/* * WUSB Wire Adapter * Data transfer and URB enqueing * * Copyright (C) 2005-2006 Intel Corporation * Inaky Perez-Gonzalez * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * * How transfers work: get a buffer, break it up in segments (segment * size is a multiple of the maxpacket size). For each segment issue a * segment request (struct wa_xfer_*), then send the data buffer if * out or nothing if in (all over the DTO endpoint). * * For each submitted segment request, a notification will come over * the NEP endpoint and a transfer result (struct xfer_result) will * arrive in the DTI URB. Read it, get the xfer ID, see if there is * data coming (inbound transfer), schedule a read and handle it. * * Sounds simple, it is a pain to implement. * * * ENTRY POINTS * * FIXME * * LIFE CYCLE / STATE DIAGRAM * * FIXME * * THIS CODE IS DISGUSTING * * Warned you are; it's my second try and still not happy with it. * * NOTES: * * - No iso * * - Supports DMA xfers, control, bulk and maybe interrupt * * - Does not recycle unused rpipes * * An rpipe is assigned to an endpoint the first time it is used, * and then it's there, assigned, until the endpoint is disabled * (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the * rpipe to the endpoint is done under the wa->rpipe_sem semaphore * (should be a mutex). * * Two methods it could be done: * * (a) set up a timer every time an rpipe's use count drops to 1 * (which means unused) or when a transfer ends. Reset the * timer when a xfer is queued. If the timer expires, release * the rpipe [see rpipe_ep_disable()]. * * (b) when looking for free rpipes to attach [rpipe_get_by_ep()], * when none are found go over the list, check their endpoint * and their activity record (if no last-xfer-done-ts in the * last x seconds) take it * * However, due to the fact that we have a set of limited * resources (max-segments-at-the-same-time per xfer, * xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end * we are going to have to rebuild all this based on an scheduler, * to where we have a list of transactions to do and based on the * availability of the different required components (blocks, * rpipes, segment slots, etc), we go scheduling them. Painful. */ #include #include #include #include #include #include #include "wa-hc.h" #include "wusbhc.h" enum { WA_SEGS_MAX = 255, }; enum wa_seg_status { WA_SEG_NOTREADY, WA_SEG_READY, WA_SEG_DELAYED, WA_SEG_SUBMITTED, WA_SEG_PENDING, WA_SEG_DTI_PENDING, WA_SEG_DONE, WA_SEG_ERROR, WA_SEG_ABORTED, }; static void wa_xfer_delayed_run(struct wa_rpipe *); /* * Life cycle governed by 'struct urb' (the refcount of the struct is * that of the 'struct urb' and usb_free_urb() would free the whole * struct). */ struct wa_seg { struct urb urb; struct urb *dto_urb; /* for data output? */ struct list_head list_node; /* for rpipe->req_list */ struct wa_xfer *xfer; /* out xfer */ u8 index; /* which segment we are */ enum wa_seg_status status; ssize_t result; /* bytes xfered or error */ struct wa_xfer_hdr xfer_hdr; u8 xfer_extra[]; /* xtra space for xfer_hdr_ctl */ }; static void wa_seg_init(struct wa_seg *seg) { /* usb_init_urb() repeats a lot of work, so we do it here */ kref_init(&seg->urb.kref); } /* * Protected by xfer->lock * */ struct wa_xfer { struct kref refcnt; struct list_head list_node; spinlock_t lock; u32 id; struct wahc *wa; /* Wire adapter we are plugged to */ struct usb_host_endpoint *ep; struct urb *urb; /* URB we are transferring for */ struct wa_seg **seg; /* transfer segments */ u8 segs, segs_submitted, segs_done; unsigned is_inbound:1; unsigned is_dma:1; size_t seg_size; int result; gfp_t gfp; /* allocation mask */ struct wusb_dev *wusb_dev; /* for activity timestamps */ }; static inline void wa_xfer_init(struct wa_xfer *xfer) { kref_init(&xfer->refcnt); INIT_LIST_HEAD(&xfer->list_node); spin_lock_init(&xfer->lock); } /* * Destroy a transfer structure * * Note that the xfer->seg[index] thingies follow the URB life cycle, * so we need to put them, not free them. */ static void wa_xfer_destroy(struct kref *_xfer) { struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt); if (xfer->seg) { unsigned cnt; for (cnt = 0; cnt < xfer->segs; cnt++) { if (xfer->is_inbound) usb_put_urb(xfer->seg[cnt]->dto_urb); usb_put_urb(&xfer->seg[cnt]->urb); } } kfree(xfer); } static void wa_xfer_get(struct wa_xfer *xfer) { kref_get(&xfer->refcnt); } static void wa_xfer_put(struct wa_xfer *xfer) { kref_put(&xfer->refcnt, wa_xfer_destroy); } /* * xfer is referenced * * xfer->lock has to be unlocked * * We take xfer->lock for setting the result; this is a barrier * against drivers/usb/core/hcd.c:unlink1() being called after we call * usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a * reference to the transfer. */ static void wa_xfer_giveback(struct wa_xfer *xfer) { unsigned long flags; spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags); list_del_init(&xfer->list_node); spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags); /* FIXME: segmentation broken -- kills DWA */ wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result); wa_put(xfer->wa); wa_xfer_put(xfer); } /* * xfer is referenced * * xfer->lock has to be unlocked */ static void wa_xfer_completion(struct wa_xfer *xfer) { if (xfer->wusb_dev) wusb_dev_put(xfer->wusb_dev); rpipe_put(xfer->ep->hcpriv); wa_xfer_giveback(xfer); } /* * If transfer is done, wrap it up and return true * * xfer->lock has to be locked */ static