Commit graph

142 commits

Author SHA1 Message Date
KAMEZAWA Hiroyuki
158e0a2d1b memcg: use find_lock_task_mm() in memory cgroups oom
When the OOM killer scans task, it check a task is under memcg or
not when it's called via memcg's context.

But, as Oleg pointed out, a thread group leader may have NULL ->mm
and task_in_mem_cgroup() may do wrong decision. We have to use
find_lock_task_mm() in memcg as generic OOM-Killer does.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 08:59:19 -07:00
David Rientjes
a63d83f427 oom: badness heuristic rewrite
This a complete rewrite of the oom killer's badness() heuristic which is
used to determine which task to kill in oom conditions.  The goal is to
make it as simple and predictable as possible so the results are better
understood and we end up killing the task which will lead to the most
memory freeing while still respecting the fine-tuning from userspace.

Instead of basing the heuristic on mm->total_vm for each task, the task's
rss and swap space is used instead.  This is a better indication of the
amount of memory that will be freeable if the oom killed task is chosen
and subsequently exits.  This helps specifically in cases where KDE or
GNOME is chosen for oom kill on desktop systems instead of a memory
hogging task.

The baseline for the heuristic is a proportion of memory that each task is
currently using in memory plus swap compared to the amount of "allowable"
memory.  "Allowable," in this sense, means the system-wide resources for
unconstrained oom conditions, the set of mempolicy nodes, the mems
attached to current's cpuset, or a memory controller's limit.  The
proportion is given on a scale of 0 (never kill) to 1000 (always kill),
roughly meaning that if a task has a badness() score of 500 that the task
consumes approximately 50% of allowable memory resident in RAM or in swap
space.

The proportion is always relative to the amount of "allowable" memory and
not the total amount of RAM systemwide so that mempolicies and cpusets may
operate in isolation; they shall not need to know the true size of the
machine on which they are running if they are bound to a specific set of
nodes or mems, respectively.

Root tasks are given 3% extra memory just like __vm_enough_memory()
provides in LSMs.  In the event of two tasks consuming similar amounts of
memory, it is generally better to save root's task.

Because of the change in the badness() heuristic's baseline, it is also
necessary to introduce a new user interface to tune it.  It's not possible
to redefine the meaning of /proc/pid/oom_adj with a new scale since the
ABI cannot be changed for backward compatability.  Instead, a new tunable,
/proc/pid/oom_score_adj, is added that ranges from -1000 to +1000.  It may
be used to polarize the heuristic such that certain tasks are never
considered for oom kill while others may always be considered.  The value
is added directly into the badness() score so a value of -500, for
example, means to discount 50% of its memory consumption in comparison to
other tasks either on the system, bound to the mempolicy, in the cpuset,
or sharing the same memory controller.

/proc/pid/oom_adj is changed so that its meaning is rescaled into the
units used by /proc/pid/oom_score_adj, and vice versa.  Changing one of
these per-task tunables will rescale the value of the other to an
equivalent meaning.  Although /proc/pid/oom_adj was originally defined as
a bitshift on the badness score, it now shares the same linear growth as
/proc/pid/oom_score_adj but with different granularity.  This is required
so the ABI is not broken with userspace applications and allows oom_adj to
be deprecated for future removal.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:02 -07:00
KOSAKI Motohiro
cef1d3523d oom: multi threaded process coredump don't make deadlock
Oleg pointed out current PF_EXITING check is wrong. Because PF_EXITING
is per-thread flag, not per-process flag. He said,

   Two threads, group-leader L and its sub-thread T. T dumps the code.
   In this case both threads have ->mm != NULL, L has PF_EXITING.

   The first problem is, select_bad_process() always return -1 in this
   case (even if the caller is T, this doesn't matter).

   The second problem is that we should add TIF_MEMDIE to T, not L.

