When doing synchronous writes because wbc->sync_mode is set to
WBC_SYNC_ALL, send the write request using WRITE_SYNC, so that we
don't unduly block system calls such as fsync().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Jan Kara <jack@suse.cz>
Move some block device related code out from buffer.c and put it in
block_dev.c. I'm trying to move non-buffer_head code out of buffer.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Nick Piggin noticed this (very unlikely) race between setting a page
dirty and creating the buffers for it - we need to hold the mapping
private_lock until we've set the page dirty bit in order to make sure
that create_empty_buffers() might not build up a set of buffers without
the dirty bits set when the page is dirty.
I doubt anybody has ever hit this race (and it didn't solve the issue
Nick was looking at), but as Nick says: "Still, it does appear to solve
a real race, which we should close."
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
block: fix deadlock in blk_abort_queue() for drivers that readd to timeout list
block: fix booting from partitioned md array
block: revert part of 18ce3751cc
cciss: PCI power management reset for kexec
paride/pg.c: xs(): &&/|| confusion
fs/bio: bio_alloc_bioset: pass right object ptr to mempool_free
block: fix bad definition of BIO_RW_SYNC
bsg: Fix sense buffer bug in SG_IO
YAMAMOTO-san noticed that task_dirty_inc doesn't seem to be called properly for
cases where set_page_dirty is not used to dirty a page (eg. mark_buffer_dirty).
Additionally, there is some inconsistency about when task_dirty_inc is
called. It is used for dirty balancing, however it even gets called for
__set_page_dirty_no_writeback.
So rather than increment it in a set_page_dirty wrapper, move it down to
exactly where the dirty page accounting stats are incremented.
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The above commit added WRITE_SYNC and switched various places to using
that for committing writes that will be waited upon immediately after
submission. However, this causes a performance regression with AS and CFQ
for ext3 at least, since sync_dirty_buffer() will submit some writes with
WRITE_SYNC while ext3 has sumitted others dependent writes without the sync
flag set. This causes excessive anticipation/idling in the IO scheduler
because sync and async writes get interleaved, causing a big performance
regression for the below test case (which is meant to simulate sqlite
like behaviour).
---- test case ----
int main(int argc, char **argv)
{
int fdes, i;
FILE *fp;
struct timeval start;
struct timeval end;
struct timeval res;
gettimeofday(&start, NULL);
for (i=0; i<ROWS; i++) {
fp = fopen("test_file", "a");
fprintf(fp, "Some Text Data\n");
fdes = fileno(fp);
fsync(fdes);
fclose(fp);
}
gettimeofday(&end, NULL);
timersub(&end, &start, &res);
fprintf(stdout, "time to write %d lines is %ld(msec)\n", ROWS,
(res.tv_sec*1000000 + res.tv_usec)/1000);
return 0;
}
-------------------
Thanks to Sean.White@APCC.com for tracking down this performance
regression and providing a test case.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This is a modification of a patch by Bill Pemberton <wfp5p@virginia.edu>
nobh_write_end() could call attach_nobh_buffers() with head == NULL.
This would result in a trap when attach_nobh_buffers() attempted to
access bh->b_this_page.
This can be illustrated by running the writev01 testcase from LTP on jfs.
This error was introduced by commit 5b41e74a "vfs: fix data leak in
nobh_write_end()". That patch did not take into account that if
PageMappedToDisk() is true upon entry to nobh_write_begin(), then no
buffers will be allocated for the page. In that case, we won't have to
worry about a failed write leaving unitialized data in the page.
Of course, head != NULL implies !page_has_buffers(page), so no need to
test both.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: Dmitri Monakhov <dmonakhov@openvz.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ioctls for the generic freeze feature are below.
o Freeze the filesystem
int ioctl(int fd, int FIFREEZE, arg)
fd: The file descriptor of the mountpoint
FIFREEZE: request code for the freeze
arg: Ignored
Return value: 0 if the operation succeeds. Otherwise, -1
o Unfreeze the filesystem
int ioctl(int fd, int FITHAW, arg)
fd: The file descriptor of the mountpoint
FITHAW: request code for unfreeze
arg: Ignored
Return value: 0 if the operation succeeds. Otherwise, -1
Error number: If the filesystem has already been unfrozen,
errno is set to EINVAL.
[akpm@linux-foundation.org: fix CONFIG_BLOCK=n]
Signed-off-by: Takashi Sato <t-sato@yk.jp.nec.com>
Signed-off-by: Masayuki Hamaguchi <m-hamaguchi@ys.jp.nec.com>
Cc: <xfs-masters@oss.sgi.com>
Cc: <linux-ext4@vger.kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, ext3 in mainline Linux doesn't have the freeze feature which
suspends write requests. So, we cannot take a backup which keeps the
filesystem's consistency with the storage device's features (snapshot and
replication) while it is mounted.
