/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * MMU support * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include #include #include #include #include #include "vmx.h" #include "kvm.h" #undef MMU_DEBUG #undef AUDIT #ifdef AUDIT static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg); #else static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} #endif #ifdef MMU_DEBUG #define pgprintk(x...) do { if (dbg) printk(x); } while (0) #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) #else #define pgprintk(x...) do { } while (0) #define rmap_printk(x...) do { } while (0) #endif #if defined(MMU_DEBUG) || defined(AUDIT) static int dbg = 1; #endif #ifndef MMU_DEBUG #define ASSERT(x) do { } while (0) #else #define ASSERT(x) \ if (!(x)) { \ printk(KERN_WARNING "assertion failed %s:%d: %s\n", \ __FILE__, __LINE__, #x); \ } #endif #define PT64_PT_BITS 9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) #define PT32_PT_BITS 10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) #define PT_WRITABLE_SHIFT 1 #define PT_PRESENT_MASK (1ULL << 0) #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) #define PT_USER_MASK (1ULL << 2) #define PT_PWT_MASK (1ULL << 3) #define PT_PCD_MASK (1ULL << 4) #define PT_ACCESSED_MASK (1ULL << 5) #define PT_DIRTY_MASK (1ULL << 6) #define PT_PAGE_SIZE_MASK (1ULL << 7) #define PT_PAT_MASK (1ULL << 7) #define PT_GLOBAL_MASK (1ULL << 8) #define PT64_NX_MASK (1ULL << 63) #define PT_PAT_SHIFT 7 #define PT_DIR_PAT_SHIFT 12 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) #define PT32_DIR_PSE36_SIZE 4 #define PT32_DIR_PSE36_SHIFT 13 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) #define PT32_PTE_COPY_MASK \ (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK) #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK) #define PT_FIRST_AVAIL_BITS_SHIFT 9 #define PT64_SECOND_AVAIL_BITS_SHIFT 52 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1) #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT) #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1) #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT)) #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT) #define VALID_PAGE(x) ((x) != INVALID_PAGE) #define PT64_LEVEL_BITS 9 #define PT64_LEVEL_SHIFT(level) \ ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS ) #define PT64_LEVEL_MASK(level) \ (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) #define PT64_INDEX(address, level)\ (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) #define PT32_LEVEL_BITS 10 #define PT32_LEVEL_SHIFT(level) \ ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS ) #define PT32_LEVEL_MASK(level) \ (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) #define PT32_INDEX(address, level)\ (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) #define PT64_DIR_BASE_ADDR_MASK \ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) #define PT32_BASE_ADDR_MASK PAGE_MASK #define PT32_DIR_BASE_ADDR_MASK \ (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) #define PFERR_PRESENT_MASK (1U << 0) #define PFERR_WRITE_MASK (1U << 1) #define PFERR_USER_MASK (1U << 2) #define PFERR_FETCH_MASK (1U << 4) #define PT64_ROOT_LEVEL 4 #define PT32_ROOT_LEVEL 2 #define PT32E_ROOT_LEVEL 3 #define PT_DIRECTORY_LEVEL 2 #define PT_PAGE_TABLE_LEVEL 1 #define RMAP_EXT 4 struct kvm_rmap_desc { u64 *shadow_ptes[RMAP_EXT]; struct kvm_rmap_desc *more; }; static struct kmem_cache *pte_chain_cache; static struct kmem_cache *rmap_desc_cache; static struct kmem_cache *mmu_page_cache; static struct kmem_cache *mmu_page_header_cache; static int is_write_protection(struct kvm_vcpu *vcpu) { return vcpu->cr0 & CR0_WP_MASK; } static int is_cpuid_PSE36(void) { return 1; } static int is_nx(struct kvm_vcpu *vcpu) { return vcpu->shadow_efer & EFER_NX; } static int is_present_pte(unsigned long pte) { return pte & PT_PRESENT_MASK; } static int is_writeble_pte(unsigned long pte) { return pte & PT_WRITABLE_MASK; } static int is_io_pte(unsigned long pte) { return pte & PT_SHADOW_IO_MARK; } static int is_rmap_pte(u64 pte) { return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK)) == (PT_WRITABLE_MASK | PT_PRESENT_MASK); } static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, struct kmem_cache *base_cache, int min, gfp_t gfp_flags) { void *obj; if (cache->nobjs >= min) return 0; while (cache->nobjs < ARRAY_SIZE(cache->objects)) { obj = kmem_cache_zalloc(base_cache, gfp_flags); if (!obj) return -ENOMEM; cache->objects[cache->nobjs++] = obj; } return 0; } static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) { while (mc->nobjs) kfree(mc->objects[--mc->nobjs]); } static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags) { int r; r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache, pte_chain_cache, 4, gfp_flags); if (r) goto out; r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache, rmap_desc_cache, 1, gfp_flags); if (r) goto out; r = mmu_topup_memory_cache(&vcpu->mmu_page_cache, mmu_page_cache, 4, gfp_flags); if (r) goto out; r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache, mmu_page_header_cache, 4, gfp_flags); out: return r; } static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) { int r; r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT); if (r < 0) { spin_unlock(&vcpu->kvm->lock); kvm_arch_ops->vcpu_put(vcpu); r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL); kvm_arch_ops->vcpu_load(vcpu); spin_lock(&vcpu->kvm->lock); } return r; } static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) { mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache); mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache); mmu_free_memory_cache(&vcpu->mmu_page_cache); mmu_free_memory_cache(&vcpu->mmu_page_header_cache); } static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, size_t size) { void *p; BUG_ON(!mc->nobjs); p = mc->objects[--mc->nobjs]; memset(p, 0, size); return p; } static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj) { if (mc->nobjs < KVM_NR_MEM_OBJS) mc->objects[mc->nobjs++] = obj; else kfree(obj); } static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) { return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache, sizeof(struct kvm_pte_chain)); } static void mmu_free_pte_chain(struct kvm_vcpu *vcpu, struct kvm_pte_chain *pc) { mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc); } static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) { return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache, sizeof(struct kvm_rmap_desc)); } static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu, struct kvm_rmap_desc *rd) { mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd); } /* * Reverse mapping data structures: * * If page->private bit zero is zero, then page->private points to the * shadow page table entry that points to page_address(page). * * If page->private bit zero is one, (then page->private & ~1) points * to a struct kvm_rmap_desc containing more mappings. */ static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte) { struct page *page; struct kvm_rmap_desc *desc; int i; if (!is_rmap_pte(*spte)) return; page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); if (!page_private(page)) { rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); set_page_private(page,(unsigned long)spte); } else if (!(page_private(page) & 1)) { rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); desc = mmu_alloc_rmap_desc(vcpu); desc->shadow_ptes[0] = (u64 *)page_private(page); desc->shadow_ptes[1] = spte; set_page_private(page,(unsigned long)desc | 1); } else { rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul); while (desc->shadow_ptes[RMAP_EXT-1] && desc->more) desc = desc->more; if (desc->shadow_ptes[RMAP_EXT-1]) { desc->more = mmu_alloc_rmap_desc(vcpu); desc = desc->more; } for (i = 0; desc->shadow_ptes[i]; ++i) ; desc->shadow_ptes[i] = spte; } } static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu, struct page *page, struct kvm_rmap_desc *desc, int i, struct kvm_rmap_desc *prev_desc) { int j; for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j) ; desc->shadow_ptes[i] = desc->shadow_ptes[j]; desc->shadow_ptes[j] = NULL; if (j != 0) return; if (!prev_desc && !desc->more) set_page_private(page,(unsigned long)desc->shadow_ptes[0]); else if (prev_desc) prev_desc->more = desc->more; else set_page_private(page,(unsigned long)desc->more | 1); mmu_free_rmap_desc(vcpu, desc); } static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte) { struct page *page; struct kvm_rmap_desc *desc; struct kvm_rmap_desc *prev_desc; int i; if (!is_rmap_pte(*spte)) return; page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); if (!page_private(page)) { printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte); BUG(); } else if (!