I think we can remove this dubious PF_EXITING check. but as first step,
This patch add the protection of multi threaded issue.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:02 -07:00
Luis Claudio R. Goncalves
93b43fa550 oom: give the dying task a higher priority
In a system under heavy load it was observed that even after the
oom-killer selects a task to die, the task may take a long time to die.

Right after sending a SIGKILL to the task selected by the oom-killer this
task has its priority increased so that it can exit() soon, freeing
memory.  That is accomplished by:

        /*
         * We give our sacrificial lamb high priority and access to
         * all the memory it needs. That way it should be able to
         * exit() and clear out its resources quickly...
         */
 	p->rt.time_slice = HZ;
 	set_tsk_thread_flag(p, TIF_MEMDIE);

It sounds plausible giving the dying task an even higher priority to be
sure it will be scheduled sooner and free the desired memory.  It was
suggested on LKML using SCHED_FIFO:1, the lowest RT priority so that this
task won't interfere with any running RT task.

If the dying task is already an RT task, leave it untouched.  Another good
suggestion, implemented here, was to avoid boosting the dying task
priority in case of mem_cgroup OOM.

Signed-off-by: Luis Claudio R. Goncalves <lclaudio@uudg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:02 -07:00
KOSAKI Motohiro
19b4586cd9 oom: remove child->mm check from oom_kill_process()
The current "child->mm == p->mm" check prevents selection of vfork()ed
task.  But we don't have any reason to don't consider vfork().

Removed.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:02 -07:00
KOSAKI Motohiro
df1090a8dd oom: cleanup has_intersects_mems_allowed()
presently has_intersects_mems_allowed() has own thread iterate logic, but
it should use while_each_thread().

It slightly improve the code readability.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
a96cfd6e91 oom: move OOM_DISABLE check from oom_kill_task to out_of_memory()
Presently if oom_kill_allocating_task is enabled and current have
OOM_DISABLED, following printk in oom_kill_process is called twice.

    pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n",
            message, task_pid_nr(p), p->comm, points);

So, OOM_DISABLE check should be more early.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
113e27f36d oom: kill duplicate OOM_DISABLE check
select_bad_process() and badness() have the same OOM_DISABLE check.  This
patch kills one.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
26ebc98491 oom: /proc/<pid>/oom_score treat kernel thread honestly
If a kernel thread is using use_mm(), badness() returns a positive value.
This is not a big issue because caller take care of it correctly.  But
there is one exception, /proc/<pid>/oom_score calls badness() directly and
doesn't care that the task is a regular process.

Another example, /proc/1/oom_score return !0 value.  But it's unkillable.
This incorrectness makes administration a little confusing.

This patch fixes it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
f88ccad588 oom: oom_kill_process() needs to check that p is unkillable
When oom_kill_allocating_task is enabled, an argument task of
oom_kill_process is not selected by select_bad_process(), It's just
out_of_memory() caller task.  It mean the task can be unkillable.  check
it first.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
ab290adbaf oom: make oom_unkillable_task() helper function
Presently we have the same task check in two places. Unify it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
2c5ea53ce4 oom: oom_kill_process() doesn't select kthread child
Presently select_bad_process() has a PF_KTHREAD check, but
oom_kill_process doesn't.  It mean oom_kill_process() may choose wrong
task, especially, when the child are using use_mm().

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:01 -07:00
KOSAKI Motohiro
7c59aec830 oom: don't try to kill oom_unkillable child
Presently, badness() doesn't care about either CPUSET nor mempolicy.  Then
if the victim child process have disjoint nodemask, OOM Killer might kill
innocent process.

This patch fixes it.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
David Rientjes
0aad4b3124 oom: fold __out_of_memory into out_of_memory
__out_of_memory() only has a single caller, so fold it into
out_of_memory() and add a comment about locking for its call to
oom_kill_process().

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
David Rientjes
f44200320b oom: remove constraint argument from select_bad_process and __out_of_memory
select_bad_process() and __out_of_memory() doe not need their enum
oom_constraint arguments: it's possible to pass a NULL nodemask if
constraint == CONSTRAINT_MEMORY_POLICY in the caller, out_of_memory().