In many case, a commercial filesystem (e.g. VxFS) has the freeze feature
and it would be used to get the consistent backup.
If Linux's standard filesystem ext3 has the freeze feature, we can do it
without a commercial filesystem.
So I have implemented the ioctls of the freeze feature.
I think we can take the consistent backup with the following steps.
1. Freeze the filesystem with the freeze ioctl.
2. Separate the replication volume or create the snapshot
with the storage device's feature.
3. Unfreeze the filesystem with the unfreeze ioctl.
4. Take the backup from the separated replication volume
or the snapshot.
This patch:
VFS:
Changed the type of write_super_lockfs and unlockfs from "void"
to "int" so that they can return an error.
Rename write_super_lockfs and unlockfs of the super block operation
freeze_fs and unfreeze_fs to avoid a confusion.
ext3, ext4, xfs, gfs2, jfs:
Changed the type of write_super_lockfs and unlockfs from "void"
to "int" so that write_super_lockfs returns an error if needed,
and unlockfs always returns 0.
reiserfs:
Changed the type of write_super_lockfs and unlockfs from "void"
to "int" so that they always return 0 (success) to keep a current behavior.
Signed-off-by: Takashi Sato <t-sato@yk.jp.nec.com>
Signed-off-by: Masayuki Hamaguchi <m-hamaguchi@ys.jp.nec.com>
Cc: <xfs-masters@oss.sgi.com>
Cc: <linux-ext4@vger.kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the write_begin/write_end aops, page_symlink was broken because it
could no longer pass a GFP_NOFS type mask into the point where the
allocations happened. They are done in write_begin, which would always
assume that the filesystem can be entered from reclaim. This bug could
cause filesystem deadlocks.
The funny thing with having a gfp_t mask there is that it doesn't really
allow the caller to arbitrarily tinker with the context in which it can be
called. It couldn't ever be GFP_ATOMIC, for example, because it needs to
take the page lock. The only thing any callers care about is __GFP_FS
anyway, so turn that into a single flag.
Add a new flag for write_begin, AOP_FLAG_NOFS. Filesystems can now act on
this flag in their write_begin function. Change __grab_cache_page to
accept a nofs argument as well, to honour that flag (while we're there,
change the name to grab_cache_page_write_begin which is more instructive
and does away with random leading underscores).
This is really a more flexible way to go in the end anyway -- if a
filesystem happens to want any extra allocations aside from the pagecache
ones in ints write_begin function, it may now use GFP_KERNEL (rather than
GFP_NOFS) for common case allocations (eg. ocfs2_alloc_write_ctxt, for a
random example).
[kosaki.motohiro@jp.fujitsu.com: fix ubifs]
[kosaki.motohiro@jp.fujitsu.com: fix fuse]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@kernel.org> [2.6.28.x]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Cleaned up the calling convention: just pass in the AOP flags
untouched to the grab_cache_page_write_begin() function. That
just simplifies everybody, and may even allow future expansion of the
logic. - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow the scsi request REQ_QUIET flag to be propagated to the buffer
file system layer. The basic ideas is to pass the flag from the scsi
request to the bio (block IO) and then to the buffer layer. The buffer
layer can then suppress needless printks.
This patch declutters the kernel log by removed the 40-50 (per lun)
buffer io error messages seen during a boot in my multipath setup . It
is a good chance any real errors will be missed in the "noise" it the
logs without this patch.
During boot I see blocks of messages like
"
__ratelimit: 211 callbacks suppressed
Buffer I/O error on device sdm, logical block 5242879
Buffer I/O error on device sdm, logical block 5242879
Buffer I/O error on device sdm, logical block 5242847
Buffer I/O error on device sdm, logical block 1
Buffer I/O error on device sdm, logical block 5242878
Buffer I/O error on device sdm, logical block 5242879
Buffer I/O error on device sdm, logical block 5242879
Buffer I/O error on device sdm, logical block 5242879
Buffer I/O error on device sdm, logical block 5242879
Buffer I/O error on device sdm, logical block 5242872
"
in my logs.
My disk environment is multipath fiber channel using the SCSI_DH_RDAC
code and multipathd. This topology includes an "active" and "ghost"
path for each lun. IO's to the "ghost" path will never complete and the
SCSI layer, via the scsi device handler rdac code, quick returns the IOs
to theses paths and sets the REQ_QUIET scsi flag to suppress the scsi
layer messages.