(page_private(page) & 1)) { rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte); if ((u64 *)page_private(page) != spte) { printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n", spte, *spte); BUG(); } set_page_private(page,0); } else { rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte); desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul); prev_desc = NULL; while (desc) { for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) if (desc->shadow_ptes[i] == spte) { rmap_desc_remove_entry(vcpu, page, desc, i, prev_desc); return; } prev_desc = desc; desc = desc->more; } BUG(); } } static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) { struct kvm *kvm = vcpu->kvm; struct page *page; struct kvm_rmap_desc *desc; u64 *spte; page = gfn_to_page(kvm, gfn); BUG_ON(!page); while (page_private(page)) { if (!(page_private(page) & 1)) spte = (u64 *)page_private(page); else { desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul); spte = desc->shadow_ptes[0]; } BUG_ON(!spte); BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT != page_to_pfn(page)); BUG_ON(!(*spte & PT_PRESENT_MASK)); BUG_ON(!(*spte & PT_WRITABLE_MASK)); rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); rmap_remove(vcpu, spte); kvm_arch_ops->tlb_flush(vcpu); *spte &= ~(u64)PT_WRITABLE_MASK; } } #ifdef MMU_DEBUG static int is_empty_shadow_page(u64 *spt) { u64 *pos; u64 *end; for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) if (*pos != 0) { printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__, pos, *pos); return 0; } return 1; } #endif static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page_head) { ASSERT(is_empty_shadow_page(page_head->spt)); list_del(&page_head->link); mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt); mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head); ++vcpu->kvm->n_free_mmu_pages; } static unsigned kvm_page_table_hashfn(gfn_t gfn) { return gfn; } static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, u64 *parent_pte) { struct kvm_mmu_page *page; if (!vcpu->kvm->n_free_mmu_pages) return NULL; page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache, sizeof *page); page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE); set_page_private(virt_to_page(page->spt), (unsigned long)page); list_add(&page->link, &vcpu->kvm->active_mmu_pages); ASSERT(is_empty_shadow_page(page->spt)); page->slot_bitmap = 0; page->multimapped = 0; page->parent_pte = parent_pte; --vcpu->kvm->n_free_mmu_pages; return page; } static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, u64 *parent_pte) { struct kvm_pte_chain *pte_chain; struct hlist_node *node; int i; if (!parent_pte) return; if (!page->multimapped) { u64 *old = page->parent_pte; if (!old) { page->parent_pte = parent_pte; return; } page->multimapped = 1; pte_chain = mmu_alloc_pte_chain(vcpu); INIT_HLIST_HEAD(&page->parent_ptes); hlist_add_head(&pte_chain->link, &page->parent_ptes); pte_chain->parent_ptes[0] = old; } hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) { if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) continue; for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) if (!pte_chain->parent_ptes[i]) { pte_chain->parent_ptes[i] = parent_pte; return; } } pte_chain = mmu_alloc_pte_chain(vcpu); BUG_ON(!pte_chain); hlist_add_head(&pte_chain->link, &page->parent_ptes); pte_chain->parent_ptes[0] = parent_pte; } static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, u64 *parent_pte) { struct kvm_pte_chain *pte_chain; struct hlist_node *node; int i; if (!page->multimapped) { BUG_ON(page->parent_pte != parent_pte); page->parent_pte = NULL; return; } hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { if (!pte_chain->parent_ptes[i]) break; if (pte_chain->parent_ptes[i] != parent_pte) continue; while (i + 1 < NR_PTE_CHAIN_ENTRIES && pte_chain->parent_ptes[i + 1]) { pte_chain->parent_ptes[i] = pte_chain->parent_ptes[i + 1]; ++i; } pte_chain->parent_ptes[i] = NULL; if (i == 0) { hlist_del(&pte_chain->link); mmu_free_pte_chain(vcpu, pte_chain); if (hlist_empty(&page->parent_ptes)) { page->multimapped = 0; page->parent_pte = NULL; } } return; } BUG(); } static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu, gfn_t gfn) { unsigned index; struct hlist_head *bucket; struct kvm_mmu_page *page; struct hlist_node *node; pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; bucket = &vcpu->kvm->mmu_page_hash[index]; hlist_for_each_entry(page, node, bucket, hash_link) if (page->gfn == gfn && !page->role.metaphysical) { pgprintk("%s: found role %x\n", __FUNCTION__, page->role.word); return page; } return NULL; } static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gaddr, unsigned level, int metaphysical, unsigned hugepage_access, u64 *parent_pte) { union kvm_mmu_page_role role; unsigned index; unsigned quadrant; struct hlist_head *bucket; struct kvm_mmu_page *page; struct hlist_node *node; role.word = 0; role.glevels = vcpu->mmu.root_level; role.level = level; role.metaphysical = metaphysical; role.hugepage_access = hugepage_access; if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) { quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; role.quadrant = quadrant; } pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__, gfn, role.word); index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; bucket = &vcpu->kvm->mmu_page_hash[index]; hlist_for_each_entry(page, node, bucket, hash_link) if (page->gfn == gfn && page->role.word == role.word) { mmu_page_add_parent_pte(vcpu, page, parent_pte); pgprintk("%s: found\n", __FUNCTION__); return page; } page = kvm_mmu_alloc_page(vcpu, parent_pte); if (!page) return page; pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word); page->gfn = gfn; page->role = role; hlist_add_head(&page->hash_link, bucket); if (!metaphysical) rmap_write_protect(vcpu, gfn); return page; } static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page) { unsigned i; u64 *pt; u64 ent; pt = page->spt; if (page->role.level == PT_PAGE_TABLE_LEVEL) { for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { if (pt[i] & PT_PRESENT_MASK) rmap_remove(vcpu, &pt[i]); pt[i] = 0; } kvm_arch_ops->tlb_flush(vcpu); return; } for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { ent = pt[i]; pt[i] = 0; if (!(ent & PT_PRESENT_MASK)) continue; ent &= PT64_BASE_ADDR_MASK; mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]); } } static void kvm_mmu_put_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, u64 *parent_pte) { mmu_page_remove_parent_pte(vcpu, page, parent_pte); } static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page) { u64 *parent_pte; while (page->multimapped || page->parent_pte) { if (!page->multimapped) parent_pte = page->parent_pte; else { struct kvm_pte_chain *chain; chain = container_of(page->parent_ptes.first, struct kvm_pte_chain, link); parent_pte = chain->parent_ptes[0]; } BUG_ON(!parent_pte); kvm_mmu_put_page(vcpu, page, parent_pte); *parent_pte = 0; } kvm_mmu_page_unlink_children(vcpu, page); if (!page->root_count) { hlist_del(&page->hash_link); kvm_mmu_free_page(vcpu, page); } else list_move(&page->link, &vcpu->kvm->active_mmu_pages); } static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn) { unsigned index; struct hlist_head *bucket; struct kvm_mmu_page *page; struct hlist_node *node, *n; int r; pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); r = 0; index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; bucket = &vcpu->kvm->mmu_page_hash[index]; hlist_for_each_entry_safe(page, node, n, bucket, hash_link) if (page->gfn == gfn && !page->role.metaphysical) { pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn, page->role.word); kvm_mmu_zap_page(vcpu, page); r = 1; } return r; } static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa) { int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT)); struct kvm_mmu_page *page_head = page_header(__pa(pte)); __set_bit(slot, &page_head->slot_bitmap); } hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa) { hpa_t