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
Minchan Kim
ff321feac2 mm: rename try_set_zone_oom() to try_set_zonelist_oom()
We have been used naming try_set_zone_oom and clear_zonelist_oom.
The role of functions is to lock of zonelist for preventing parallel
OOM. So clear_zonelist_oom makes sense but try_set_zone_oome is rather
awkward and unmatched with clear_zonelist_oom.

Let's change it with try_set_zonelist_oom.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
David Rientjes
b940fd7035 oom: remove unnecessary code and cleanup
Remove the redundancy in __oom_kill_task() since:

 - init can never be passed to this function: it will never be PF_EXITING
   or selectable from select_bad_process(), and

 - it will never be passed a task from oom_kill_task() without an ->mm
   and we're unconcerned about detachment from exiting tasks, there's no
   reason to protect them against SIGKILL or access to memory reserves.

Also moves the kernel log message to a higher level since the verbosity is
not always emitted here; we need not print an error message if an exiting
task is given a longer timeslice.

__oom_kill_task() only has a single caller, so it can be merged into that
function at the same time.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
David Rientjes
e365893236 oom: remove special handling for pagefault ooms
It is possible to remove the special pagefault oom handler by simply oom
locking all system zones and then calling directly into out_of_memory().

All populated zones must have ZONE_OOM_LOCKED set, otherwise there is a
parallel oom killing in progress that will lead to eventual memory freeing
so it's not necessary to needlessly kill another task.  The context in
which the pagefault is allocating memory is unknown to the oom killer, so
this is done on a system-wide level.

If a task has already been oom killed and hasn't fully exited yet, this
will be a no-op since select_bad_process() recognizes tasks across the
system with TIF_MEMDIE set.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
David Rientjes
309ed88250 oom: extract panic helper function
There are various points in the oom killer where the kernel must determine
whether to panic or not.  It's better to extract this to a helper function
to remove all the confusion as to its semantics.

Also fix a call to dump_header() where tasklist_lock is not read- locked,
as required.

There's no functional change with this patch.

Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
David Rientjes
ad915c432e oom: enable oom tasklist dump by default
The oom killer tasklist dump, enabled with the oom_dump_tasks sysctl, is
very helpful information in diagnosing why a user's task has been killed.
It emits useful information such as each eligible thread's memory usage
that can determine why the system is oom, so it should be enabled by
default.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
6f48d0ebd9 oom: select task from tasklist for mempolicy ooms
The oom killer presently kills current whenever there is no more memory
free or reclaimable on its mempolicy's nodes.  There is no guarantee that
current is a memory-hogging task or that killing it will free any
substantial amount of memory, however.

In such situations, it is better to scan the tasklist for nodes that are
allowed to allocate on current's set of nodes and kill the task with the
highest badness() score.  This ensures that the most memory-hogging task,
or the one configured by the user with /proc/pid/oom_adj, is always
selected in such scenarios.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
5e9d834a0e oom: sacrifice child with highest badness score for parent
When a task is chosen for oom kill, the oom killer first attempts to
sacrifice a child not sharing its parent's memory instead.  Unfortunately,
this often kills in a seemingly random fashion based on the ordering of
the selected task's child list.  Additionally, it is not guaranteed at all
to free a large amount of memory that we need to prevent additional oom
killing in the very near future.

Instead, we now only attempt to sacrifice the worst child not sharing its
parent's memory, if one exists.  The worst child is indicated with the
highest badness() score.  This serves two advantages: we kill a
memory-hogging task more often, and we allow the configurable
/proc/pid/oom_adj value to be considered as a factor in which child to
kill.

Reviewers may observe that the previous implementation would iterate
through the children and attempt to kill each until one was successful and
then the parent if none were found while the new code simply kills the
most memory-hogging task or the parent.  Note that the only time
oom_kill_task() fails, however, is when a child does not have an mm or has
a /proc/pid/oom_adj of OOM_DISABLE.  badness() returns 0 for both cases,
so the final oom_kill_task() will always succeed.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
6cf86ac6f3 oom: filter tasks not sharing the same cpuset
Tasks that do not share the same set of allowed nodes with the task that
triggered the oom should not be considered as candidates for oom kill.