I am wanting to extend the QUIET behavior to include the buffer file
system layer to deal with these errors as well. I have been running this
patch for a while now on several boxes without issue. A few runs of
bonnie++ show no noticeable difference in performance in my setup.
Thanks for John Stultz for the quiet_error finalization.
Submitted-by: Keith Mannthey <kmannth@us.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
udf_clear_inode() can leave behind buffers on mapping's i_private list (when
we truncated preallocation). Call invalidate_inode_buffers() so that the list
is properly cleaned-up before we return from udf_clear_inode(). This is ugly
and suggest that we should cleanup preallocation earlier than in clear_inode()
but currently there's no such call available since drop_inode() is called under
inode lock and thus is unusable for disk operations.
Signed-off-by: Jan Kara <jack@suse.cz>
trylock_buffer and unlock_buffer open and close a critical section.
Hence, we can use the lock bitops to get the desired memory ordering.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported by Milan Broz <mbroz@redhat.com>, commit 18ce3751 inadvertently
made submit_bh() discard the barrier bit for a WRITE_SYNC request. Fix
that up.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Like the page lock change, this also requires name change, so convert the
raw test_and_set bitop to a trylock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Uninline the __remove_assoc_queue() function in fs/buffer.c, called at too
many places and too long to really be inlined. Size results:
text data bss dec hex filename
1134606 118840 212992 1466438 166046 vmlinux.old
1134303 118840 212992 1466135 165f17 vmlinux
-303 0 0 -303 -12F +/-
This patch is part of the Linux Tiny project and has been originally
written by Matt Mackall <mpm@selenic.com>.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we read some part of a file through pagecache, if there is a
pagecache of corresponding index but this page is not uptodate, read IO
is issued and this page will be uptodate.
I think this is good for pagesize == blocksize environment but there is
room for improvement on pagesize != blocksize environment. Because in
this case a page can have multiple buffers and even if a page is not
uptodate, some buffers can be uptodate.
So I suggest that when all buffers which correspond to a part of a file
that we want to read are uptodate, use this pagecache and copy data from
this pagecache to user buffer even if a page is not uptodate. This can
reduce read IO and improve system throughput.
I wrote a benchmark program and got result number with this program.
This benchmark do:
1: mount and open a test file.
2: create a 512MB file.
3: close a file and umount.
4: mount and again open a test file.
5: pwrite randomly 300000 times on a test file. offset is aligned
by IO size(1024bytes).
6: measure time of preading randomly 100000 times on a test file.
The result was:
2.6.26
330 sec
2.6.26-patched
226 sec
Arch:i386
Filesystem:ext3
Blocksize:1024 bytes
Memory: 1GB
On ext3/4, a file is written through buffer/block. So random read/write
mixed workloads or random read after random write workloads are optimized
with this patch under pagesize != blocksize environment. This test result
showed this.
The benchmark program is as follows:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#define LEN 1024
#define LOOP 1024*512 /* 512MB */
main(void)
{
unsigned long i, offset, filesize;
int fd;
char buf[LEN];
time_t t1, t2;
if (mount("/dev/sda1", "/root/test1/", "ext3", 0, 0) < 0) {
perror("cannot mount\n");
exit(1);
}
memset(buf, 0, LEN);
fd = open("/root/test1/testfile", O_CREAT|O_RDWR|O_TRUNC);
if (fd < 0) {
perror("cannot open file\n");
exit(1);
}
for (i = 0; i < LOOP; i++)
write(fd, buf, LEN);
close(fd);
if (umount("/root/test1/") < 0) {
perror("cannot umount\n");
exit(1);
}
if (mount("/dev/sda1", "/root/test1/", "ext3", 0, 0) < 0) {
perror("cannot mount\n");
exit(1);
}
fd = open("/root/test1/testfile", O_RDWR);
if (fd < 0) {
perror("cannot open file\n");
exit(1);
}
filesize = LEN * LOOP;
for (i = 0; i < 300000; i++){
offset = (random() % filesize) & (~(LEN - 1));
pwrite(fd, buf, LEN, offset);
}
printf("start test\n");
time(&t1);
for (i = 0; i < 100000; i++){
offset = (random() % filesize) & (~(LEN - 1));
pread(fd, buf, LEN, offset);
}
time(&t2);
printf("%ld sec\n", t2-t1);
close(fd);
if (umount("/root/test1/") < 0) {
perror("cannot umount\n");
exit(1);
}
}
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jan Kara <jack@ucw.cz>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use WARN() instead of a printk+WARN_ON() pair; this way the message
becomes part of the warning section for better reporting/collection.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mapping->tree_lock has no read lockers. convert the lock from an rwlock
to a spinlock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export mpage_bio_submit() and __mpage_writepage() for the benefit of
ext4's delayed allocation support. Also change __block_write_full_page
so that if buffers that have the BH_Delay flag set it will call
get_block() to get the physical block allocated, just as in the
!BH_Mapped case.
