While updating locking, b2efa05265 "block, cfq: unlink
cfq_io_context's immediately" moved elevator_exit_icq_fn() invocation
from exit_io_context() to the final ioc put. While this doesn't cause
catastrophic failure, it effectively removes task exit notification to
elevator and cause noticeable IO performance degradation with CFQ.
On task exit, CFQ used to immediately expire the slice if it was being
used by the exiting task as no more IO would be issued by the task;
however, after b2efa05265, the notification is lost and disk could sit
idle needlessly, leading to noticeable IO performance degradation for
certain workloads.
This patch renames ioc_exit_icq() to ioc_destroy_icq(), separates
elevator_exit_icq_fn() invocation into ioc_exit_icq() and invokes it
from exit_io_context(). ICQ_EXITED flag is added to avoid invoking
the callback more than once for the same icq.
Walking icq_list from ioc side and invoking elevator callback requires
reverse double locking. This may be better implemented using RCU;
unfortunately, using RCU isn't trivial. e.g. RCU protection would
need to cover request_queue and queue_lock switch on cleanup makes
grabbing queue_lock from RCU unsafe. Reverse double locking should
do, at least for now.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-bisected-by: Shaohua Li <shli@kernel.org>
LKML-Reference: <CANejiEVzs=pUhQSTvUppkDcc2TNZyfohBRLygW5zFmXyk5A-xQ@mail.gmail.com>
Tested-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reverse double lock dancing in ioc_release_fn() can be simplified by
just using trylock on the queue_lock and back out from ioc lock on
trylock failure. Simplify it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
icq->changed was used for ICQ_*_CHANGED bits. Rename it to flags and
access it under ioc->lock instead of using atomic bitops.
ioc_get_changed() is added so that the changed part can be fetched and
cleared as before.
icq->flags will be used to carry other flags.
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
11a3122f6c "block: strip out locking optimization in put_io_context()"
removed ioc_lock depth lockdep annoation along with locking
optimization; however, while recursing from put_io_context() is no
longer possible, ioc_release_fn() may still end up putting the last
reference of another ioc through elevator, which wlil grab ioc->lock
triggering spurious (as the ioc is always different one) A-A deadlock
warning.
As this can only happen one time from ioc_release_fn(), using non-zero
subclass from ioc_release_fn() is enough. Use subclass 1.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
put_io_context() performed a complex trylock dancing to avoid
deferring ioc release to workqueue. It was also broken on UP because
trylock was always assumed to succeed which resulted in unbalanced
preemption count.
While there are ways to fix the UP breakage, even the most
pathological microbench (forced ioc allocation and tight fork/exit
loop) fails to show any appreciable performance benefit of the
optimization. Strip it out. If there turns out to be workloads which
are affected by this change, simpler optimization from the discussion
thread can be applied later.
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <1328514611.21268.66.camel@sli10-conroe>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
6e736be7 "block: make ioc get/put interface more conventional and fix
race on alloction" added WARN_ON_ONCE() in exit_io_context() which
triggers if !PF_EXITING. All tasks hitting exit_io_context() from
task exit should have PF_EXITING set but task struct tearing down
after fork failure calls into the function without PF_EXITING,
triggering the condition.
WARNING: at block/blk-ioc.c:234 exit_io_context+0x40/0x92()
Pid: 17090, comm: trinity Not tainted 3.2.0-rc6-next-20111222-sasha-dirty #77
Call Trace:
[<ffffffff810b69a3>] warn_slowpath_common+0x8f/0xb2
[<ffffffff810b6a77>] warn_slowpath_null+0x18/0x1a
[<ffffffff8181a7a2>] exit_io_context+0x40/0x92
[<ffffffff810b58c9>] copy_process+0x126f/0x1453
[<ffffffff810b5c1b>] do_fork+0x120/0x3e9
[<ffffffff8106242f>] sys_clone+0x26/0x28
[<ffffffff82425803>] stub_clone+0x13/0x20
---[ end trace a2e4eb670b375238 ]---
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
While fixing io_context creation / task exit race condition,
6e736be7f2 "block: make ioc get/put interface more conventional and
fix race on alloction" also prevented an exiting (%PF_EXITING) task
from creating its own io_context. This is incorrect as exit path may
issue IOs, e.g. from exit_files(), and if those IOs are the first ones
issued by the task, io_context needs to be created to process the IOs.
