (vcpu->requests || need_resched()) {
local_irq_enable();
preempt_enable();
r = 1;
goto out;
}
if (signal_pending(current)) {
local_irq_enable();
preempt_enable();
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
goto out;
}
vcpu->guest_mode = 1;
/*
* Make sure that guest_mode assignment won't happen after
* testing the pending IRQ vector bitmap.
*/
smp_wmb();
if (vcpu->arch.exception.pending)
__queue_exception(vcpu);
else if (irqchip_in_kernel(vcpu->kvm))
kvm_x86_ops->inject_pending_irq(vcpu);
else
kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
kvm_lapic_sync_to_vapic(vcpu);
up_read(&vcpu->kvm->slots_lock);
kvm_guest_enter();
KVMTRACE_0D(VMENTRY, vcpu, entryexit);
kvm_x86_ops->run(vcpu, kvm_run);
vcpu->guest_mode = 0;
local_irq_enable();
++vcpu->stat.exits;
/*
* We must have an instruction between local_irq_enable() and
* kvm_guest_exit(), so the timer interrupt isn't delayed by
* the interrupt shadow. The stat.exits increment will do nicely.
* But we need to prevent reordering, hence this barrier():
*/
barrier();
kvm_guest_exit();
preempt_enable();
down_read(&vcpu->kvm->slots_lock);
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING)) {
kvm_x86_ops->cache_regs(vcpu);
profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
}
if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
vcpu->arch.exception.pending = false;
kvm_lapic_sync_from_vapic(vcpu);
r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
if (r > 0) {
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.request_irq_exits;
goto out;
}
if (!need_resched())
goto again;
}
out:
up_read(&vcpu->kvm->slots_lock);
if (r > 0) {
kvm_resched(vcpu);
down_read(&vcpu->kvm->slots_lock);
goto preempted;
}
post_kvm_run_save(vcpu, kvm_run);
down_read(&vcpu->kvm->slots_lock);
vapic_exit(vcpu);
up_read(&vcpu->kvm->slots_lock);
return r;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
sigset_t sigsaved;
vcpu_load(vcpu);
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
kvm_vcpu_block(vcpu);
vcpu_put(vcpu);
return -EAGAIN;
}
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
/* re-sync apic's tpr */
if (!irqchip_in_kernel(vcpu->kvm))
kvm_set_cr8(vcpu, kvm_run->cr8);
if (vcpu->arch.pio.cur_count) {
r = complete_pio(vcpu);
if (r)
goto out;
}
#if CONFIG_HAS_IOMEM
if (vcpu->mmio_needed) {
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
vcpu->mmio_read_completed = 1;
vcpu->mmio_needed = 0;
down_read(&vcpu->kvm->slots_lock);
r = emulate_instruction(vcpu, kvm_run,
vcpu->arch.mmio_fault_cr2, 0,
EMULTYPE_NO_DECODE);
up_read(&vcpu->kvm->slots_lock);
if (r == EMULATE_DO_MMIO) {
/*
* Read-modify-write. Back to userspace.