Signed-off-by: Alex Tomas <alex@clusterfs.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There's no need to call mark_inode_dirty() under page lock in
generic_write_end(). It unnecessarily makes hold time of page lock longer
and more importantly it forces locking order of page lock and transaction
start for journaling filesystems.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
fsync_buffers_list() and sync_dirty_buffer() both issue async writes and
then immediately wait on them. Conceptually, that makes them sync writes
and we should treat them as such so that the IO schedulers can handle
them appropriately.
This patch fixes a write starvation issue that Lin Ming reported, where
xx is stuck for more than 2 minutes because of a large number of
synchronous IO in the system:
INFO: task kjournald:20558 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this
message.
kjournald D ffff810010820978 6712 20558 2
ffff81022ddb1d10 0000000000000046 ffff81022e7baa10 ffffffff803ba6f2
ffff81022ecd0000 ffff8101e6dc9160 ffff81022ecd0348 000000008048b6cb
0000000000000086 ffff81022c4e8d30 0000000000000000 ffffffff80247537
Call Trace:
[<ffffffff803ba6f2>] kobject_get+0x12/0x17
[<ffffffff80247537>] getnstimeofday+0x2f/0x83
[<ffffffff8029c1ac>] sync_buffer+0x0/0x3f
[<ffffffff8066d195>] io_schedule+0x5d/0x9f
[<ffffffff8029c1e7>] sync_buffer+0x3b/0x3f
[<ffffffff8066d3f0>] __wait_on_bit+0x40/0x6f
[<ffffffff8029c1ac>] sync_buffer+0x0/0x3f
[<ffffffff8066d48b>] out_of_line_wait_on_bit+0x6c/0x78
[<ffffffff80243909>] wake_bit_function+0x0/0x23
[<ffffffff8029e3ad>] sync_dirty_buffer+0x98/0xcb
[<ffffffff8030056b>] journal_commit_transaction+0x97d/0xcb6
[<ffffffff8023a676>] lock_timer_base+0x26/0x4b
[<ffffffff8030300a>] kjournald+0xc1/0x1fb
[<ffffffff802438db>] autoremove_wake_function+0x0/0x2e
[<ffffffff80302f49>] kjournald+0x0/0x1fb
[<ffffffff802437bb>] kthread+0x47/0x74
[<ffffffff8022de51>] schedule_tail+0x28/0x5d
[<ffffffff8020cac8>] child_rip+0xa/0x12
[<ffffffff80243774>] kthread+0x0/0x74
[<ffffffff8020cabe>] child_rip+0x0/0x12
Lin Ming confirms that this patch fixes the issue. I've run tests with
it for the past week and no ill effects have been observed, so I'm
proposing it for inclusion into 2.6.26.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
It's not even passed on to smp_call_function() anymore, since that
was removed. So kill it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cont_expand_zero() can become static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the obsolete and no longer used generic_commit_write().
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On the systems, ftruncate() which expand size for FAT became the cause
of OOM. The cont_expand_zero() filled all memory with dirty pages,
and since disk is very slow, limit of page scanning was exceeded, then
it triggered OOM.
This adds balance_dirty_pages_ratelimited() to avoid filling memory
with dirty pages.
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The MPOL_BIND policy creates a zonelist that is used for allocations
controlled by that mempolicy. As the per-node zonelist is already being
filtered based on a zone id, this patch adds a version of __alloc_pages() that
takes a nodemask for further filtering. This eliminates the need for
MPOL_BIND to create a custom zonelist.
A positive benefit of this is that allocations using MPOL_BIND now use the
local node's distance-ordered zonelist instead of a custom node-id-ordered
zonelist. I.e., pages will be allocated from the closest allowed node with
available memory.
[Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filtering zonelists requires very frequent use of zone_idx(). This is costly
as it involves a lookup of another structure and a substraction operation. As
the zone_idx is often required, it should be quickly accessible. The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.
This patch introduces a struct zoneref to store a zone pointer and a zone
index. The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary. Helpers are given for accessing the zone index as
well as the node index.