hpa = gpa_to_hpa(vcpu, gpa); return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa; } hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa) { struct page *page; ASSERT((gpa & HPA_ERR_MASK) == 0); page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); if (!page) return gpa | HPA_ERR_MASK; return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT) | (gpa & (PAGE_SIZE-1)); } hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva) { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); if (gpa == UNMAPPED_GVA) return UNMAPPED_GVA; return gpa_to_hpa(vcpu, gpa); } struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva) { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); if (gpa == UNMAPPED_GVA) return NULL; return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT); } static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) { } static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p) { int level = PT32E_ROOT_LEVEL; hpa_t table_addr = vcpu->mmu.root_hpa; for (; ; level--) { u32 index = PT64_INDEX(v, level); u64 *table; u64 pte; ASSERT(VALID_PAGE(table_addr)); table = __va(table_addr); if (level == 1) { pte = table[index]; if (is_present_pte(pte) && is_writeble_pte(pte)) return 0; mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT); page_header_update_slot(vcpu->kvm, table, v); table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK; rmap_add(vcpu, &table[index]); return 0; } if (table[index] == 0) { struct kvm_mmu_page *new_table; gfn_t pseudo_gfn; pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT; new_table = kvm_mmu_get_page(vcpu, pseudo_gfn, v, level - 1, 1, 0, &table[index]); if (!new_table) { pgprintk("nonpaging_map: ENOMEM\n"); return -ENOMEM; } table[index] = __pa(new_table->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK; } table_addr = table[index] & PT64_BASE_ADDR_MASK; } } static void mmu_free_roots(struct kvm_vcpu *vcpu) { int i; struct kvm_mmu_page *page; #ifdef CONFIG_X86_64 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) { hpa_t root = vcpu->mmu.root_hpa; ASSERT(VALID_PAGE(root)); page = page_header(root); --page->root_count; vcpu->mmu.root_hpa = INVALID_PAGE; return; } #endif for (i = 0; i < 4; ++i) { hpa_t root = vcpu->mmu.pae_root[i]; if (root) { ASSERT(VALID_PAGE(root)); root &= PT64_BASE_ADDR_MASK; page = page_header(root); --page->root_count; } vcpu->mmu.pae_root[i] = INVALID_PAGE; } vcpu->mmu.root_hpa = INVALID_PAGE; } static void mmu_alloc_roots(struct kvm_vcpu *vcpu) { int i; gfn_t root_gfn; struct kvm_mmu_page *page; root_gfn = vcpu->cr3 >> PAGE_SHIFT; #ifdef CONFIG_X86_64 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) { hpa_t root = vcpu->mmu.root_hpa; ASSERT(!VALID_PAGE(root)); page = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, 0, 0, NULL); root = __pa(page->spt); ++page->root_count; vcpu->mmu.root_hpa = root; return; } #endif for (i = 0; i < 4; ++i) { hpa_t root = vcpu->mmu.pae_root[i]; ASSERT(!VALID_PAGE(root)); if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) { if (!is_present_pte(vcpu->pdptrs[i])) { vcpu->mmu.pae_root[i] = 0; continue; } root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT; } else if (vcpu->mmu.root_level == 0) root_gfn = 0; page = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, !is_paging(vcpu), 0, NULL); root = __pa(page->spt); ++page->root_count; vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK; } vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root); } static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr) { return vaddr; } static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code) { gpa_t addr = gva; hpa_t paddr; int r; r = mmu_topup_memory_caches(vcpu); if (r) return r; ASSERT(vcpu); ASSERT(VALID_PAGE(vcpu->mmu.root_hpa)); paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK); if (is_error_hpa(paddr)) return 1; return nonpaging_map(vcpu, addr & PAGE_MASK, paddr); } static void nonpaging_free(struct kvm_vcpu *vcpu) { mmu_free_roots(vcpu); } static int nonpaging_init_context(struct kvm_vcpu *vcpu) { struct kvm_mmu *context = &vcpu->mmu; context->new_cr3 = nonpaging_new_cr3; context->page_fault = nonpaging_page_fault; context->gva_to_gpa = nonpaging_gva_to_gpa; context->free = nonpaging_free; context->root_level = 0; context->shadow_root_level = PT32E_ROOT_LEVEL; mmu_alloc_roots(vcpu); ASSERT(VALID_PAGE(context->root_hpa)); kvm_arch_ops->set_cr3(vcpu, context->root_hpa); return 0; } static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) { ++vcpu->stat.tlb_flush; kvm_arch_ops->tlb_flush(vcpu); } static void paging_new_cr3(struct kvm_vcpu *vcpu) { pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3); mmu_free_roots(vcpu); if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES)) kvm_mmu_free_some_pages(vcpu); mmu_alloc_roots(vcpu); kvm_mmu_flush_tlb(vcpu); kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa); } static void inject_page_fault(struct kvm_vcpu *vcpu, u64 addr, u32 err_code) { kvm_arch_ops->inject_page_fault(vcpu, addr, err_code); } static inline int fix_read_pf(u64 *shadow_ent) { if ((*shadow_ent & PT_SHADOW_USER_MASK) && !(*shadow_ent & PT_USER_MASK)) { /* * If supervisor write protect is disabled, we shadow kernel * pages as user pages so we can trap the write access. */ *shadow_ent |= PT_USER_MASK; *shadow_ent &= ~PT_WRITABLE_MASK; return 1; } return 0; } static void paging_free(struct kvm_vcpu *vcpu) { nonpaging_free(vcpu); } #define PTTYPE 64 #include "paging_tmpl.h" #undef PTTYPE #define PTTYPE 32 #include "paging_tmpl.h" #undef PTTYPE static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) { struct kvm_mmu *context = &vcpu->mmu; ASSERT(is_pae(vcpu)); context->new_cr3 = paging_new_cr3; context->page_fault = paging64_page_fault; context->gva_to_gpa = paging64_gva_to_gpa; context->free = paging_free; context->root_level = level; context->shadow_root_level = level; mmu_alloc_roots(vcpu); ASSERT(VALID_PAGE(context->root_hpa)); kvm_arch_ops->set_cr3(vcpu, context->root_hpa | (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); return 0; } static int paging64_init_context(struct kvm_vcpu *vcpu) { return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL); } static int paging32_init_context(struct kvm_vcpu *vcpu) { struct kvm_mmu *context = &vcpu->mmu; context->new_cr3 = paging_new_cr3; context->page_fault = paging32_page_fault; context->gva_to_gpa = paging32_gva_to_gpa; context->free = paging_free; context->root_level = PT32_ROOT_LEVEL; context->shadow_root_level = PT32E_ROOT_LEVEL; mmu_alloc_roots(vcpu); ASSERT(VALID_PAGE(context->root_hpa)); kvm_arch_ops->set_cr3(vcpu, context->root_hpa | (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); return 0; } static int paging32E_init_context(struct kvm_vcpu *vcpu) { return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL); } static int init_kvm_mmu(struct kvm_vcpu *vcpu) { ASSERT(vcpu); ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); mmu_topup_memory_caches(vcpu); if (!is_paging(vcpu)) return nonpaging_init_context(vcpu); else if (is_long_mode(vcpu)) return paging64_init_context(vcpu); else if (is_pae(vcpu)) return paging32E_init_context(vcpu); else return paging32_init_context(vcpu); } static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) { ASSERT(vcpu); if (VALID_PAGE(vcpu->mmu.root_hpa)) { vcpu->mmu.free(vcpu); vcpu->mmu.root_hpa = INVALID_PAGE; } } int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) { int r; destroy_kvm_mmu(vcpu); r = init_kvm_mmu(vcpu); if (r < 0) goto out; r = mmu_topup_memory_caches(vcpu); out: return r; } static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, u64 *spte) { u64 pte; struct kvm_mmu_page *child; pte = *spte; if (is_present_pte(pte)) { if (page->role.level == PT_PAGE_TABLE_LEVEL) rmap_remove(vcpu, spte); else { child = page_header(pte & PT64_BASE_ADDR_MASK); mmu_page_remove_parent_pte(vcpu, child, spte); } } *spte = 0; } static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, u64 *spte, const void *new, int bytes) { if (page->role.level != PT_PAGE_TABLE_LEVEL) return; if (page->role.glevels == PT32_ROOT_LEVEL) paging32_update_pte(vcpu, page, spte, new, bytes); else paging64_update_pte(vcpu, page, spte, new, bytes); } void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *old, const u8 *new, int bytes) { gfn_t gfn = gpa >> PAGE_SHIFT; struct