*/
r = 0;
goto out;
}
}
#endif
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
kvm_x86_ops->cache_regs(vcpu);
vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
kvm_x86_ops->decache_regs(vcpu);
}
r = __vcpu_run(vcpu, kvm_run);
out:
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
vcpu_put(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
kvm_x86_ops->cache_regs(vcpu);
regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
#ifdef CONFIG_X86_64
regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
#endif
regs->rip = vcpu->arch.rip;
regs->rflags = kvm_x86_ops->get_rflags(vcpu);
/*
* Don't leak debug flags in case they were set for guest debugging
*/
if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
#ifdef CONFIG_X86_64
vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
#endif
vcpu->arch.rip = regs->rip;
kvm_x86_ops->set_rflags(vcpu, regs->rflags);
kvm_x86_ops->decache_regs(vcpu);
vcpu->arch.exception.pending = false;
vcpu_put(vcpu);
return 0;
}
static void get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->get_segment(vcpu, var, seg);
}
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct kvm_segment cs;
get_segment(vcpu, &cs, VCPU_SREG_CS);
*db = cs.db;
*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct descriptor_table dt;
int pending_vec;
vcpu_load(vcpu);
get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_x86_ops->get_idt(vcpu, &dt);
sregs->idt.limit = dt.limit;
sregs->idt.base = dt.base;
kvm_x86_ops->get_gdt(vcpu, &dt);
sregs->gdt.limit = dt.limit;
sregs->gdt.base = dt.base;
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
sregs->cr0 = vcpu->arch.cr0;
sregs->cr2 = vcpu->arch.cr2;
sregs->cr3 = vcpu->arch.cr3;
sregs->cr4 = vcpu->arch.cr4;
sregs->cr8 = kvm_get_cr8(vcpu);
sregs->efer = vcpu->arch.shadow_efer;
sregs->apic_base = kvm_get_apic_base(vcpu);
if (irqchip_in_kernel(vcpu->kvm)) {
memset(sregs->interrupt_bitmap, 0,
sizeof sregs->interrupt_bitmap);
pending_vec = kvm_x86_ops->get_irq(vcpu);
if (pending_vec >= 0)
set_bit(pending_vec,
(unsigned long *)sregs->interrupt_bitmap);
} else
memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
sizeof sregs->interrupt_bitmap);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_load(vcpu);
mp_state->mp_state = vcpu->arch.mp_state;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_load(vcpu);
vcpu->arch.mp_state = mp_state->mp_state;
vcpu_put(vcpu);
return 0;
}
static void set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->set_segment(vcpu, var, seg);
}
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
struct kvm_segment *kvm_desct)
{
kvm_desct->base = seg_desc->base0;
kvm_desct->base |= seg_desc->base1 << 16;
kvm_desct->base |= seg_desc->base2 << 24;
kvm_desct->limit = seg_desc->limit0;
kvm_desct->limit |= seg_desc->limit << 16;
kvm_desct->selector = selector;
kvm_desct->type = seg_desc->type;
kvm_desct->present = seg_desc->p;
kvm_desct->dpl = seg_desc->dpl;
kvm_desct->db = seg_desc->d;
kvm_desct->s = seg_desc->s;
kvm_desct->l = seg_desc->l;
kvm_desct->g = seg_desc->g;
kvm_desct->avl = seg_desc->avl;
if (!selector)
kvm_desct->unusable = 1;
else
kvm_desct->unusable = 0;
kvm_desct->padding = 0;
}
static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
u16 selector,
struct descriptor_table *dtable)
{
if (selector & 1 << 2) {
struct kvm_segment kvm_seg;
get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
if (kvm_seg.unusable)
dtable->limit = 0;
else
dtable->limit = kvm_seg.limit;
dtable->base = kvm_seg.base;
}
else
kvm_x86_ops->get_gdt(vcpu, dtable);
}
/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
struct desc_struct *seg_desc)
{
struct descriptor_table dtable;
u16 index = selector >> 3;
get_segment_descritptor_dtable(vcpu, selector, &dtable);
if (dtable.limit < index * 8 + 7) {
kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
return 1;
}
return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
}
/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
struct desc_struct *seg_desc)
{
struct descriptor_table dtable;
u16 index = selector >> 3;
get_segment_descritptor_dtable(vcpu, selector, &dtable);
if (dtable.limit < index * 8 + 7)
return 1;
return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
}
static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