Tasks in other cpusets with a disjoint set of mems would be unfairly
penalized otherwise because of oom conditions elsewhere; an extreme
example could unfairly kill all other applications on the system if a
single task in a user's cpuset sets itself to OOM_DISABLE and then uses
more memory than allowed.

Killing tasks outside of current's cpuset rarely would free memory for
current anyway.  To use a sane heuristic, we must ensure that killing a
task would likely free memory for current and avoid needlessly killing
others at all costs just because their potential memory freeing is
unknown.  It is better to kill current than another task needlessly.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
4358997ae3 oom: avoid sending exiting tasks a SIGKILL
It's unnecessary to SIGKILL a task that is already PF_EXITING and can
actually cause a NULL pointer dereference of the sighand if it has already
been detached.  Instead, simply set TIF_MEMDIE so it has access to memory
reserves and can quickly exit as the comment implies.

Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
7b98c2e402 oom: give current access to memory reserves if it has been killed
It's possible to livelock the page allocator if a thread has mm->mmap_sem
and fails to make forward progress because the oom killer selects another
thread sharing the same ->mm to kill that cannot exit until the semaphore
is dropped.

The oom killer will not kill multiple tasks at the same time; each oom
killed task must exit before another task may be killed.  Thus, if one
thread is holding mm->mmap_sem and cannot allocate memory, all threads
sharing the same ->mm are blocked from exiting as well.  In the oom kill
case, that means the thread holding mm->mmap_sem will never free
additional memory since it cannot get access to memory reserves and the
thread that depends on it with access to memory reserves cannot exit
because it cannot acquire the semaphore.  Thus, the page allocators
livelocks.

When the oom killer is called and current happens to have a pending
SIGKILL, this patch automatically gives it access to memory reserves and
returns.  Upon returning to the page allocator, its allocation will
hopefully succeed so it can quickly exit and free its memory.  If not, the
page allocator will fail the allocation if it is not __GFP_NOFAIL.

Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
c81fac5cb8 oom: dump_tasks use find_lock_task_mm too fix
When find_lock_task_mm() returns a thread other than p in dump_tasks(),
its name should be displayed instead.  This is the thread that will be
targeted by the oom killer, not its mm-less parent.

This also allows us to safely dereference task->comm without needing
get_task_comm().

While we're here, remove the cast on task_cpu(task) as Andrew suggested.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
David Rientjes
74ab7f1d3f oom: improve commentary in dump_tasks()
The comments in dump_tasks() should be updated to be more clear about why
tasks are filtered and how they are filtered by its argument.

An unnecessary comment concerning a check for is_global_init() is removed
since it isn't of importance.

Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
KOSAKI Motohiro
c55db95788 oom: dump_tasks use find_lock_task_mm too
dump_task() should use find_lock_task_mm() too. It is necessary for
protecting task-exiting race.

dump_tasks() currently filters any task that does not have an attached
->mm since it incorrectly assumes that it must either be in the process of
exiting and has detached its memory or that it's a kernel thread;
multithreaded tasks may actually have subthreads that have a valid ->mm
pointer and thus those threads should actually be displayed.  This change
finds those threads, if they exist, and emit their information along with
the rest of the candidate tasks for kill.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
Oleg Nesterov
dd8e8f405c oom: introduce find_lock_task_mm() to fix !mm false positives
Almost all ->mm == NULL checks in oom_kill.c are wrong.

The current code assumes that the task without ->mm has already released
its memory and ignores the process.  However this is not necessarily true
when this process is multithreaded, other live sub-threads can use this
->mm.

- Remove the "if (!p->mm)" check in select_bad_process(), it is
  just wrong.