kvm_mmu_page *page; struct hlist_node *node, *n; struct hlist_head *bucket; unsigned index; u64 *spte; unsigned offset = offset_in_page(gpa); unsigned pte_size; unsigned page_offset; unsigned misaligned; unsigned quadrant; int level; int flooded = 0; int npte; pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes); if (gfn == vcpu->last_pt_write_gfn) { ++vcpu->last_pt_write_count; if (vcpu->last_pt_write_count >= 3) flooded = 1; } else { vcpu->last_pt_write_gfn = gfn; vcpu->last_pt_write_count = 1; } index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; bucket = &vcpu->kvm->mmu_page_hash[index]; hlist_for_each_entry_safe(page, node, n, bucket, hash_link) { if (page->gfn != gfn || page->role.metaphysical) continue; pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8; misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); misaligned |= bytes < 4; if (misaligned || flooded) { /* * Misaligned accesses are too much trouble to fix * up; also, they usually indicate a page is not used * as a page table. * * If we're seeing too many writes to a page, * it may no longer be a page table, or we may be * forking, in which case it is better to unmap the * page. */ pgprintk("misaligned: gpa %llx bytes %d role %x\n", gpa, bytes, page->role.word); kvm_mmu_zap_page(vcpu, page); continue; } page_offset = offset; level = page->role.level; npte = 1; if (page->role.glevels == PT32_ROOT_LEVEL) { page_offset <<= 1; /* 32->64 */ /* * A 32-bit pde maps 4MB while the shadow pdes map * only 2MB. So we need to double the offset again * and zap two pdes instead of one. */ if (level == PT32_ROOT_LEVEL) { page_offset &= ~7; /* kill rounding error */ page_offset <<= 1; npte = 2; } quadrant = page_offset >> PAGE_SHIFT; page_offset &= ~PAGE_MASK; if (quadrant != page->role.quadrant) continue; } spte = &page->spt[page_offset / sizeof(*spte)]; while (npte--) { mmu_pte_write_zap_pte(vcpu, page, spte); mmu_pte_write_new_pte(vcpu, page, spte, new, bytes); ++spte; } } } int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT); } void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) { while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) { struct kvm_mmu_page *page; page = container_of(vcpu->kvm->active_mmu_pages.prev, struct kvm_mmu_page, link); kvm_mmu_zap_page(vcpu, page); } } EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages); static void free_mmu_pages(struct kvm_vcpu *vcpu) { struct kvm_mmu_page *page; while (!list_empty(&vcpu->kvm->active_mmu_pages)) { page = container_of(vcpu->kvm->active_mmu_pages.next, struct kvm_mmu_page, link); kvm_mmu_zap_page(vcpu, page); } free_page((unsigned long)vcpu->mmu.pae_root); } static int alloc_mmu_pages(struct kvm_vcpu *vcpu) { struct page *page; int i; ASSERT(vcpu); vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES; /* * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. * Therefore we need to allocate shadow page tables in the first * 4GB of memory, which happens to fit the DMA32 zone. */ page = alloc_page(GFP_KERNEL | __GFP_DMA32); if (!page) goto error_1; vcpu->mmu.pae_root = page_address(page); for (i = 0; i < 4; ++i) vcpu->mmu.pae_root[i] = INVALID_PAGE; return 0; error_1: free_mmu_pages(vcpu); return -ENOMEM; } int kvm_mmu_create(struct kvm_vcpu *vcpu) { ASSERT(vcpu); ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); return alloc_mmu_pages(vcpu); } int kvm_mmu_setup(struct kvm_vcpu *vcpu) { ASSERT(vcpu); ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); return init_kvm_mmu(vcpu); } void kvm_mmu_destroy(struct kvm_vcpu *vcpu) { ASSERT(vcpu); destroy_kvm_mmu(vcpu); free_mmu_pages(vcpu); mmu_free_memory_caches(vcpu); } void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot) { struct kvm *kvm = vcpu->kvm; struct kvm_mmu_page *page; list_for_each_entry(page, &kvm->active_mmu_pages, link) { int i; u64 *pt; if (!test_bit(slot, &page->slot_bitmap)) continue; pt = page->spt; for (i = 0; i < PT64_ENT_PER_PAGE; ++i) /* avoid RMW */ if (pt[i] & PT_WRITABLE_MASK) { rmap_remove(vcpu, &pt[i]); pt[i] &= ~PT_WRITABLE_MASK; } } } void kvm_mmu_zap_all(struct kvm_vcpu *vcpu) { destroy_kvm_mmu(vcpu); while (!list_empty(&vcpu->kvm->active_mmu_pages)) { struct