unsigned __wa_xfer_is_done(struct wa_xfer *xfer) { struct device *dev = &xfer->wa->usb_iface->dev; unsigned result, cnt; struct wa_seg *seg; struct urb *urb = xfer->urb; unsigned found_short = 0; result = xfer->segs_done == xfer->segs_submitted; if (result == 0) goto out; urb->actual_length = 0; for (cnt = 0; cnt < xfer->segs; cnt++) { seg = xfer->seg[cnt]; switch (seg->status) { case WA_SEG_DONE: if (found_short && seg->result > 0) { dev_dbg(dev, "xfer %p#%u: bad short segments (%zu)\n", xfer, cnt, seg->result); urb->status = -EINVAL; goto out; } urb->actual_length += seg->result; if (seg->result < xfer->seg_size && cnt != xfer->segs-1) found_short = 1; dev_dbg(dev, "xfer %p#%u: DONE short %d " "result %zu urb->actual_length %d\n", xfer, seg->index, found_short, seg->result, urb->actual_length); break; case WA_SEG_ERROR: xfer->result = seg->result; dev_dbg(dev, "xfer %p#%u: ERROR result %zu\n", xfer, seg->index, seg->result); goto out; case WA_SEG_ABORTED: dev_dbg(dev, "xfer %p#%u ABORTED: result %d\n", xfer, seg->index, urb->status); xfer->result = urb->status; goto out; default: dev_warn(dev, "xfer %p#%u: is_done bad state %d\n", xfer, cnt, seg->status); xfer->result = -EINVAL; goto out; } } xfer->result = 0; out: return result; } /* * Initialize a transfer's ID * * We need to use a sequential number; if we use the pointer or the * hash of the pointer, it can repeat over sequential transfers and * then it will confuse the HWA....wonder why in hell they put a 32 * bit handle in there then. */ static void wa_xfer_id_init(struct wa_xfer *xfer) { xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count); } /* * Return the xfer's ID associated with xfer * * Need to generate a */ static u32 wa_xfer_id(struct wa_xfer *xfer) { return xfer->id; } /* * Search for a transfer list ID on the HCD's URB list * * For 32 bit architectures, we use the pointer itself; for 64 bits, a * 32-bit hash of the pointer. * * @returns NULL if not found. */ static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id) { unsigned long flags; struct wa_xfer *xfer_itr; spin_lock_irqsave(&wa->xfer_list_lock, flags); list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) { if (id == xfer_itr->id) { wa_xfer_get(xfer_itr); goto out; } } xfer_itr = NULL; out: spin_unlock_irqrestore(&wa->xfer_list_lock, flags); return xfer_itr; } struct wa_xfer_abort_buffer { struct urb urb; struct wa_xfer_abort cmd; }; static void __wa_xfer_abort_cb(struct urb *urb) { struct wa_xfer_abort_buffer *b = urb->context; usb_put_urb(&b->urb); } /* * Aborts an ongoing transaction * * Assumes the transfer is referenced and locked and in a submitted * state (mainly that there is an endpoint/rpipe assigned). * * The callback (see above) does nothing but freeing up the data by * putting the URB. Because the URB is allocated at the head of the * struct, the whole space we allocated is kfreed. * * We'll get an 'aborted transaction' xfer result on DTI, that'll * politely ignore because at this point the transaction has been * marked as aborted already. */ static void __wa_xfer_abort(struct wa_xfer *xfer) { int result; struct device *dev = &xfer->wa->usb_iface->dev; struct wa_xfer_abort_buffer *b; struct wa_rpipe *rpipe = xfer->ep->hcpriv; b = kmalloc(sizeof(*b), GFP_ATOMIC); if (b == NULL) goto error_kmalloc; b->cmd.bLength = sizeof(b->cmd); b->cmd.bRequestType = WA_XFER_ABORT; b->cmd.wRPipe = rpipe->descr.wRPipeIndex; b->cmd.dwTransferID = wa_xfer_id(xfer); usb_init_urb(&b->urb); usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev, usb_sndbulkpipe(xfer->wa->usb_dev, xfer->wa->dto_epd->bEndpointAddress), &b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b); result = usb_submit_urb(&b->urb, GFP_ATOMIC); if (result < 0) goto error_submit; return; /* callback frees! */ error_submit: if (printk_ratelimit()) dev_err(dev, "xfer %p: Can't submit abort request: %d\n", xfer, result); kfree(b); error_kmalloc: return; } /* * * @returns < 0 on error, transfer segment request size if ok */ static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer, enum wa_xfer_type *pxfer_type) { ssize_t result; struct device *dev = &xfer->wa->usb_iface->dev; size_t maxpktsize; struct urb *urb = xfer->urb; struct wa_rpipe *rpipe = xfer->ep->hcpriv; switch (rpipe->descr.bmAttribute & 0x3) { case USB_ENDPOINT_XFER_CONTROL: *pxfer_type = WA_XFER_TYPE_CTL; result = sizeof(struct wa_xfer_ctl); break; case USB_ENDPOINT_XFER_INT: case USB_ENDPOINT_XFER_BULK: *pxfer_type = WA_XFER_TYPE_BI; result = sizeof(struct wa_xfer_bi); break; case USB_ENDPOINT_XFER_ISOC: dev_err(dev, "FIXME: ISOC not implemented\n"); result = -ENOSYS; goto error; default: /* never happens */ BUG(); result = -EINVAL; /* shut gcc up */ }; xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0; xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0; xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks) * 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1); /* Compute the segment size and make sure it is a multiple of * the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of * a check (FIXME) */ maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize); if (xfer->seg_size < maxpktsize) { dev_err(dev, "HW BUG? seg_size %zu smaller than maxpktsize " "%zu\n", xfer->seg_size, maxpktsize); result = -EINVAL; goto error; } xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize; xfer->segs = (urb->transfer_buffer_length + xfer->seg_size - 1) / xfer->seg_size; if (xfer->segs >= WA_SEGS_MAX) { dev_err(dev, "BUG? ops, number of segments %d bigger than %d\n", (int)(urb->transfer_buffer_length / xfer->seg_size), WA_SEGS_MAX); result = -EINVAL; goto error; } if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL) xfer->segs = 1; error: return result; } /* Fill in the common request header and xfer-type specific data. */ static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer, struct wa_xfer_hdr *xfer_hdr0, enum wa_xfer_type xfer_type, size_t xfer_hdr_size) { struct wa_rpipe *rpipe = xfer->ep->hcpriv; xfer_hdr0 = &xfer->seg[0]->xfer_hdr; xfer_hdr0->bLength = xfer_hdr_size; xfer_hdr0->bRequestType = xfer_type; xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex; xfer_hdr0->dwTransferID = wa_xfer_id(xfer); xfer_hdr0->bTransferSegment = 0; switch (xfer_type) { case WA_XFER_TYPE_CTL: { struct wa_xfer_ctl *xfer_ctl = container_of(xfer_hdr0, struct wa_xfer_ctl, hdr); xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0; memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet, sizeof(xfer_ctl->baSetupData)); break; } case WA_XFER_TYPE_BI: break; case WA_XFER_TYPE_ISO: printk(KERN_ERR "FIXME: ISOC not implemented\n"); default: BUG(); }; } /* * Callback for the OUT data phase of the segment request * * Check wa_seg_cb(); most comments also apply here because this * function does almost the same thing and they work closely * together. * * If the seg request has failed but this DTO phase has succeeded, * wa_seg_cb() has already failed the segment and moved the * status to WA_SEG_ERROR, so this will go through 'case 0' and * effectively do nothing. */ static void wa_seg_dto_cb(struct urb *urb) { struct wa_seg *seg = urb->context; struct wa_xfer *xfer = seg->xfer; struct wahc *wa; struct device *dev; struct wa_rpipe *rpipe; unsigned long flags; unsigned rpipe_ready = 0; u8 done = 0; switch (urb->status) { case 0: spin_lock_irqsave(&xfer->lock, flags); wa = xfer->wa; dev = &wa->usb_iface->dev; dev_dbg(dev, "xfer %p#%u: data out done (%d bytes)\n", xfer, seg->index, urb->actual_length); if (seg->status < WA_SEG_PENDING) seg->status = WA_SEG_PENDING; seg->result = urb->actual_length; spin_unlock_irqrestore(&xfer->lock, flags); break; case -ECONNRESET: /* URB unlinked; no need to do anything */ case -ENOENT: /* as it was done by the who unlinked us */ break; default: /* Other errors ... */ spin_lock_irqsave(&xfer->lock, flags); wa = xfer->wa; dev = &wa->usb_iface->dev; rpipe = xfer->ep->hcpriv; dev_dbg(dev, "xfer %p#%u: data out error %d\n", xfer, seg->index, urb->status); if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)){ dev_err(dev, "DTO: URB max acceptable errors " "exceeded, resetting device\n"); wa_reset_all(wa); } if (seg->status != WA_SEG_ERROR) { seg->status = WA_SEG_ERROR; seg->result = urb->status; xfer->segs_done++; __wa_xfer_abort(xfer); rpipe_ready = rpipe_avail_inc(rpipe); done = __wa_xfer_is_done(xfer); } spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); } } /* * Callback for the segment request * * If successful transition state (unless already transitioned or * outbound transfer); otherwise, take a note of the error, mark this * segment done and try completion. * * Note we don't access until we are sure that the transfer hasn't * been cancelled (ECONNRESET, ENOENT), which could mean that * seg->xfer could be already gone. * * We have to check before setting the status to WA_SEG_PENDING * because sometimes the xfer result callback arrives before this * callback (geeeeeeze), so it might happen that we are already in * another state. As well, we don't set it if the transfer is inbound, * as in that case, wa_seg_dto_cb will do it when the OUT data phase * finishes. */ static void wa_seg_cb(struct urb *urb) { struct wa_seg *seg = urb->context; struct wa_xfer *xfer = seg->xfer; struct wahc *wa; struct device *dev; struct wa_rpipe *rpipe; unsigned long flags; unsigned rpipe_ready; u8 done = 0; switch (urb->status) { case 0: spin_lock_irqsave(&xfer->lock, flags); wa = xfer->wa; dev = &wa->usb_iface->dev; dev_dbg(dev, "xfer %p#%u: request done\n", xfer, seg->index); if (xfer->is_inbound && seg->status < WA_SEG_PENDING) seg->status = WA_SEG_PENDING; spin_unlock_irqrestore(&xfer->lock, flags); break; case -ECONNRESET: /* URB unlinked; no need to do anything */ case -ENOENT: /* as it was done by the who unlinked us */ break; default: /* Other errors ... */ spin_lock_irqsave(&xfer->lock, flags); wa = xfer->wa; dev = &wa->usb_iface->dev; rpipe = xfer->ep->hcpriv; if (printk_ratelimit()) dev_err(dev, "xfer %p#%u: request error %d\n", xfer, seg->index, urb->status); if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)){ dev_err(dev, "DTO: URB max acceptable errors " "exceeded, resetting device\n"); wa_reset_all(wa); } usb_unlink_urb(seg->dto_urb); seg->status = WA_SEG_ERROR; seg->result = urb->status; xfer->segs_done++; __wa_xfer_abort(xfer); rpipe_ready = rpipe_avail_inc(rpipe); done = __wa_xfer_is_done(xfer); spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); } } /* * Allocate the segs array and initialize each of them * * The segments are freed by wa_xfer_destroy() when the xfer use count * drops to zero; however, because each segment is given the same life * cycle as the USB URB it contains, it is actually freed by * usb_put_urb() on the contained USB URB (twisted, eh?). */ static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size) { int result, cnt; size_t alloc_size = sizeof(*xfer->seg[0]) - sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size; struct usb_device *usb_dev = xfer->wa->usb_dev; const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd; struct wa_seg *seg; size_t buf_itr, buf_size, buf_itr_size; result = -ENOMEM; xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC); if (xfer->seg == NULL) goto error_segs_kzalloc; buf_itr = 0; buf_size = xfer->urb->transfer_buffer_length; for (cnt = 0; cnt < xfer->segs; cnt++) { seg = xfer->seg[cnt] = kzalloc(alloc_size, GFP_ATOMIC); if (seg == NULL) goto error_seg_kzalloc; wa_seg_init(seg); seg->xfer = xfer; seg->index = cnt; usb_fill_bulk_urb(&seg->urb, usb_dev, usb_sndbulkpipe(usb_dev, dto_epd->bEndpointAddress), &seg->xfer_hdr, xfer_hdr_size, wa_seg_cb, seg); buf_itr_size = buf_size > xfer->seg_size ? xfer->seg_size : buf_size; if (xfer->is_inbound == 0 && buf_size > 0) { seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC); if (seg->dto_urb == NULL) goto error_dto_alloc; usb_fill_bulk_urb( seg->dto_urb, usb_dev, usb_sndbulkpipe(usb_dev, dto_epd->bEndpointAddress), NULL, 0, wa_seg_dto_cb, seg); if (xfer->is_dma) { seg->dto_urb->transfer_dma = xfer->urb->transfer_dma + buf_itr; seg->dto_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; } else seg->dto_urb->transfer_buffer = xfer->urb->transfer_buffer + buf_itr; seg->dto_urb->transfer_buffer_length = buf_itr_size; } seg->status = WA_SEG_READY; buf_itr += buf_itr_size; buf_size -= buf_itr_size; } return 0; error_dto_alloc: kfree(xfer->seg[cnt]); cnt--; error_seg_kzalloc: /* use the fact that cnt is left at were it failed */ for (; cnt >= 0; cnt--) { if (xfer->seg[cnt] && xfer->is_inbound == 0) usb_free_urb(xfer->seg[cnt]->dto_urb); kfree(xfer->seg[cnt]); } error_segs_kzalloc: return result; } /* * Allocates all the stuff needed to submit a transfer * * Breaks the whole data buffer in a list of segments, each one has a * structure allocated to it and linked in xfer->seg[index] * * FIXME: merge setup_segs() and the last part of this function, no * need to do two for loops when we could run everything in a * single one */ static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb) { int result; struct device *dev = &xfer->wa->usb_iface->dev; enum wa_xfer_type xfer_type = 0; /* shut up GCC */ size_t xfer_hdr_size, cnt, transfer_size; struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr; result = __wa_xfer_setup_sizes(xfer, &xfer_type); if (result < 0) goto error_setup_sizes; xfer_hdr_size = result; result = __wa_xfer_setup_segs(xfer, xfer_hdr_size); if (result < 0) { dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n", xfer, xfer->segs, result); goto error_setup_segs; } /* Fill the first header */ xfer_hdr0 = &xfer->seg[0]->xfer_hdr; wa_xfer_id_init(xfer); __wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size); /* Fill remainig headers */ xfer_hdr = xfer_hdr0; transfer_size = urb->transfer_buffer_length; xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ? xfer->seg_size : transfer_size; transfer_size -= xfer->seg_size; for (cnt = 1; cnt < xfer->segs; cnt++) { xfer_hdr = &xfer->seg[cnt]->xfer_hdr; memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size); xfer_hdr->bTransferSegment = cnt; xfer_hdr->dwTransferLength = transfer_size > xfer->seg_size ? cpu_to_le32(xfer->seg_size) : cpu_to_le32(transfer_size); xfer->seg[cnt]->status = WA_SEG_READY; transfer_size -= xfer->seg_size; } xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */ result = 0; error_setup_segs: error_setup_sizes: return result; } /* * * * rpipe->seg_lock is held! */ static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer, struct wa_seg *seg) { int result; result = usb_submit_urb(&seg->urb, GFP_ATOMIC); if (result < 0) { printk(KERN_ERR "xfer %p#%u: REQ submit failed: %d\n", xfer, seg->index, result); goto error_seg_submit; } if (seg->dto_urb) { result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC); if (result < 0) { printk(KERN_ERR "xfer %p#%u: DTO submit failed: %d\n", xfer, seg->index, result); goto error_dto_submit; } } seg->status = WA_SEG_SUBMITTED; rpipe_avail_dec(rpipe); return 0; error_dto_submit: usb_unlink_urb(&seg->urb); error_seg_submit: seg->status = WA_SEG_ERROR; seg->result = result; return result; } /* * Execute more queued request segments until the maximum concurrent allowed * * The ugly unlock/lock sequence on the error path is needed as the * xfer->lock normally nests the seg_lock and not viceversa. * */ static void wa_xfer_delayed_run(struct wa_rpipe *rpipe) { int result; struct device *dev = &rpipe->wa->usb_iface->dev; struct wa_seg *seg; struct wa_xfer *xfer; unsigned long flags; spin_lock_irqsave(&rpipe->seg_lock, flags); while (atomic_read(&rpipe->segs_available) > 0 && !list_empty(&rpipe->seg_list)) { seg = list_entry(rpipe->seg_list.next, struct wa_seg, list_node); list_del(&seg->list_node); xfer = seg->xfer; result = __wa_seg_submit(rpipe, xfer, seg); dev_dbg(dev, "xfer %p#%u submitted from delayed [%d segments available] %d\n", xfer, seg->index, atomic_read(&rpipe->segs_available), result); if (unlikely(result < 0)) { spin_unlock_irqrestore(&rpipe->seg_lock, flags); spin_lock_irqsave(&xfer->lock, flags); __wa_xfer_abort(xfer); xfer->segs_done++; spin_unlock_irqrestore(&xfer->lock, flags); spin_lock_irqsave(&rpipe->seg_lock, flags); } } spin_unlock_irqrestore(&rpipe->seg_lock, flags); } /* * * xfer->lock is taken * * On failure submitting we just stop submitting