- Add the new helper, find_lock_task_mm(), which finds the live
  thread which uses the memory and takes task_lock() to pin ->mm

- change oom_badness() to use this helper instead of just checking
  ->mm != NULL.

- As David pointed out, select_bad_process() must never choose the
  task without ->mm, but no matter what oom_badness() returns the
  task can be chosen if nothing else has been found yet.

  Change oom_badness() to return int, change it to return -1 if
  find_lock_task_mm() fails, and change select_bad_process() to
  check points >= 0.

Note! This patch is not enough, we need more changes.

	- oom_badness() was fixed, but oom_kill_task() still ignores
	  the task without ->mm

	- oom_forkbomb_penalty() should use find_lock_task_mm() too,
	  and it also needs other changes to actually find the first
	  first-descendant children

This will be addressed later.

[kosaki.motohiro@jp.fujitsu.com: use in badness(), __oom_kill_task()]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:55 -07:00
Oleg Nesterov
b52279406e oom: PF_EXITING check should take mm into account
select_bad_process() checks PF_EXITING to detect the task which is going
to release its memory, but the logic is very wrong.

	- a single process P with the dead group leader disables
	  select_bad_process() completely, it will always return
	  ERR_PTR() while P can live forever

	- if the PF_EXITING task has already released its ->mm
	  it doesn't make sense to expect it is goiing to free
	  more memory (except task_struct/etc)

Change the code to ignore the PF_EXITING tasks without ->mm.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:55 -07:00
Oleg Nesterov
455c0e5fb0 oom: check PF_KTHREAD instead of !mm to skip kthreads
select_bad_process() thinks a kernel thread can't have ->mm != NULL, this
is not true due to use_mm().

Change the code to check PF_KTHREAD.

Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:55 -07:00
David Rientjes
df64f81bb1 memcg: make oom killer a no-op when no killable task can be found
It's pointless to try to kill current if select_bad_process() did not find
an eligible task to kill in mem_cgroup_out_of_memory() since it's
guaranteed that current is a member of the memcg that is oom and it is, by
definition, unkillable.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:43 -07:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
KAMEZAWA Hiroyuki
867578cbcc memcg: fix oom kill behavior
In current page-fault code,

	handle_mm_fault()
		-> ...
		-> mem_cgroup_charge()
		-> map page or handle error.
	-> check return code.

If page fault's return code is VM_FAULT_OOM, page_fault_out_of_memory() is
called.  But if it's caused by memcg, OOM should have been already
invoked.

Then, I added a patch: a636b327f7.  That
patch records last_oom_jiffies for memcg's sub-hierarchy and prevents
page_fault_out_of_memory from being invoked in near future.

But Nishimura-san reported that check by jiffies is not enough when the
system is terribly heavy.

This patch changes memcg's oom logic as.
 * If memcg causes OOM-kill, continue to retry.
 * remove jiffies check which is used now.
 * add memcg-oom-lock which works like perzone oom lock.
 * If current is killed(as a process), bypass charge.

Something more sophisticated can be added but this pactch does
fundamental things.
TODO:
 - add oom notifier
 - add permemcg disable-oom-kill flag and freezer at oom.
 - more chances for wake up oom waiter (when changing memory limit etc..)

Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-12 15:52:38 -08:00
KAMEZAWA Hiroyuki
daaf1e6887 memcg: handle panic_on_oom=always case
Presently, if panic_on_oom=2, the whole system panics even if the oom
happend in some special situation (as cpuset, mempolicy....).  Then,
panic_on_oom=2 means painc_on_oom_always.

Now, memcg doesn't check panic_on_oom flag. This patch adds a check.

BTW, how it's useful ?

kdump+panic_on_oom=2 is the last tool to investigate what happens in
oom-ed system.  When a task is killed, the sysytem recovers and there will
be few hint to know what happnes.  In mission critical system, oom should
never happen.  Then, panic_on_oom=2+kdump is useful to avoid next OOM by
knowing precise information via snapshot.