kvm_mmu_page *page; page = container_of(vcpu->kvm->active_mmu_pages.next, struct kvm_mmu_page, link); kvm_mmu_zap_page(vcpu, page); } mmu_free_memory_caches(vcpu); kvm_arch_ops->tlb_flush(vcpu); init_kvm_mmu(vcpu); } void kvm_mmu_module_exit(void) { if (pte_chain_cache) kmem_cache_destroy(pte_chain_cache); if (rmap_desc_cache) kmem_cache_destroy(rmap_desc_cache); if (mmu_page_cache) kmem_cache_destroy(mmu_page_cache); if (mmu_page_header_cache) kmem_cache_destroy(mmu_page_header_cache); } int kvm_mmu_module_init(void) { pte_chain_cache = kmem_cache_create("kvm_pte_chain", sizeof(struct kvm_pte_chain), 0, 0, NULL, NULL); if (!pte_chain_cache) goto nomem; rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", sizeof(struct kvm_rmap_desc), 0, 0, NULL, NULL); if (!rmap_desc_cache) goto nomem; mmu_page_cache = kmem_cache_create("kvm_mmu_page", PAGE_SIZE, PAGE_SIZE, 0, NULL, NULL); if (!mmu_page_cache) goto nomem; mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", sizeof(struct kvm_mmu_page), 0, 0, NULL, NULL); if (!mmu_page_header_cache) goto nomem; return 0; nomem: kvm_mmu_module_exit(); return -ENOMEM; } #ifdef AUDIT static const char *audit_msg; static gva_t canonicalize(gva_t gva) { #ifdef CONFIG_X86_64 gva = (long long)(gva << 16) >> 16; #endif return gva; } static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte, gva_t va, int level) { u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK); int i; gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1)); for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) { u64 ent = pt[i]; if (!(ent & PT_PRESENT_MASK)) continue; va = canonicalize(va); if (level > 1) audit_mappings_page(vcpu, ent, va, level - 1); else { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va); hpa_t hpa = gpa_to_hpa(vcpu, gpa); if ((ent & PT_PRESENT_MASK) && (ent & PT64_BASE_ADDR_MASK) != hpa) printk(KERN_ERR "audit error: (%s) levels %d" " gva %lx gpa %llx hpa %llx ent %llx\n", audit_msg, vcpu->mmu.root_level, va, gpa, hpa, ent); } } } static void audit_mappings(struct kvm_vcpu *vcpu) { unsigned i; if (vcpu->mmu.root_level == 4) audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4); else for (i = 0; i < 4; ++i) if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK) audit_mappings_page(vcpu, vcpu->mmu.pae_root[i], i << 30, 2); } static int count_rmaps(struct kvm_vcpu *vcpu) { int nmaps = 0; int i, j, k; for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { struct kvm_memory_slot *m = &vcpu->kvm->memslots[i]; struct kvm_rmap_desc *d; for (j = 0; j < m->npages; ++j) { struct page *page = m->phys_mem[j]; if (!page->private) continue; if (!(page->private & 1)) { ++nmaps; continue; } d = (struct kvm_rmap_desc *)(page->private & ~1ul); while (d) { for (k = 0; k < RMAP_EXT; ++k) if (d->shadow_ptes[k]) ++nmaps; else break; d = d->more; } } } return nmaps; } static int count_writable_mappings(struct kvm_vcpu *vcpu) { int nmaps = 0; struct kvm_mmu_page *page; int i; list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) { u64 *pt = page->spt; if (page->role.level != PT_PAGE_TABLE_LEVEL) continue; for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { u64 ent = pt[i]; if (!(ent & PT_PRESENT_MASK)) continue; if (!(ent & PT_WRITABLE_MASK)) continue; ++nmaps; } } return nmaps; } static void audit_rmap(struct kvm_vcpu *vcpu) { int n_rmap = count_rmaps(vcpu); int n_actual = count_writable_mappings(vcpu); if (n_rmap != n_actual) printk(KERN_ERR "%s: (%s) rmap %d actual %d\n", __FUNCTION__, audit_msg, n_rmap, n_actual); } static void audit_write_protection(struct kvm_vcpu *vcpu) { struct kvm_mmu_page *page; list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) { hfn_t hfn; struct page *pg; if (page->role.metaphysical) continue; hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT) >> PAGE_SHIFT; pg = pfn_to_page(hfn); if (pg->private) printk(KERN_ERR "%s: (%s) shadow page has writable" " mappings: gfn %lx role %x\n", __FUNCTION__, audit_msg, page->gfn, page->role.word); } } static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) { int olddbg = dbg; dbg = 0; audit_msg = msg; audit_rmap(vcpu); audit_write_protection(vcpu); audit_mappings(vcpu); dbg = olddbg; } #endif