Combined with the existing problem of io_context / io_cq creation
failure having the possibility of stalling IO, this problem results in
deterministic full IO lockup with certain workloads.
Fix it by allowing io_context creation regardless of %PF_EXITING for
%current.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
With the ioc changed, ioc_cgroup_changed() can be used by modular
code. So ensure that it is exported.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now block layer knows everything necessary to create and associate
icq's with requests. Move ioc_create_icq() to blk-ioc.c and update
get_request() such that, if elevator_type->icq_size is set, requests
are automatically associated with their matching icq's before
elv_set_request(). io_context reference is also managed by block core
on request alloc/free.
* Only ioprio/cgroup changed handling remains from cfq_get_cic().
Collapsed into cfq_set_request().
* This removes queue kicking on icq allocation failure (for now). As
icq allocation failure is rare and the only effect of queue kicking
achieved was possibily accelerating queue processing, this change
shouldn't be noticeable.
There is a larger underlying problem. Unlike request allocation,
icq allocation is not guaranteed to succeed eventually after
retries. The number of icq is unbound and thus mempool can't be the
solution either. This effectively adds allocation dependency on
memory free path and thus possibility of deadlock.
This usually wouldn't happen because icq allocation is not a hot
path and, even when the condition triggers, it's highly unlikely
that none of the writeback workers already has icq.
However, this is still possible especially if elevator is being
switched under high memory pressure, so we better get it fixed.
Probably the only solution is just bypassing elevator and appending
to dispatch queue on any elevator allocation failure.
* Comment added to explain how icq's are managed and synchronized.
This completes cleanup of io_context interface.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
With kmem_cache managed by blk-ioc, io_cq exit/release can be moved to
blk-ioc too. The odd ->io_cq->exit/release() callbacks are replaced
with elevator_ops->elevator_exit_icq_fn() with unlinking from both ioc
and q, and freeing automatically handled by blk-ioc. The elevator
operation only need to perform exit operation specific to the elevator
- in cfq's case, exiting the cfqq's.
Also, clearing of io_cq's on q detach is moved to block core and
automatically performed on elevator switch and q release.
Because the q io_cq points to might be freed before RCU callback for
the io_cq runs, blk-ioc code should remember to which cache the io_cq
needs to be freed when the io_cq is released. New field
io_cq->__rcu_icq_cache is added for this purpose. As both the new
field and rcu_head are used only after io_cq is released and the
q/ioc_node fields aren't, they are put into unions.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now that all io_cq related data structures are in block core layer,
io_cq lookup can be moved from cfq-iosched.c to blk-ioc.c.
Lookup logic from cfq_cic_lookup() is moved to ioc_lookup_icq() with
parameter return type changes (cfqd -> request_queue, cfq_io_cq ->
io_cq) and cfq_cic_lookup() becomes thin wrapper around
cfq_cic_lookup().
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently io_context and cfq logics are mixed without clear boundary.
Most of io_context is independent from cfq but cfq_io_context handling
logic is dispersed between generic ioc code and cfq.
cfq_io_context represents association between an io_context and a
request_queue, which is a concept useful outside of cfq, but it also
contains fields which are useful only to cfq.
This patch takes out generic part and put it into io_cq (io
context-queue) and the rest into cfq_io_cq (cic moniker remains the
same) which contains io_cq. The following changes are made together.
* cfq_ttime and cfq_io_cq now live in cfq-iosched.c.
* All related fields, functions and constants are renamed accordingly.
* ioc->ioc_data is now "struct io_cq *" instead of "void *" and
renamed to icq_hint.
This prepares for io_context API cleanup. Documentation is currently
sparse. It will be added later.
Changes in this patch are mechanical and don't cause functional
change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When called under queue_lock, current_io_context() triggers lockdep
warning if it hits allocation path. This is because io_context
installation is protected by task_lock which is not IRQ safe, so it
triggers irq-unsafe-lock -> irq -> irq-safe-lock -> irq-unsafe-lock
deadlock warning.
Given the restriction, accessor + creator rolled into one doesn't work
too well. Drop current_io_context() and let the users access
task->io_context directly inside queue_lock combined with explicit
creation using create_io_context().
Future ioc updates will further consolidate ioc access and the create
interface will be unexported.
While at it, relocate ioc internal interface declarations in blk.h and
add section comments before and after.