TODO:
 - For memcg, it's for isolate system's memory usage, oom-notiifer and
   freeze_at_oom (or rest_at_oom) should be implemented. Then, management
   daemon can do similar jobs (as kdump) or taking snapshot per cgroup.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-12 15:52:37 -08:00
KAMEZAWA Hiroyuki
d559db086f mm: clean up mm_counter
Presently, per-mm statistics counter is defined by macro in sched.h

This patch modifies it to
  - defined in mm.h as inlinf functions
  - use array instead of macro's name creation.

This patch is for reducing patch size in future patch to modify
implementation of per-mm counter.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:23 -08:00
KAMEZAWA Hiroyuki
5a2d41961d memcg: fix oom killing a child process in an other cgroup
Presently the oom-killer is memcg aware and it finds the worst process
from processes under memcg(s) in oom.  Then, it kills victim's child
first.

It may kill a child in another cgroup and may not be any help for
recovery.  And it will break the assumption users have.

This patch fixes it.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-02-22 19:50:34 -08:00
Daisuke Nishimura
d31f56dbf8 memcg: avoid oom-killing innocent task in case of use_hierarchy
task_in_mem_cgroup(), which is called by select_bad_process() to check
whether a task can be a candidate for being oom-killed from memcg's limit,
checks "curr->use_hierarchy"("curr" is the mem_cgroup the task belongs
to).

But this check return true(it's false positive) when:

	<some path>/aa		use_hierarchy == 0	<- hitting limit
	  <some path>/aa/00	use_hierarchy == 1	<- the task belongs to

This leads to killing an innocent task in aa/00.  This patch is a fix for
this bug.  And this patch also fixes the arg for
mem_cgroup_print_oom_info().  We should print information of mem_cgroup
which the task being killed, not current, belongs to.

Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 07:20:07 -08:00
KAMEZAWA Hiroyuki
4365a5676f oom-kill: fix NUMA constraint check with nodemask
Fix node-oriented allocation handling in oom-kill.c I myself think of this
as a bugfix not as an ehnancement.

In these days, things are changed as
  - alloc_pages() eats nodemask as its arguments, __alloc_pages_nodemask().
  - mempolicy don't maintain its own private zonelists.
  (And cpuset doesn't use nodemask for __alloc_pages_nodemask())

So, current oom-killer's check function is wrong.

This patch does
  - check nodemask, if nodemask && nodemask doesn't cover all
    node_states[N_HIGH_MEMORY], this is CONSTRAINT_MEMORY_POLICY.
  - Scan all zonelist under nodemask, if it hits cpuset's wall
    this faiulre is from cpuset.
And
  - modifies the caller of out_of_memory not to call oom if __GFP_THISNODE.
    This doesn't change "current" behavior. If callers use __GFP_THISNODE
    it should handle "page allocation failure" by itself.

  - handle __GFP_NOFAIL+__GFP_THISNODE path.
    This is something like a FIXME but this gfpmask is not used now.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 07:19:57 -08:00
KOSAKI Motohiro
3b4798cbc1 oom-kill: show virtual size and rss information of the killed process
In a typical oom analysis scenario, we frequently want to know whether the
killed process has a memory leak or not at the first step.  This patch
adds vsz and rss information to the oom log to help this analysis.  To
save time for the debugging.

example:
===================================================================
rsyslogd invoked oom-killer: gfp_mask=0x201da, order=0, oom_adj=0
Pid: 1308, comm: rsyslogd Not tainted 2.6.32-rc6 #24
Call Trace:
[<ffffffff8132e35b>] ?_spin_unlock+0x2b/0x40
[<ffffffff810f186e>] oom_kill_process+0xbe/0x2b0

(snip)

492283 pages non-shared
Out of memory: kill process 2341 (memhog) score 527276 or a child
Killed process 2341 (memhog) vsz:1054552kB, anon-rss:970588kB, file-rss:4kB
===========================================================================
                             ^
                             |
                            here

[rientjes@google.com: fix race, add pid & comm to message]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 07:19:57 -08:00
David Rientjes
1b604d75bb oom: dump stack and VM state when oom killer panics
The oom killer header, including information such as the allocation order
and gfp mask, current's cpuset and memory controller, call trace, and VM
state information is currently only shown when the oom killer has selected
a task to kill.