and return error; * wa_urb_enqueue_b() will execute the completion path */ static int __wa_xfer_submit(struct wa_xfer *xfer) { int result; struct wahc *wa = xfer->wa; struct device *dev = &wa->usb_iface->dev; unsigned cnt; struct wa_seg *seg; unsigned long flags; struct wa_rpipe *rpipe = xfer->ep->hcpriv; size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests); u8 available; u8 empty; spin_lock_irqsave(&wa->xfer_list_lock, flags); list_add_tail(&xfer->list_node, &wa->xfer_list); spin_unlock_irqrestore(&wa->xfer_list_lock, flags); BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests); result = 0; spin_lock_irqsave(&rpipe->seg_lock, flags); for (cnt = 0; cnt < xfer->segs; cnt++) { available = atomic_read(&rpipe->segs_available); empty = list_empty(&rpipe->seg_list); seg = xfer->seg[cnt]; dev_dbg(dev, "xfer %p#%u: available %u empty %u (%s)\n", xfer, cnt, available, empty, available == 0 || !empty ? "delayed" : "submitted"); if (available == 0 || !empty) { dev_dbg(dev, "xfer %p#%u: delayed\n", xfer, cnt); seg->status = WA_SEG_DELAYED; list_add_tail(&seg->list_node, &rpipe->seg_list); } else { result = __wa_seg_submit(rpipe, xfer, seg); if (result < 0) { __wa_xfer_abort(xfer); goto error_seg_submit; } } xfer->segs_submitted++; } error_seg_submit: spin_unlock_irqrestore(&rpipe->seg_lock, flags); return result; } /* * Second part of a URB/transfer enqueuement * * Assumes this comes from wa_urb_enqueue() [maybe through * wa_urb_enqueue_run()]. At this point: * * xfer->wa filled and refcounted * xfer->ep filled with rpipe refcounted if * delayed == 0 * xfer->urb filled and refcounted (this is the case when called * from wa_urb_enqueue() as we come from usb_submit_urb() * and when called by wa_urb_enqueue_run(), as we took an * extra ref dropped by _run() after we return). * xfer->gfp filled * * If we fail at __wa_xfer_submit(), then we just check if we are done * and if so, we run the completion procedure. However, if we are not * yet done, we do nothing and wait for the completion handlers from * the submitted URBs or from the xfer-result path to kick in. If xfer * result never kicks in, the xfer will timeout from the USB code and * dequeue() will be called. */ static void wa_urb_enqueue_b(struct wa_xfer *xfer) { int result; unsigned long flags; struct urb *urb = xfer->urb; struct wahc *wa = xfer->wa; struct wusbhc *wusbhc = wa->wusb; struct wusb_dev *wusb_dev; unsigned done; result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp); if (result < 0) goto error_rpipe_get; result = -ENODEV; /* FIXME: segmentation broken -- kills DWA */ mutex_lock(&wusbhc->mutex); /* get a WUSB dev */ if (urb->dev == NULL) { mutex_unlock(&wusbhc->mutex); goto error_dev_gone; } wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev); if (wusb_dev == NULL) { mutex_unlock(&wusbhc->mutex); goto error_dev_gone; } mutex_unlock(&wusbhc->mutex); spin_lock_irqsave(&xfer->lock, flags); xfer->wusb_dev = wusb_dev; result = urb->status; if (urb->status != -EINPROGRESS) goto error_dequeued; result = __wa_xfer_setup(xfer, urb); if (result < 0) goto error_xfer_setup; result = __wa_xfer_submit(xfer); if (result < 0) goto error_xfer_submit; spin_unlock_irqrestore(&xfer->lock, flags); return; /* this is basically wa_xfer_completion() broken up wa_xfer_giveback() * does a wa_xfer_put() that will call wa_xfer_destroy() and clean * upundo setup(). */ error_xfer_setup: error_dequeued: spin_unlock_irqrestore(&xfer->lock, flags); /* FIXME: segmentation broken, kills DWA */ if (wusb_dev) wusb_dev_put(wusb_dev); error_dev_gone: rpipe_put(xfer->ep->hcpriv); error_rpipe_get: xfer->result = result; wa_xfer_giveback(xfer); return; error_xfer_submit: done = __wa_xfer_is_done(xfer); xfer->result = result; spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); } /* * Execute the delayed transfers in the Wire Adapter @wa * * We need to be careful here, as dequeue() could be called in the * middle. That's why we do the whole thing under the * wa->xfer_list_lock. If dequeue() jumps in, it first locks urb->lock * and then checks the list -- so as we would be acquiring in inverse * order, we just drop the lock once we have the xfer and reacquire it * later. */ void wa_urb_enqueue_run(struct work_struct *ws) { struct wahc *wa = container_of(ws, struct wahc, xfer_work); struct wa_xfer *xfer, *next; struct urb *urb; spin_lock_irq(&wa->xfer_list_lock); list_for_each_entry_safe(xfer, next, &wa->xfer_delayed_list, list_node) { list_del_init(&xfer->list_node); spin_unlock_irq(&wa->xfer_list_lock); urb = xfer->urb; wa_urb_enqueue_b(xfer); usb_put_urb(urb); /* taken when queuing */ spin_lock_irq(&wa->xfer_list_lock); } spin_unlock_irq(&wa->xfer_list_lock); } EXPORT_SYMBOL_GPL(wa_urb_enqueue_run); /* * Submit a transfer to the Wire Adapter in a delayed way * * The process of enqueuing involves possible sleeps() [see * enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are * in an atomic section, we defer the enqueue_b() call--else we call direct. * * @urb: We own a reference to it done by the HCI Linux USB stack that * will be given up by calling usb_hcd_giveback_urb() or by * returning error from this function -> ergo we don't have to * refcount it. */ int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep, struct urb *urb, gfp_t gfp) { int result; struct device *dev = &wa->usb_iface->dev; struct wa_xfer *xfer; unsigned long my_flags; unsigned cant_sleep = irqs_disabled() | in_atomic(); if (urb->transfer_buffer == NULL && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) && urb->transfer_buffer_length != 0) { dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb); dump_stack(); } result = -ENOMEM; xfer = kzalloc(sizeof(*xfer), gfp); if (xfer == NULL) goto error_kmalloc; result = -ENOENT; if (urb->status != -EINPROGRESS) /* cancelled */ goto error_dequeued; /* before starting? */ wa_xfer_init(xfer); xfer->wa = wa_get(wa); xfer->urb = urb; xfer->gfp = gfp; xfer->ep = ep; urb->hcpriv = xfer; dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n", xfer, urb, urb->pipe, urb->transfer_buffer_length, urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma", urb->pipe & USB_DIR_IN ? "inbound" : "outbound", cant_sleep ? "deferred" : "inline"); if (cant_sleep) { usb_get_urb(urb); spin_lock_irqsave(&wa->xfer_list_lock, my_flags); list_add_tail(&xfer->list_node, &wa->xfer_delayed_list); spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags); queue_work(wusbd, &wa->xfer_work); } else { wa_urb_enqueue_b(xfer); } return 0; error_dequeued: kfree(xfer); error_kmalloc: return result; } EXPORT_SYMBOL_GPL(wa_urb_enqueue); /* * Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion * handler] is called. * * Until a transfer goes successfully through wa_urb_enqueue() it * needs to be dequeued with completion calling; when stuck in delayed * or before wa_xfer_setup() is called, we need to do completion. * * not setup If there is no hcpriv yet, that means that that enqueue * still had no time to set the xfer up. Because * urb->status should be other than -EINPROGRESS, * enqueue() will catch that and bail out. * * If the transfer has gone through setup, we just need to clean it * up. If it has gone through submit(), we have to abort it [with an * asynch request] and then make sure we cancel each segment. * */ int wa_urb_dequeue(struct wahc *wa, struct urb *urb) { unsigned long flags, flags2; struct wa_xfer *xfer; struct wa_seg *seg; struct wa_rpipe *rpipe; unsigned cnt; unsigned rpipe_ready = 0; xfer = urb->hcpriv; if (xfer == NULL) { /* NOthing setup yet enqueue will see urb->status != * -EINPROGRESS (by hcd layer) and bail out with * error, no need to do completion */ BUG_ON(urb->status == -EINPROGRESS); goto out; } spin_lock_irqsave(&xfer->lock, flags); rpipe = xfer->ep->hcpriv; /* Check the delayed list -> if there, release and complete */ spin_lock_irqsave(&wa->xfer_list_lock, flags2); if (!list_empty(&xfer->list_node) && xfer->seg == NULL) goto dequeue_delayed; spin_unlock_irqrestore(&wa->xfer_list_lock, flags2); if (xfer->seg == NULL) /* still hasn't reached */ goto out_unlock; /* setup(), enqueue_b() completes */ /* Ok, the xfer is in flight already, it's been setup and submitted.*/ __wa_xfer_abort(xfer); for (cnt = 0; cnt < xfer->segs; cnt++) { seg = xfer->seg[cnt]; switch (seg->status) { case WA_SEG_NOTREADY: case WA_SEG_READY: printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n", xfer, cnt, seg->status); WARN_ON(1); break; case WA_SEG_DELAYED: seg->status = WA_SEG_ABORTED; spin_lock_irqsave(&rpipe->seg_lock, flags2); list_del(&seg->list_node); xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); spin_unlock_irqrestore(&rpipe->seg_lock, flags2); break; case WA_SEG_SUBMITTED: seg->status = WA_SEG_ABORTED; usb_unlink_urb(&seg->urb); if (xfer->is_inbound == 0) usb_unlink_urb(seg->dto_urb); xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); break; case WA_SEG_PENDING: seg->status = WA_SEG_ABORTED; xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); break; case WA_SEG_DTI_PENDING: usb_unlink_urb(wa->dti_urb); seg->status = WA_SEG_ABORTED; xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); break; case WA_SEG_DONE: case WA_SEG_ERROR: case WA_SEG_ABORTED: break; } } xfer->result = urb->status; /* -ENOENT or -ECONNRESET */ __wa_xfer_is_done(xfer); spin_unlock_irqrestore(&xfer->lock, flags); wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); return 0; out_unlock: spin_unlock_irqrestore(&xfer->lock, flags); out: return 0; dequeue_delayed: list_del_init(&xfer->list_node); spin_unlock_irqrestore(&wa->xfer_list_lock, flags2); xfer->result = urb->status; spin_unlock_irqrestore(&xfer->lock, flags); wa_xfer_giveback(xfer); usb_put_urb(urb); /* we got a ref in enqueue() */ return 0; } EXPORT_SYMBOL_GPL(wa_urb_dequeue); /* * Translation from WA status codes (WUSB1.0 Table 8.15) to errno * codes * * Positive errno values are internal inconsistencies and should be * flagged louder. Negative are to be passed up to the user in the * normal way. * * @status: USB WA status code -- high two bits are stripped. */ static int wa_xfer_status_to_errno(u8 status) { int errno; u8 real_status = status; static int xlat[] = { [WA_XFER_STATUS_SUCCESS] = 0, [WA_XFER_STATUS_HALTED] = -EPIPE, [WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS, [WA_XFER_STATUS_BABBLE] = -EOVERFLOW, [WA_XFER_RESERVED] = EINVAL, [WA_XFER_STATUS_NOT_FOUND] = 0, [WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM, [WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ, [WA_XFER_STATUS_ABORTED] = -EINTR, [WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL, [WA_XFER_INVALID_FORMAT] = EINVAL, [WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL, [WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL, }; status &= 0x3f; if (status == 0) return 0; if (status >= ARRAY_SIZE(xlat)) { printk_ratelimited(KERN_ERR "%s(): BUG? " "Unknown WA transfer