This patch does not introduce functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
cic is association between io_context and request_queue. A cic is
linked from both ioc and q and should be destroyed when either one
goes away. As ioc and q both have their own locks, locking becomes a
bit complex - both orders work for removal from one but not from the
other.
Currently, cfq tries to circumvent this locking order issue with RCU.
ioc->lock nests inside queue_lock but the radix tree and cic's are
also protected by RCU allowing either side to walk their lists without
grabbing lock.
This rather unconventional use of RCU quickly devolves into extremely
fragile convolution. e.g. The following is from cfqd going away too
soon after ioc and q exits raced.
general protection fault: 0000 [#1] PREEMPT SMP
CPU 2
Modules linked in:
[ 88.503444]
Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs
RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0
...
Call Trace:
[<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90
[<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20
[<ffffffff81389130>] exit_io_context+0x100/0x140
[<ffffffff81098a29>] do_exit+0x579/0x850
[<ffffffff81098d5b>] do_group_exit+0x5b/0xd0
[<ffffffff81098de7>] sys_exit_group+0x17/0x20
[<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b
The only real hot path here is cic lookup during request
initialization and avoiding extra locking requires very confined use
of RCU. This patch makes cic removal from both ioc and request_queue
perform double-locking and unlink immediately.
* From q side, the change is almost trivial as ioc->lock nests inside
queue_lock. It just needs to grab each ioc->lock as it walks
cic_list and unlink it.
* From ioc side, it's a bit more difficult because of inversed lock
order. ioc needs its lock to walk its cic_list but can't grab the
matching queue_lock and needs to perform unlock-relock dancing.
Unlinking is now wholly done from put_io_context() and fast path is
optimized by using the queue_lock the caller already holds, which is
by far the most common case. If the ioc accessed multiple devices,
it tries with trylock. In unlikely cases of fast path failure, it
falls back to full double-locking dance from workqueue.
Double-locking isn't the prettiest thing in the world but it's *far*
simpler and more understandable than RCU trick without adding any
meaningful overhead.
This still leaves a lot of now unnecessary RCU logics. Future patches
will trim them.
-v2: Vivek pointed out that cic->q was being dereferenced after
cic->release() was called. Updated to use local variable @this_q
instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
ioprio/cgroup change was handled by marking the changed state in ioc
and, on the following access to the ioc, performing RCU-protected
iteration through all cic's grabbing the matching queue_lock.
This patch moves the changed state to each cic. When ioprio or cgroup
changes, the respective bit is set on all cic's of the ioc and when
each of those cic (not ioc) is accessed, change is applied for that
specific ioc-queue pair.
This also fixes the following two race conditions between setting and
clearing of changed states.
* Missing barrier between assign/load of ioprio and ioprio_changed
allowed applying old ioprio.
* Change requests could happen between application of change and
clearing of changed variables.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Ignoring copy_io() during fork, io_context can be allocated from two
places - current_io_context() and set_task_ioprio(). The former is
always called from local task while the latter can be called from
different task. The synchornization between them are peculiar and
dubious.
* current_io_context() doesn't grab task_lock() and assumes that if it
saw %NULL ->io_context, it would stay that way until allocation and
assignment is complete. It has smp_wmb() between alloc/init and
assignment.
* set_task_ioprio() grabs task_lock() for assignment and does
smp_read_barrier_depends() between "ioc = task->io_context" and "if
(ioc)". Unfortunately, this doesn't achieve anything - the latter
is not a dependent load of the former. ie, if ioc itself were being
dereferenced "ioc->xxx", it would mean something (not sure what tho)
but as the code currently stands, the dependent read barrier is
noop.
As only one of the the two test-assignment sequences is task_lock()
protected, the task_lock() can't do much about race between the two.
Nothing prevents current_io_context() and set_task_ioprio() allocating
its own ioc for the same task and overwriting the other's.
Also, set_task_ioprio() can race with exiting task and create a new
ioc after exit_io_context() is finished.
ioc get/put doesn't have any reason to be complex. The only hot path
is accessing the existing ioc of %current, which is simple to achieve
given that ->io_context is never destroyed as long as the task is
alive. All other paths can happily go through task_lock() like all
other task sub structures without impacting anything.
This patch updates ioc get/put so that it becomes more conventional.
* alloc_io_context() is replaced with get_task_io_context(). This is
the only interface which can acquire access to ioc of another task.