[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations. Based on the zones
allowed by a gfp mask, one of these zonelists is selected. All of these
zonelists consume memory and occupy cache lines.
This patch replaces the multiple zonelists per-node with two zonelists. The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages. The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.
An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a node_zonelist() helper function. It is used to lookup the
appropriate zonelist given a node and a GFP mask. The patch on its own is a
cleanup but it helps clarify parts of the two-zonelist-per-node patchset. If
necessary, it can be merged with the next patch in this set without problems.
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following patches replace multiple zonelists per node with two zonelists
that are filtered based on the GFP flags. The patches as a set fix a bug with
regard to the use of MPOL_BIND and ZONE_MOVABLE. With this patchset, the
MPOL_BIND will apply to the two highest zones when the highest zone is
ZONE_MOVABLE. This should be considered as an alternative fix for the
MPOL_BIND+ZONE_MOVABLE in 2.6.23 to the previously discussed hack that filters
only custom zonelists.
The first patch cleans up an inconsistency where direct reclaim uses
zonelist->zones where other places use zonelist.
The second patch introduces a helper function node_zonelist() for looking up
the appropriate zonelist for a GFP mask which simplifies patches later in the
set.
The third patch defines/remembers the "preferred zone" for numa statistics, as
it is no longer always the first zone in a zonelist.
The forth patch replaces multiple zonelists with two zonelists that are
filtered. The two zonelists are due to the fact that the memoryless patchset
introduces a second set of zonelists for __GFP_THISNODE.
The fifth patch introduces helper macros for retrieving the zone and node
indices of entries in a zonelist.
The final patch introduces filtering of the zonelists based on a nodemask.
Two zonelists exist per node, one for normal allocations and one for
__GFP_THISNODE.
Performance results varied depending on the machine configuration. In real
workloads the gain/loss will depend on how much the userspace portion of the
benchmark benefits from having more cache available due to reduced referencing
of zonelists.
These are the range of performance losses/gains when running against
2.6.24-rc4-mm1. The set and these machines are a mix of i386, x86_64 and
ppc64 both NUMA and non-NUMA.
loss to gain
Total CPU time on Kernbench: -0.86% to 1.13%
Elapsed time on Kernbench: -0.79% to 0.76%
page_test from aim9: -4.37% to 0.79%
brk_test from aim9: -0.71% to 4.07%
fork_test from aim9: -1.84% to 4.60%
exec_test from aim9: -0.71% to 1.08%
This patch:
The allocator deals with zonelists which indicate the order in which zones
should be targeted for an allocation. Similarly, direct reclaim of pages
iterates over an array of zones. For consistency, this patch converts direct
reclaim to use a zonelist. No functionality is changed by this patch. This
simplifies zonelist iterators in the next patch.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migrate flags must be set on slab creation as agreed upon when the antifrag
logic was reviewed. Otherwise some slabs of a slabcache will end up in the
unmovable and others in the reclaimable section depending on which flag was
active when a new slab page was allocated.
This likely slid in somehow when antifrag was merged. Remove it.
The buffer_heads are always allocated with __GFP_RECLAIMABLE because the
SLAB_RECLAIM_ACCOUNT option is set. The set_migrateflags() never had any
effect there.
Radix tree allocations are not directly reclaimable but they are allocated
with __GFP_RECLAIMABLE set on each allocation. We now set
SLAB_RECLAIM_ACCOUNT on radix tree slab creation making sure that radix
tree slabs are consistently placed in the reclaimable section. Radix tree
slabs will also be accounted as such.
There is then no user left of set_migratepages. So remove it.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikulas Patocka noted that the optimization where we check if a buffer
was already dirty (and we avoid re-dirtying it) was not really SMP-safe.
Since the read of the old status was not synchronized with anything, an
aggressive CPU re-ordering of memory accesses might have moved that read
up to before the data was even written to the buffer, and another CPU
that cleaned it again, causing the newly dirty state to never actually
hit the disk.
Admittedly this would probably never trigger in practice, but it's still
wrong.
Mikulas sent a patch that fixed the problem, but I dislike the subtlety
of the whole optimization, so this is an alternate fix that is more
explicit about the particular SMP ordering for the optimization, and
separates out the speculative reads of the buffer state into its own
conditional (and makes the memory barrier only happen if we are likely
to actually hit the optimized case in the first place).
I considered removing the optimization entirely, but Andrew argued for
it's continued existence. I'm a push-over.
Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc notation warnings in fs/.