This information is omitted, however, when the oom killer panics either
because of panic_on_oom sysctl settings or when no killable task was
found.  It is still relevant to know crucial pieces of information such as
the allocation order and VM state when diagnosing such issues, especially
at boot.

This patch displays the oom killer header whenever it panics so that bug
reports can include pertinent information to debug the issue, if possible.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:10 -08:00
KOSAKI Motohiro
8c5cd6f3a1 oom: oom_kill doesn't kill vfork parent (or child)
Current oom_kill doesn't only kill the victim process, but also kill all
thas shread the same mm.  it mean vfork parent will be killed.

This is definitely incorrect.  another process have another oom_adj.  we
shouldn't ignore their oom_adj (it might have OOM_DISABLE).

following caller hit the minefield.

===============================
        switch (constraint) {
        case CONSTRAINT_MEMORY_POLICY:
                oom_kill_process(current, gfp_mask, order, 0, NULL,
                                "No available memory (MPOL_BIND)");
                break;

Note: force_sig(SIGKILL) send SIGKILL to all thread in the process.
We don't need to care multi thread in here.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:39 -07:00
KOSAKI Motohiro
495789a51a oom: make oom_score to per-process value
oom-killer kills a process, not task.  Then oom_score should be calculated
as per-process too.  it makes consistency more and makes speed up
select_bad_process().

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:39 -07:00
KOSAKI Motohiro
28b83c5193 oom: move oom_adj value from task_struct to signal_struct
Currently, OOM logic callflow is here.

    __out_of_memory()
        select_bad_process()            for each task
            badness()                   calculate badness of one task
                oom_kill_process()      search child
                    oom_kill_task()     kill target task and mm shared tasks with it

example, process-A have two thread, thread-A and thread-B and it have very
fat memory and each thread have following oom_adj and oom_score.

     thread-A: oom_adj = OOM_DISABLE, oom_score = 0
     thread-B: oom_adj = 0,           oom_score = very-high

Then, select_bad_process() select thread-B, but oom_kill_task() refuse
kill the task because thread-A have OOM_DISABLE.  Thus __out_of_memory()
call select_bad_process() again.  but select_bad_process() select the same
task.  It mean kernel fall in livelock.

The fact is, select_bad_process() must select killable task.  otherwise
OOM logic go into livelock.

And root cause is, oom_adj shouldn't be per-thread value.  it should be
per-process value because OOM-killer kill a process, not thread.  Thus
This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct signal_struct.  it naturally prevent
select_bad_process() choose wrong task.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:39 -07:00
Hugh Dickins
35451beecb ksm: unmerge is an origin of OOMs
Just as the swapoff system call allocates many pages of RAM to various
processes, perhaps triggering OOM, so "echo 2 >/sys/kernel/mm/ksm/run"
(unmerge) is liable to allocate many pages of RAM to various processes,
perhaps triggering OOM; and each is normally run from a modest admin
process (swapoff or shell), easily repeated until it succeeds.

So treat unmerge_and_remove_all_rmap_items() in the same way that we treat
try_to_unuse(): generalize PF_SWAPOFF to PF_OOM_ORIGIN, and bracket both
with that, to ask the OOM killer to kill them first, to prevent them from
spawning more and more OOM kills.

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:33 -07:00
KOSAKI Motohiro
0753ba01e1 mm: revert "oom: move oom_adj value"
The commit 2ff05b2b (oom: move oom_adj value) moveed the oom_adj value to
the mm_struct.  It was a very good first step for sanitize OOM.

However Paul Menage reported the commit makes regression to his job
scheduler.  Current OOM logic can kill OOM_DISABLED process.

Why? His program has the code of similar to the following.