On return, the caller has an explicit reference to the object which
should be put using put_io_context() afterwards.
* The functionality of current_io_context() remains the same but when
creating a new ioc, it shares the code path with
get_task_io_context() and always goes through task_lock().
* get_io_context() now means incrementing ref on an ioc which the
caller already has access to (be that an explicit refcnt or implicit
%current one).
* PF_EXITING inhibits creation of new io_context and once
exit_io_context() is finished, it's guaranteed that both ioc
acquisition functions return %NULL.
* All users are updated. Most are trivial but
smp_read_barrier_depends() removal from cfq_get_io_context() needs a
bit of explanation. I suppose the original intention was to ensure
ioc->ioprio is visible when set_task_ioprio() allocates new
io_context and installs it; however, this wouldn't have worked
because set_task_ioprio() doesn't have wmb between init and install.
There are other problems with this which will be fixed in another
patch.
* While at it, use NUMA_NO_NODE instead of -1 for wildcard node
specification.
-v2: Vivek spotted contamination from debug patch. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
* int return from put_io_context() wasn't used by anybody. Make it
return void like other put functions and docbook-fy the function
comment.
* Reorder dummy declarations for !CONFIG_BLOCK case a bit.
* Make alloc_ioc_context() use __GFP_ZERO allocation, take init out of
if block and drop 0'ing.
* Docbook-fy current_io_context() comment.
This patch doesn't introduce any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If we rename the return of alloc_io_context() and get_io_context() from
"ret" to "ioc" the code get's (a bit) more readable and (a lot) more
grepable.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
list_entry() and hlist_entry() are both simply aliases for
container_of(), but since io_context.cic_list.first is an hlist_node one
should at least use the correct alias.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
If we don't explicitly initialize it to zero, CFQ might think that
cgroup of ioc has changed and it generates lots of unnecessary calls
to call_for_each_cic(changed_cgroup). Fix it.
cfq_get_io_context()
cfq_ioc_set_cgroup()
call_for_each_cic(ioc, changed_cgroup)
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This patch fixes a spelling error in a source code comment and removes
superfluous braces in the function exit_io_context().
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
As the comment says the initial value of last_waited is never used, so
there is no need to initialise it with the current jiffies. Jiffies is
hot enough without accessing it for no reason.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
With CLONE_IO, parent's io_context->nr_tasks is incremented, but never
decremented whenever copy_process() fails afterwards, which prevents
exit_io_context() from calling IO schedulers exit functions.
Give a task_struct to exit_io_context(), and call exit_io_context() instead of
put_io_context() in copy_process() cleanup path.
Signed-off-by: Louis Rilling <louis.rilling@kerlabs.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
With CLONE_IO, copy_io() increments both ioc->refcount and ioc->nr_tasks.
However exit_io_context() only decrements ioc->refcount if ioc->nr_tasks
reaches 0.
Always call put_io_context() in exit_io_context().
Signed-off-by: Louis Rilling <louis.rilling@kerlabs.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Currently io_context has an atomic_t(32-bit) as refcount. In the case of
cfq, for each device against whcih a task does I/O, a reference to the
io_context would be taken. And when there are multiple process sharing
io_contexts(CLONE_IO) would also have a reference to the same io_context.
Theoretically the possible maximum number of processes sharing the same
io_context + the number of disks/cfq_data referring to the same io_context
can overflow the 32-bit counter on a very high-end machine.
Even though it is an improbable case, let us make it atomic_long_t.
Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
put_io_context() drops the RCU read lock before calling into cfq_dtor(),
however we need to hold off freeing there before grabbing and
dereferencing the first object on the list.
So extend the rcu_read_lock() scope to cover the calling of cfq_dtor(),
and optimize cfq_free_io_context() to use a new variant for
call_for_each_cic() that assumes the RCU read lock is already held.
Hit in the wild by Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
It's cumbersome to browse a radix tree from start to finish, especially
since we modify keys when a process exits. So add a hlist for the single
purpose of browsing over all known cfq_io_contexts, used for exit,
io prio change, etc.
This fixes http://bugzilla.kernel.org/show_bug.cgi?id=9948
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
It blindly copies everything in the io_context, including the lock.
That doesn't work so well for either lock ordering or lockdep.
There seems zero point in swapping io contexts on a request to request
merge, so the best point of action is to just remove it.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>