Warning(mmotm-2008-0314-1449//fs/super.c:560): missing initial short description on line:
* mark_files_ro
Warning(mmotm-2008-0314-1449//fs/locks.c:1277): missing initial short description on line:
* lease_get_mtime
Warning(mmotm-2008-0314-1449//fs/locks.c:1277): missing initial short description on line:
* lease_get_mtime
Warning(mmotm-2008-0314-1449//fs/namei.c:1368): missing initial short description on line:
* lookup_one_len: filesystem helper to lookup single pathname component
Warning(mmotm-2008-0314-1449//fs/buffer.c:3221): missing initial short description on line:
* bh_uptodate_or_lock: Test whether the buffer is uptodate
Warning(mmotm-2008-0314-1449//fs/buffer.c:3240): missing initial short description on line:
* bh_submit_read: Submit a locked buffer for reading
Warning(mmotm-2008-0314-1449//fs/fs-writeback.c:30): missing initial short description on line:
* writeback_acquire: attempt to get exclusive writeback access to a device
Warning(mmotm-2008-0314-1449//fs/fs-writeback.c:47): missing initial short description on line:
* writeback_in_progress: determine whether there is writeback in progress
Warning(mmotm-2008-0314-1449//fs/fs-writeback.c:58): missing initial short description on line:
* writeback_release: relinquish exclusive writeback access against a device.
Warning(mmotm-2008-0314-1449//include/linux/jbd.h:351): contents before sections
Warning(mmotm-2008-0314-1449//include/linux/jbd.h:561): contents before sections
Warning(mmotm-2008-0314-1449//fs/jbd/transaction.c:1935): missing initial short description on line:
* void journal_invalidatepage()
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix NULL pointer dereference in fsync_buffers_list() introduced by recent fix
of races in private_list handling. Since bh->b_assoc_map has been cleared in
__remove_assoc_queue() we should really use original value stored in the
'mapping' variable.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix docbook problems in filesystems.tmpl.
These cause the generated docbook to be incorrect.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two possible races in handling of private_list in buffer cache.
1) When fsync_buffers_list() processes a private_list, it clears
b_assoc_mapping and moves buffer to its private list. Now
drop_buffers() comes, sees a buffer is on list so it calls
__remove_assoc_queue() which complains about b_assoc_mapping being
cleared (as it cannot propagate possible IO error). This race has been
actually observed in the wild.
2) When fsync_buffers_list() processes a private_list,
mark_buffer_dirty_inode() can be called on bh which is already on the
private list of fsync_buffers_list(). As buffer is on some list (note
that the check is performed without private_lock), it is not readded to
the mapping's private_list and after fsync_buffers_list() finishes, we
have a dirty buffer which should be on private_list but it isn't. This
race has not been reported, probably because most (but not all) callers
of mark_buffer_dirty_inode() hold i_mutex and thus are serialized with
fsync().
Fix these issues by not clearing b_assoc_map when fsync_buffers_list()
moves buffer to a dedicated list and by reinserting buffer in private_list
when it is found dirty after we have submitted buffer for IO. We also
change the tests whether a buffer is on a private list from
!list_empty(&bh->b_assoc_buffers) to bh->b_assoc_map so that they are
single word reads and hence lockless checks are safe.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a rewrite of the ramdisk block device driver.
The old one is really difficult because it effectively implements a block
device which serves data out of its own buffer cache. It relies on the dirty
bit being set, to pin its backing store in cache, however there are non
trivial paths which can clear the dirty bit (eg. try_to_free_buffers()),
which had recently lead to data corruption. And in general it is completely
wrong for a block device driver to do this.
The new one is more like a regular block device driver. It has no idea about
vm/vfs stuff. It's backing store is similar to the buffer cache (a simple
radix-tree of pages), but it doesn't know anything about page cache (the pages
in the radix tree are not pagecache pages).
There is one slight downside -- direct block device access and filesystem
metadata access goes through an extra copy and gets stored in RAM twice.
However, this downside is only slight, because the real buffercache of the
device is now reclaimable (because we're not playing crazy games with it), so
under memory intensive situations, footprint should effectively be the same --
maybe even a slight advantage to the new driver because it can also reclaim
buffer heads.
The fact that it now goes through all the regular vm/fs paths makes it
much more useful for testing, too.
text data bss dec hex filename
2837 849 384 4070 fe6 drivers/block/rd.o
3528 371 12 3911 f47 drivers/block/brd.o
Text is larger, but data and bss are smaller, making total size smaller.
A few other nice things about it:
- Similar structure and layout to the new loop device handlinag.
- Dynamic ramdisk creation.
- Runtime flexible buffer head size (because it is no longer part of the
ramdisk code).