struct desc_struct *seg_desc)
{
u32 base_addr;
base_addr = seg_desc->base0;
base_addr |= (seg_desc->base1 << 16);
base_addr |= (seg_desc->base2 << 24);
return base_addr;
}
static int load_tss_segment32(struct kvm_vcpu *vcpu,
struct desc_struct *seg_desc,
struct tss_segment_32 *tss)
{
u32 base_addr;
base_addr = get_tss_base_addr(vcpu, seg_desc);
return kvm_read_guest(vcpu->kvm, base_addr, tss,
sizeof(struct tss_segment_32));
}
static int save_tss_segment32(struct kvm_vcpu *vcpu,
struct desc_struct *seg_desc,
struct tss_segment_32 *tss)
{
u32 base_addr;
base_addr = get_tss_base_addr(vcpu, seg_desc);
return kvm_write_guest(vcpu->kvm, base_addr, tss,
sizeof(struct tss_segment_32));
}
static int load_tss_segment16(struct kvm_vcpu *vcpu,
struct desc_struct *seg_desc,
struct tss_segment_16 *tss)
{
u32 base_addr;
base_addr = get_tss_base_addr(vcpu, seg_desc);
return kvm_read_guest(vcpu->kvm, base_addr, tss,
sizeof(struct tss_segment_16));
}
static int save_tss_segment16(struct kvm_vcpu *vcpu,
struct desc_struct *seg_desc,
struct tss_segment_16 *tss)
{
u32 base_addr;
base_addr = get_tss_base_addr(vcpu, seg_desc);
return kvm_write_guest(vcpu->kvm, base_addr, tss,
sizeof(struct tss_segment_16));
}
static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment kvm_seg;
get_segment(vcpu, &kvm_seg, seg);
return kvm_seg.selector;
}
static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
u16 selector,
struct kvm_segment *kvm_seg)
{
struct desc_struct seg_desc;
if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
return 1;
seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
return 0;
}
static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
int type_bits, int seg)
{
struct kvm_segment kvm_seg;
if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
return 1;
kvm_seg.type |= type_bits;
if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
seg != VCPU_SREG_LDTR)
if (!kvm_seg.s)
kvm_seg.unusable = 1;
set_segment(vcpu, &kvm_seg, seg);
return 0;
}
static void save_state_to_tss32(struct kvm_vcpu *vcpu,
struct tss_segment_32 *tss)
{
tss->cr3 = vcpu->arch.cr3;
tss->eip = vcpu->arch.rip;
tss->eflags = kvm_x86_ops->get_rflags(vcpu);
tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}
static int load_state_from_tss32(struct kvm_vcpu *vcpu,
struct tss_segment_32 *tss)
{
kvm_set_cr3(vcpu, tss->cr3);
vcpu->arch.rip = tss->eip;
kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
return 1;
if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
return 1;
if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
return 1;
if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
return 1;
if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
return 1;
if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
return 1;
if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
return 1;
return 0;
}
static void save_state_to_tss16(struct kvm_vcpu *vcpu,
struct tss_segment_16 *tss)
{
tss->ip = vcpu->arch.rip;
tss->flag = kvm_x86_ops->get_rflags(vcpu);
tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}
static int load_state_from_tss16(struct kvm_vcpu *vcpu,
struct tss_segment_16 *tss)
{
vcpu->arch.rip = tss->ip;
kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
return 1;
if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
return 1;
if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
return 1;
if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
return 1;
if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
return 1;
return 0;
}
int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
struct desc_struct *cseg_desc,
struct desc_struct *nseg_desc)
{
struct tss_segment_16 tss_segment_16;
int ret = 0;
if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
goto out;
save_state_to_tss16(vcpu, &tss_segment_16);
save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
goto out;
if (load_state_from_tss16(vcpu, &tss_segment_16))
goto out;
ret = 1;
out:
return ret;
}
int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
struct desc_struct *cseg_desc,
struct desc_struct *nseg_desc)
{
struct tss_segment_32 tss_segment_32;
int ret = 0;
if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
goto out;
save_state_to_tss32(vcpu, &tss_segment_32);
save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