	...
	set_oom_adj(OOM_DISABLE); /* The job scheduler never killed by oom */
	...
	if (vfork() == 0) {
		set_oom_adj(0); /* Invoked child can be killed */
		execve("foo-bar-cmd");
	}
	....

vfork() parent and child are shared the same mm_struct.  then above
set_oom_adj(0) doesn't only change oom_adj for vfork() child, it's also
change oom_adj for vfork() parent.  Then, vfork() parent (job scheduler)
lost OOM immune and it was killed.

Actually, fork-setting-exec idiom is very frequently used in userland program.
We must not break this assumption.

Then, this patch revert commit 2ff05b2b and related commit.

Reverted commit list
---------------------
- commit 2ff05b2b4e (oom: move oom_adj value from task_struct to mm_struct)
- commit 4d8b9135c3 (oom: avoid unnecessary mm locking and scanning for OOM_DISABLE)
- commit 8123681022 (oom: only oom kill exiting tasks with attached memory)
- commit 933b787b57 (mm: copy over oom_adj value at fork time)

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-18 16:31:13 -07:00
David Rientjes
8123681022 oom: only oom kill exiting tasks with attached memory
When a task is chosen for oom kill and is found to be PF_EXITING,
__oom_kill_task() is called to elevate the task's timeslice and give it
access to memory reserves so that it may quickly exit.

This privilege is unnecessary, however, if the task has already detached
its mm.  Although its possible for the mm to become detached later since
task_lock() is not held, __oom_kill_task() will simply be a no-op in such
circumstances.

Subsequently, it is no longer necessary to warn about killing mm-less
tasks since it is a no-op.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:45 -07:00
David Rientjes
4d8b9135c3 oom: avoid unnecessary mm locking and scanning for OOM_DISABLE
This moves the check for OOM_DISABLE to the badness heuristic so it is
only necessary to hold task_lock() once.  If the mm is OOM_DISABLE, the
score is 0, which is also correctly exported via /proc/pid/oom_score.
This requires that tasks with badness scores of 0 are prohibited from
being oom killed, which makes sense since they would not allow for future
memory freeing anyway.

Since the oom_adj value is a characteristic of an mm and not a task, it is
no longer necessary to check the oom_adj value for threads sharing the
same memory (except when simply issuing SIGKILLs for threads in other
thread groups).

Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:43 -07:00
David Rientjes
2ff05b2b4e oom: move oom_adj value from task_struct to mm_struct
The per-task oom_adj value is a characteristic of its mm more than the
task itself since it's not possible to oom kill any thread that shares the
mm.  If a task were to be killed while attached to an mm that could not be
freed because another thread were set to OOM_DISABLE, it would have
needlessly been terminated since there is no potential for future memory
freeing.

This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct mm_struct.  This requires task_lock() on a
task to check its oom_adj value to protect against exec, but it's already
necessary to take the lock when dereferencing the mm to find the total VM
size for the badness heuristic.

This fixes a livelock if the oom killer chooses a task and another thread
sharing the same memory has an oom_adj value of OOM_DISABLE.  This occurs
because oom_kill_task() repeatedly returns 1 and refuses to kill the
chosen task while select_bad_process() will repeatedly choose the same
task during the next retry.

Taking task_lock() in select_bad_process() to check for OOM_DISABLE and in
oom_kill_task() to check for threads sharing the same memory will be
removed in the next patch in this series where it will no longer be
necessary.

Writing to /proc/pid/oom_adj for a kthread will now return -EINVAL since
these threads are immune from oom killing already.  They simply report an
oom_adj value of OOM_DISABLE.

Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:43 -07:00
David Rientjes
6d2661ede5 oom: fix possible oom_dump_tasks NULL pointer
When /proc/sys/vm/oom_dump_tasks is enabled, it is possible to get a NULL
pointer for tasks that have detached mm's since task_lock() is not held
during the tasklist scan.  Add the task_lock().

Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-29 08:40:01 -07:00