- Boot / load time flexible ramdisk size, which could easily be extended
to a per-ramdisk runtime changeable size (eg. with an ioctl).
- Can use highmem for the backing store.
[akpm@linux-foundation.org: fix build]
[byron.bbradley@gmail.com: make rd_size non-static]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Byron Bradley <byron.bbradley@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The constructor for buffer_head slabs was removed recently. We need the
constructor back in slab defrag in order to insure that slab objects always
have a definite state even before we allocated them.
I think we mistakenly merged the removal of the constuctor into a cleanup
patch. You (ie: akpm) had a test that showed that the removal of the
constructor led to a small regression. The prior state makes things easier
for slab defrag.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify page cache zeroing of segments of pages through 3 functions
zero_user_segments(page, start1, end1, start2, end2)
Zeros two segments of the page. It takes the position where to
start and end the zeroing which avoids length calculations and
makes code clearer.
zero_user_segment(page, start, end)
Same for a single segment.
zero_user(page, start, length)
Length variant for the case where we know the length.
We remove the zero_user_page macro. Issues:
1. Its a macro. Inline functions are preferable.
2. The KM_USER0 macro is only defined for HIGHMEM.
Having to treat this special case everywhere makes the
code needlessly complex. The parameter for zeroing is always
KM_USER0 except in one single case that we open code.
Avoiding KM_USER0 makes a lot of code not having to be dealing
with the special casing for HIGHMEM anymore. Dealing with
kmap is only necessary for HIGHMEM configurations. In those
configurations we use KM_USER0 like we do for a series of other
functions defined in highmem.h.
Since KM_USER0 is depends on HIGHMEM the existing zero_user_page
function could not be a macro. zero_user_* functions introduced
here can be be inline because that constant is not used when these
functions are called.
Also extract the flushing of the caches to be outside of the kmap.
[akpm@linux-foundation.org: fix nfs and ntfs build]
[akpm@linux-foundation.org: fix ntfs build some more]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: <linux-ext4@vger.kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: David Chinner <dgc@sgi.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add buffer head related helper function bh_uptodate_or_lock and
bh_submit_read which can be used by file system
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
This path mustn't have been tested :( I did attempt to exercise it
by injecting failures here, but I suspect PageMappedToDisk may have
been getting in the way. Will need more of a look, although I think
nobh mode is OK for an -rc1 (it shouldn't eat anyone's data).
Commit 03158cd7eb ("fs: restore nobh")
introcduced a NULL deref. Spotted by the Coverity checker.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Miklos Szeredi <miklos@szeredi.hu> and me identified a writeback bug:
> The following strange behavior can be observed:
>
> 1. large file is written
> 2. after 30 seconds, nr_dirty goes down by 1024
> 3. then for some time (< 30 sec) nothing happens (disk idle)
> 4. then nr_dirty again goes down by 1024
> 5. repeat from 3. until whole file is written
>
> So basically a 4Mbyte chunk of the file is written every 30 seconds.
> I'm quite sure this is not the intended behavior.
It can be produced by the following test scheme:
# cat bin/test-writeback.sh
grep nr_dirty /proc/vmstat
echo 1 > /proc/sys/fs/inode_debug
dd if=/dev/zero of=/var/x bs=1K count=204800&
while true; do grep nr_dirty /proc/vmstat; sleep 1; done
# bin/test-writeback.sh
nr_dirty 19207
nr_dirty 19207
nr_dirty 30924
204800+0 records in
204800+0 records out
209715200 bytes (210 MB) copied, 1.58363 seconds, 132 MB/s
nr_dirty 47150
nr_dirty 47141
nr_dirty 47142
nr_dirty 47142
nr_dirty 47142
nr_dirty 47142
nr_dirty 47205
nr_dirty 47214
nr_dirty 47214
nr_dirty 47214
nr_dirty 47214
nr_dirty 47214
nr_dirty 47215
nr_dirty 47216
nr_dirty 47216
nr_dirty 47216
nr_dirty 47154
nr_dirty 47143
nr_dirty 47143
nr_dirty 47143
nr_dirty 47143
nr_dirty 47143
nr_dirty 47142
nr_dirty 47142
nr_dirty 47142
nr_dirty 47142
nr_dirty 47134
nr_dirty 47134
nr_dirty 47135
nr_dirty 47135
nr_dirty 47135
nr_dirty 46097 <== -1038
nr_dirty 46098
nr_dirty 46098
nr_dirty 46098
[...]
nr_dirty 46091
nr_dirty 46092
nr_dirty 46092
nr_dirty 45069 <== -1023
nr_dirty 45056
nr_dirty 45056
nr_dirty 45056
[...]