goto out;
if (load_state_from_tss32(vcpu, &tss_segment_32))
goto out;
ret = 1;
out:
return ret;
}
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
struct kvm_segment tr_seg;
struct desc_struct cseg_desc;
struct desc_struct nseg_desc;
int ret = 0;
get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
goto out;
if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
goto out;
if (reason != TASK_SWITCH_IRET) {
int cpl;
cpl = kvm_x86_ops->get_cpl(vcpu);
if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
}
if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
return 1;
}
if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
cseg_desc.type &= ~(1 << 1); //clear the B flag
save_guest_segment_descriptor(vcpu, tr_seg.selector,
&cseg_desc);
}
if (reason == TASK_SWITCH_IRET) {
u32 eflags = kvm_x86_ops->get_rflags(vcpu);
kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
}
kvm_x86_ops->skip_emulated_instruction(vcpu);
kvm_x86_ops->cache_regs(vcpu);
if (nseg_desc.type & 8)
ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
&nseg_desc);
else
ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
&nseg_desc);
if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
u32 eflags = kvm_x86_ops->get_rflags(vcpu);
kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
}
if (reason != TASK_SWITCH_IRET) {
nseg_desc.type |= (1 << 1);
save_guest_segment_descriptor(vcpu, tss_selector,
&nseg_desc);
}
kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
tr_seg.type = 11;
set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
out:
kvm_x86_ops->decache_regs(vcpu);
return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int mmu_reset_needed = 0;
int i, pending_vec, max_bits;
struct descriptor_table dt;
vcpu_load(vcpu);
dt.limit = sregs->idt.limit;
dt.base = sregs->idt.base;
kvm_x86_ops->set_idt(vcpu, &dt);
dt.limit = sregs->gdt.limit;
dt.base = sregs->gdt.base;
kvm_x86_ops->set_gdt(vcpu, &dt);
vcpu->arch.cr2 = sregs->cr2;
mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
vcpu->arch.cr3 = sregs->cr3;
kvm_set_cr8(vcpu, sregs->cr8);
mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
kvm_x86_ops->set_efer(vcpu, sregs->efer);
kvm_set_apic_base(vcpu, sregs->apic_base);
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
vcpu->arch.cr0 = sregs->cr0;
mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
if (!is_long_mode(vcpu) && is_pae(vcpu))
load_pdptrs(vcpu, vcpu->arch.cr3);
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
if (!irqchip_in_kernel(vcpu->kvm)) {
memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
sizeof vcpu->arch.irq_pending);
vcpu->arch.irq_summary = 0;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
if (vcpu->arch.irq_pending[i])
__set_bit(i, &vcpu->arch.irq_summary);
} else {
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap,
max_bits);
/* Only pending external irq is handled here */
if (pending_vec < max_bits) {
kvm_x86_ops->set_irq(vcpu, pending_vec);
pr_debug("Set back pending irq %d\n",
pending_vec);
}
}
set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
struct kvm_debug_guest *dbg)
{
int r;
vcpu_load(vcpu);
r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
vcpu_put(vcpu);
return r;
}
/*
* fxsave fpu state. Taken from x86_64/processor.h. To be killed when
* we have asm/x86/processor.h
*/
struct fxsave {
u16 cwd;
u16 swd;
u16 twd;
u16 fop;
u64 rip;
u64 rdp;
u32 mxcsr;
u32 mxcsr_mask;
u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
#else
u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};
/*
* Translate a guest virtual address to a guest physical address.
*/
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
vcpu_load(vcpu);
down_read(&vcpu->kvm->slots_lock);
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
up_read(&vcpu->kvm->slots_lock);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
vcpu_load(vcpu);
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
vcpu_load(vcpu);
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
void fx_init(struct kvm_vcpu *vcpu)
{
unsigned after_mxcsr_mask;
/*
* Touch the fpu the first time in non atomic context as if
* this is the first fpu instruction the exception handler
* will fire before the instruction returns and it'll have to
* allocate ram with GFP_KERNEL.
