Commit Graph

7 Commits (dd6eec242bb2df73743f07535d2bacd6707c6300)

Author SHA1 Message Date
Paul Gortmaker 4bb33cc890 crypto: add module.h to those files that are explicitly using it
Part of the include cleanups means that the implicit
inclusion of module.h via device.h is going away.  So
fix things up in advance.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:31:11 -04:00
Dan Williams 5157b4aa5b raid6: fix recovery performance regression
The raid6 recovery code should immediately drop back to the optimized
synchronous path when a p+q dma resource is not available.  Otherwise we
run the non-optimized/multi-pass async code in sync mode.

Verified with raid6test (NDISKS=255)

Applies to kernels >= 2.6.32.

Cc: <stable@kernel.org>
Acked-by: NeilBrown <neilb@suse.de>
Reported-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-05 07:52:56 -07:00
Dan Williams da17bf4306 async_tx: fix asynchronous raid6 recovery for ddf layouts
The raid6 recovery code currently requires special handling of the
4-disk and 5-disk recovery scenarios for the native layout.  Quoting
from commit 0a82a623:

     In these situations the default N-disk algorithm will present
     0-source or 1-source operations to dma devices.  To cover for
     dma devices where the minimum source count is 2 we implement
     4-disk and 5-disk handling in the recovery code.

The ddf layout presents disks=6 and disks=7 to the recovery code in
these situations.  Instead of looking at the number of disks count the
number of non-zero sources in the list and call the special case code
when the number of non-failed sources is 0 or 1.

[neilb@suse.de: replace 'ddf' flag with counting good sources]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-10-19 23:34:46 -07:00
NeilBrown 5dd33c9a4c md/async: don't pass a memory pointer as a page pointer.
md/raid6 passes a list of 'struct page *' to the async_tx routines,
which then either DMA map them for offload, or take the page_address
for CPU based calculations.

For RAID6 we sometime leave 'blanks' in the list of pages.
For CPU based calcs, we want to treat theses as a page of zeros.
For offloaded calculations, we simply don't pass a page to the
hardware.

Currently the 'blanks' are encoded as a pointer to
raid6_empty_zero_page.  This is a 4096 byte memory region, not a
'struct page'.  This is mostly handled correctly but is rather ugly.

So change the code to pass and expect a NULL pointer for the blanks.
When taking page_address of a page, we need to check for a NULL and
in that case use raid6_empty_zero_page.

Signed-off-by: NeilBrown <neilb@suse.de>
2009-10-16 16:40:25 +11:00
Dan Williams 1f6672d44c async_tx/raid6: add missing dma_unmap calls to the async fail case
If we are unable to offload async_mult() or async_sum_product(), then
unmap the buffers before falling through to the synchronous path.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-09-21 10:47:40 -07:00
Dan Williams 0403e38277 dmaengine: add fence support
Some engines optimize operation by reading ahead in the descriptor chain
such that descriptor2 may start execution before descriptor1 completes.
If descriptor2 depends on the result from descriptor1 then a fence is
required (on descriptor2) to disable this optimization.  The async_tx
api could implicitly identify dependencies via the 'depend_tx'
parameter, but that would constrain cases where the dependency chain
only specifies a completion order rather than a data dependency.  So,
provide an ASYNC_TX_FENCE to explicitly identify data dependencies.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-09-08 17:42:50 -07:00
Dan Williams 0a82a6239b async_tx: add support for asynchronous RAID6 recovery operations
async_raid6_2data_recov() recovers two data disk failures

 async_raid6_datap_recov() recovers a data disk and the P disk

These routines are a port of the synchronous versions found in
drivers/md/raid6recov.c.  The primary difference is breaking out the xor
operations into separate calls to async_xor.  Two helper routines are
introduced to perform scalar multiplication where needed.
async_sum_product() multiplies two sources by scalar coefficients and
then sums (xor) the result.  async_mult() simply multiplies a single
source by a scalar.

This implemention also includes, in contrast to the original
synchronous-only code, special case handling for the 4-disk and 5-disk
array cases.  In these situations the default N-disk algorithm will
present 0-source or 1-source operations to dma devices.  To cover for
dma devices where the minimum source count is 2 we implement 4-disk and
5-disk handling in the recovery code.

[ Impact: asynchronous raid6 recovery routines for 2data and datap cases ]

Cc: Yuri Tikhonov <yur@emcraft.com>
Cc: Ilya Yanok <yanok@emcraft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-08-29 19:09:27 -07:00