Commit Graph

3 Commits (ebdfed4dc59d177cf26013a0c9b8ee9652e9a140)

Author SHA1 Message Date
Ryusuke Konishi ebdfed4dc5 nilfs2: add routines to roll back state of DAT file
This adds optional function to metadata files which makes a copy of
bmap, page caches, and b-tree node cache, and rolls back to the copy
as needed.

This enhancement is intended to displace gcdat inode that provides a
similar function in a different way.

In this patch, nilfs_shadow_map structure is added to store a copy of
the foregoing states.  nilfs_mdt_setup_shadow_map relates this
structure to a metadata file.  And, nilfs_mdt_save_to_shadow_map() and
nilfs_mdt_restore_from_shadow_map() provides save and restore
functions respectively.  Finally, nilfs_mdt_clear_shadow_map() clears
states of nilfs_shadow_map.

The copy of b-tree node cache and page cache is made by duplicating
only dirty pages into corresponding caches in nilfs_shadow_map.  Their
restoration is done by clearing dirty pages from original caches and
by copying dirty pages back from nilfs_shadow_map.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:37 +09:00
Ryusuke Konishi 4e13e66bee nilfs2: introduce check flag to btree node buffer
nilfs_btree_get_block() now may return untested buffer due to
read-ahead.  This adds a new flag for buffer heads so that the btree
code can check whether the buffer is already verified or not.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23 10:02:15 +09:00
Ryusuke Konishi 0bd49f9446 nilfs2: buffer and page operations
This adds common routines for buffer/page operations used in B-tree
node caches, meta data files, or segment constructor (log writer).

NILFS uses copy functions for buffers and pages due to the following
reasons:

 1) Relocation required for COW
    Since NILFS changes address of on-disk blocks, moving buffers
    in page cache is needed for the buffers which are not addressed
    by a file offset.  If buffer size is smaller than page size,
    this involves partial copy of pages.

 2) Freezing mmapped pages
    NILFS calculates checksums for each log to ensure its validity.
    If page data changes after the checksum calculation, this validity
    check will not work correctly.  To avoid this failure for mmaped
    pages, NILFS freezes their data by copying.

 3) Copy-on-write for DAT pages
    NILFS makes clones of DAT page caches in a copy-on-write manner
    during GC processes, and this ensures atomicity and consistency
    of the DAT in the transient state.

In addition, NILFS uses two obsolete functions, nilfs_mark_buffer_dirty()
and nilfs_clear_page_dirty() respectively.

* nilfs_mark_buffer_dirty() was required to avoid NULL pointer
  dereference faults:

  Since the page cache of B-tree node pages or data page cache of pseudo
  inodes does not have a valid mapping->host, calling mark_buffer_dirty()
  for their buffers causes the fault; it calls __mark_inode_dirty(NULL)
  through __set_page_dirty().

* nilfs_clear_page_dirty() was needed in the two cases:

 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
    page dirty flags when it copies back pages from the cloned cache
    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
    (dat->{i_mapping,i_btnode_cache}).

 2) Some B-tree operations like insertion or deletion may dispose buffers
    in dirty state, and this needs to cancel the dirty state of their
    pages.  clear_page_dirty_for_io() caused faults because it does not
    clear the dirty tag on the page cache.

Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-07 08:31:13 -07:00