*/
if (!used_math())
fx_save(&vcpu->arch.host_fx_image);
/* Initialize guest FPU by resetting ours and saving into guest's */
preempt_disable();
fx_save(&vcpu->arch.host_fx_image);
fx_finit();
fx_save(&vcpu->arch.guest_fx_image);
fx_restore(&vcpu->arch.host_fx_image);
preempt_enable();
vcpu->arch.cr0 |= X86_CR0_ET;
after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 1;
fx_save(&vcpu->arch.host_fx_image);
fx_restore(&vcpu->arch.guest_fx_image);
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 0;
fx_save(&vcpu->arch.guest_fx_image);
fx_restore(&vcpu->arch.host_fx_image);
++vcpu->stat.fpu_reload;
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->vcpu_free(vcpu);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
unsigned int id)
{
return kvm_x86_ops->vcpu_create(kvm, id);
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int r;
/* We do fxsave: this must be aligned. */
BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
vcpu_load(vcpu);
r = kvm_arch_vcpu_reset(vcpu);
if (r == 0)
r = kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
if (r < 0)
goto free_vcpu;
return 0;
free_vcpu:
kvm_x86_ops->vcpu_free(vcpu);
return r;
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
}
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
return kvm_x86_ops->vcpu_reset(vcpu);
}
void kvm_arch_hardware_enable(void *garbage)
{
kvm_x86_ops->hardware_enable(garbage);
}
void kvm_arch_hardware_disable(void *garbage)
{
kvm_x86_ops->hardware_disable(garbage);
}
int kvm_arch_hardware_setup(void)
{
return kvm_x86_ops->hardware_setup();
}
void kvm_arch_hardware_unsetup(void)
{
kvm_x86_ops->hardware_unsetup();
}
void kvm_arch_check_processor_compat(void *rtn)
{
kvm_x86_ops->check_processor_compatibility(rtn);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct page *page;
struct kvm *kvm;
int r;
BUG_ON(vcpu->kvm == NULL);
kvm = vcpu->kvm;
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
else
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->arch.pio_data = page_address(page);
r = kvm_mmu_create(vcpu);
if (r < 0)
goto fail_free_pio_data;
if (irqchip_in_kernel(kvm)) {
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
}
return 0;
fail_mmu_destroy:
kvm_mmu_destroy(vcpu);
fail_free_pio_data:
free_page((unsigned long)vcpu->arch.pio_data);
fail:
return r;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kvm_free_lapic(vcpu);
down_read(&vcpu->kvm->slots_lock);
kvm_mmu_destroy(vcpu);
up_read(&vcpu->kvm->slots_lock);
free_page((unsigned long)vcpu->arch.pio_data);
}
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
return kvm;
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
/*
* Unpin any mmu pages first.
*/
for (i = 0; i < KVM_MAX_VCPUS; ++i)
if (kvm->vcpus[i])
kvm_unload_vcpu_mmu(kvm->vcpus[i]);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm_arch_vcpu_free(kvm->vcpus[i]);
kvm->vcpus[i] = NULL;
}
}
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_free_pit(kvm);
kfree(kvm->arch.vpic);
kfree(kvm->arch.vioapic);
kvm_free_vcpus(kvm);
kvm_free_physmem(kvm);
if (kvm->arch.apic_access_page)
put_page(kvm->arch.apic_access_page);
if (kvm->arch.ept_identity_pagetable)
put_page(kvm->arch.ept_identity_pagetable);
kfree(kvm);
}
int kvm_arch_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
int npages = mem->memory_size >> PAGE_SHIFT;
struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
/*To keep backward compatibility with older userspace,
*x86 needs to hanlde !user_alloc case.
*/
if (!user_alloc) {
if (npages && !old.rmap) {
down_write(&current->mm->mmap_sem);
memslot->userspace_addr = do_mmap(NULL, 0,
npages * PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS,
0);
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *)memslot->userspace_addr))
return PTR_ERR((void *)memslot->userspace_addr);
} else {
if (!old.user_alloc && old.rmap) {
int ret;
down_write(&current->mm->mmap_sem);
ret = do_munmap(current->mm, old.userspace_addr,
old.npages * PAGE_SIZE);
up_write(&current->mm->mmap_sem);
if (ret < 0)
printk(KERN_WARNING
"kvm_vm_ioctl_set_memory_region: "
"failed to munmap memory\n");
}
}
}
if (!kvm->arch.n_requested_mmu_pages) {
unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
}
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
kvm_flush_remote_tlbs(kvm);
return 0;
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
}
static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int ipi_pcpu = vcpu->cpu;
int cpu = get_cpu();
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
++vcpu->stat.halt_wakeup;
}
/*
* We may be called synchronously with irqs disabled in guest mode,
* So need not to call smp_call_function_single() in that case.
*/
if (vcpu->guest_mode && vcpu->cpu != cpu)
smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
put_cpu();
}