status 0x%02x\n", __func__, real_status); return -EINVAL; } errno = xlat[status]; if (unlikely(errno > 0)) { printk_ratelimited(KERN_ERR "%s(): BUG? " "Inconsistent WA status: 0x%02x\n", __func__, real_status); errno = -errno; } return errno; } /* * Process a xfer result completion message * * inbound transfers: need to schedule a DTI read * * FIXME: this functio needs to be broken up in parts */ static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer) { int result; struct device *dev = &wa->usb_iface->dev; unsigned long flags; u8 seg_idx; struct wa_seg *seg; struct wa_rpipe *rpipe; struct wa_xfer_result *xfer_result = wa->xfer_result; u8 done = 0; u8 usb_status; unsigned rpipe_ready = 0; spin_lock_irqsave(&xfer->lock, flags); seg_idx = xfer_result->bTransferSegment & 0x7f; if (unlikely(seg_idx >= xfer->segs)) goto error_bad_seg; seg = xfer->seg[seg_idx]; rpipe = xfer->ep->hcpriv; usb_status = xfer_result->bTransferStatus; dev_dbg(dev, "xfer %p#%u: bTransferStatus 0x%02x (seg %u)\n", xfer, seg_idx, usb_status, seg->status); if (seg->status == WA_SEG_ABORTED || seg->status == WA_SEG_ERROR) /* already handled */ goto segment_aborted; if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */ seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */ if (seg->status != WA_SEG_PENDING) { if (printk_ratelimit()) dev_err(dev, "xfer %p#%u: Bad segment state %u\n", xfer, seg_idx, seg->status); seg->status = WA_SEG_PENDING; /* workaround/"fix" it */ } if (usb_status & 0x80) { seg->result = wa_xfer_status_to_errno(usb_status); dev_err(dev, "DTI: xfer %p#%u failed (0x%02x)\n", xfer, seg->index, usb_status); goto error_complete; } /* FIXME: we ignore warnings, tally them for stats */ if (usb_status & 0x40) /* Warning?... */ usb_status = 0; /* ... pass */ if (xfer->is_inbound) { /* IN data phase: read to buffer */ seg->status = WA_SEG_DTI_PENDING; BUG_ON(wa->buf_in_urb->status == -EINPROGRESS); if (xfer->is_dma) { wa->buf_in_urb->transfer_dma = xfer->urb->transfer_dma + seg_idx * xfer->seg_size; wa->buf_in_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; } else { wa->buf_in_urb->transfer_buffer = xfer->urb->transfer_buffer + seg_idx * xfer->seg_size; wa->buf_in_urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP; } wa->buf_in_urb->transfer_buffer_length = le32_to_cpu(xfer_result->dwTransferLength); wa->buf_in_urb->context = seg; result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC); if (result < 0) goto error_submit_buf_in; } else { /* OUT data phase, complete it -- */ seg->status = WA_SEG_DONE; seg->result = le32_to_cpu(xfer_result->dwTransferLength); xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); done = __wa_xfer_is_done(xfer); } spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); return; error_submit_buf_in: if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { dev_err(dev, "DTI: URB max acceptable errors " "exceeded, resetting device\n"); wa_reset_all(wa); } if (printk_ratelimit()) dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n", xfer, seg_idx, result); seg->result = result; error_complete: seg->status = WA_SEG_ERROR; xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); __wa_xfer_abort(xfer); done = __wa_xfer_is_done(xfer); spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); return; error_bad_seg: spin_unlock_irqrestore(&xfer->lock, flags); wa_urb_dequeue(wa, xfer->urb); if (printk_ratelimit()) dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx); if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { dev_err(dev, "DTI: URB max acceptable errors " "exceeded, resetting device\n"); wa_reset_all(wa); } return; segment_aborted: /* nothing to do, as the aborter did the completion */ spin_unlock_irqrestore(&xfer->lock, flags); } /* * Callback for the IN data phase * * If successful transition state; otherwise, take a note of the * error, mark this segment done and try completion. * * Note we don't access until we are sure that the transfer hasn't * been cancelled (ECONNRESET, ENOENT), which could mean that * seg->xfer could be already gone. */ static void wa_buf_in_cb(struct urb *urb) { struct wa_seg *seg = urb->context; struct wa_xfer *xfer = seg->xfer; struct wahc *wa; struct device *dev; struct wa_rpipe *rpipe; unsigned rpipe_ready; unsigned long flags; u8 done = 0; switch (urb->status) { case 0: spin_lock_irqsave(&xfer->lock, flags); wa = xfer->wa; dev = &wa->usb_iface->dev; rpipe = xfer->ep->hcpriv; dev_dbg(dev, "xfer %p#%u: data in done (%zu bytes)\n", xfer, seg->index, (size_t)urb->actual_length); seg->status = WA_SEG_DONE; seg->result = urb->actual_length; xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); done = __wa_xfer_is_done(xfer); spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); break; case -ECONNRESET: /* URB unlinked; no need to do anything */ case -ENOENT: /* as it was done by the who unlinked us */ break; default: /* Other errors ... */ spin_lock_irqsave(&xfer->lock, flags); wa = xfer->wa; dev = &wa->usb_iface->dev; rpipe = xfer->ep->hcpriv; if (printk_ratelimit()) dev_err(dev, "xfer %p#%u: data in error %d\n", xfer, seg->index, urb->status); if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)){ dev_err(dev, "DTO: URB max acceptable errors " "exceeded, resetting device\n"); wa_reset_all(wa); } seg->status = WA_SEG_ERROR; seg->result = urb->status; xfer->segs_done++; rpipe_ready = rpipe_avail_inc(rpipe); __wa_xfer_abort(xfer); done = __wa_xfer_is_done(xfer); spin_unlock_irqrestore(&xfer->lock, flags); if (done) wa_xfer_completion(xfer); if (rpipe_ready) wa_xfer_delayed_run(rpipe); } } /* * Handle an incoming transfer result buffer * * Given a transfer result buffer, it completes the transfer (possibly * scheduling and buffer in read) and then resubmits the DTI URB for a * new transfer result read. * * * The xfer_result DTI URB state machine * * States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In) * * We start in OFF mode, the first xfer_result notification [through * wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to * read. * * We receive a buffer -- if it is not a xfer_result, we complain and * repost the DTI-URB. If it is a xfer_result then do the xfer seg * request accounting. If it is an IN segment, we move to RBI and post * a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will * repost the DTI-URB and move to RXR state. if there was no IN * segment, it will repost the DTI-URB. * * We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many * errors) in the URBs. */ static void wa_xfer_result_cb(struct urb *urb) { int result; struct wahc *wa = urb->context; struct device *dev = &wa->usb_iface->dev; struct wa_xfer_result *xfer_result; u32 xfer_id; struct wa_xfer *xfer; u8 usb_status; BUG_ON(wa->dti_urb != urb); switch (wa->dti_urb->status) { case 0: /* We have a xfer result buffer; check it */ dev_dbg(dev, "DTI: xfer result %d bytes at %p\n", urb->actual_length, urb->transfer_buffer); if (wa->dti_urb->actual_length != sizeof(*xfer_result)) { dev_err(dev, "DTI Error: xfer result--bad size " "xfer result (%d bytes vs %zu needed)\n", urb->actual_length, sizeof(*xfer_result)); break; } xfer_result = wa->xfer_result; if (xfer_result->hdr.bLength != sizeof(*xfer_result)) { dev_err(dev, "DTI Error: xfer result--" "bad header length %u\n", xfer_result->hdr.bLength); break; } if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) { dev_err(dev, "DTI Error: xfer result--" "bad header type 0x%02x\n", xfer_result->hdr.bNotifyType); break; } usb_status = xfer_result->bTransferStatus & 0x3f; if (usb_status == WA_XFER_STATUS_ABORTED || usb_status == WA_XFER_STATUS_NOT_FOUND) /* taken care of already */ break; xfer_id = xfer_result->dwTransferID; xfer = wa_xfer_get_by_id(wa, xfer_id); if (xfer == NULL) { /* FIXME: transaction might have been cancelled */ dev_err(dev, "DTI Error: xfer result--" "unknown xfer 0x%08x (status 0x%02x)\n", xfer_id, usb_status); break; } wa_xfer_result_chew(wa, xfer); wa_xfer_put(xfer); break; case -ENOENT: /* (we killed the URB)...so, no broadcast */ case -ESHUTDOWN: /* going away! */ dev_dbg(dev, "DTI: going down! %d\n", urb->status); goto out; default: /* Unknown error */ if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { dev_err(dev, "DTI: URB max acceptable errors " "exceeded, resetting device\n"); wa_reset_all(wa); goto out; } if (printk_ratelimit()) dev_err(dev, "DTI: URB error %d\n", urb->status); break; } /* Resubmit the DTI URB */ result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC); if (result < 0) { dev_err(dev, "DTI Error: Could not submit DTI URB (%d), " "resetting\n", result); wa_reset_all(wa); } out: return; } /* * Transfer complete notification * * Called from the notif.c code. We get a notification on EP2 saying * that some endpoint has some transfer result data available. We are * about to read it. * * To speed up things, we always have a URB reading the DTI URB; we * don't really set it up and start it until the first xfer complete * notification arrives, which is what we do here. * * Follow up in wa_xfer_result_cb(), as that's where the whole state * machine starts. * * So here we just initialize the DTI URB for reading transfer result * notifications and also the buffer-in URB, for reading buffers. Then * we just submit the DTI URB. * * @wa shall be referenced */ void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr) { int result; struct device *dev = &wa->usb_iface->dev; struct wa_notif_xfer *notif_xfer; const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd; notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr); BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER); if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) { /* FIXME: hardcoded limitation, adapt */ dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n", notif_xfer->bEndpoint, dti_epd->bEndpointAddress); goto error; } if (wa->dti_urb != NULL) /* DTI URB already started */ goto out; wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL); if (wa->dti_urb == NULL) { dev_err(dev, "Can't allocate DTI URB\n"); goto error_dti_urb_alloc; } usb_fill_bulk_urb( wa->dti_urb, wa->usb_dev, usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint), wa->xfer_result, wa->xfer_result_size, wa_xfer_result_cb, wa); wa->buf_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (wa->buf_in_urb == NULL) { dev_err(dev, "Can't allocate BUF-IN URB\n"); goto error_buf_in_urb_alloc; } usb_fill_bulk_urb( wa->buf_in_urb, wa->usb_dev, usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint), NULL, 0, wa_buf_in_cb, wa); result = usb_submit_urb(wa->dti_urb, GFP_KERNEL); if (result < 0) { dev_err(dev, "DTI Error: Could not submit DTI URB (%d), " "resetting\n", result); goto error_dti_urb_submit; } out: return; error_dti_urb_submit: usb_put_urb(wa->buf_in_urb); error_buf_in_urb_alloc: usb_put_urb(wa->dti_urb); wa->dti_urb = NULL; error_dti_urb_alloc: error: wa_reset_all(wa); }