nr_dirty 37822
nr_dirty 36799 <== -1023
[...]
nr_dirty 36781
nr_dirty 35758 <== -1023
[...]
nr_dirty 34708
nr_dirty 33672 <== -1024
[...]
nr_dirty 33692
nr_dirty 32669 <== -1023
% ls -li /var/x
847824 -rw-r--r-- 1 root root 200M 2007-08-12 04:12 /var/x
% dmesg|grep 847824 # generated by a debug printk
[ 529.263184] redirtied inode 847824 line 548
[ 564.250872] redirtied inode 847824 line 548
[ 594.272797] redirtied inode 847824 line 548
[ 629.231330] redirtied inode 847824 line 548
[ 659.224674] redirtied inode 847824 line 548
[ 689.219890] redirtied inode 847824 line 548
[ 724.226655] redirtied inode 847824 line 548
[ 759.198568] redirtied inode 847824 line 548
# line 548 in fs/fs-writeback.c:
543 if (wbc->pages_skipped != pages_skipped) {
544 /*
545 * writeback is not making progress due to locked
546 * buffers. Skip this inode for now.
547 */
548 redirty_tail(inode);
549 }
More debug efforts show that __block_write_full_page()
never has the chance to call submit_bh() for that big dirty file:
the buffer head is *clean*. So basicly no page io is issued by
__block_write_full_page(), hence pages_skipped goes up.
Also the comment in generic_sync_sb_inodes():
544 /*
545 * writeback is not making progress due to locked
546 * buffers. Skip this inode for now.
547 */
and the comment in __block_write_full_page():
1713 /*
1714 * The page was marked dirty, but the buffers were
1715 * clean. Someone wrote them back by hand with
1716 * ll_rw_block/submit_bh. A rare case.
1717 */
do not quite agree with each other. The page writeback should be skipped for
'locked buffer', but here it is 'clean buffer'!
This patch fixes this bug. Though I'm not sure why __block_write_full_page()
is called only to do nothing and who actually issued the writeback for us.
This is the two possible new behaviors after the patch:
1) pretty nice: wait 30s and write ALL:)
2) not so good:
- during the dd: ~16M
- after 30s: ~4M
- after 5s: ~4M
- after 5s: ~176M
The next patch will fix case (2).
Cc: David Chinner <dgc@sgi.com>
Cc: Ken Chen <kenchen@google.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch marks a number of allocations that are either short-lived such as
network buffers or are reclaimable such as inode allocations. When something
like updatedb is called, long-lived and unmovable kernel allocations tend to
be spread throughout the address space which increases fragmentation.
This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE. The MIGRATE_RECLAIMABLE type is for allocations that can be
reclaimed on demand, but not moved. i.e. they can be migrated by deleting
them and re-reading the information from elsewhere.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement nobh in new aops. This is a bit tricky. FWIW, nobh_truncate is
now implemented in a way that does not create blocks in sparse regions,
which is a silly thing for it to have been doing (isn't it?)
ext2 survives fsx and fsstress. jfs is converted as well... ext3
should be easy to do (but not done yet).
[akpm@linux-foundation.org: coding-style fixes]
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rework the generic block "cont" routines to handle the new aops. Supporting
cont_prepare_write would take quite a lot of code to support, so remove it
instead (and we later convert all filesystems to use it).
write_begin gets passed AOP_FLAG_CONT_EXPAND when called from
generic_cont_expand, so filesystems can avoid the old hacks they used.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are intended to replace prepare_write and commit_write with more
flexible alternatives that are also able to avoid the buffered write
deadlock problems efficiently (which prepare_write is unable to do).
[mark.fasheh@oracle.com: API design contributions, code review and fixes]
[akpm@linux-foundation.org: various fixes]
[dmonakhov@sw.ru: new aop block_write_begin fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
New buffers against uptodate pages are simply be marked uptodate, while the
buffer_new bit remains set. This causes error-case code to zero out parts of
those buffers because it thinks they contain stale data: wrong, they are
actually uptodate so this is a data loss situation.
Fix this by actually clearning buffer_new and marking the buffer dirty. It
makes sense to always clear buffer_new before setting a buffer uptodate.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nobh mode error handling is not just pretty slack, it's wrong.
One cannot zero out the whole page to ensure new blocks are zeroed, because
it just brings the whole page "uptodate" with zeroes even if that may not
be the correct uptodate data. Also, other parts of the page may already
contain dirty data which would get lost by zeroing it out. Thirdly, the
writeback of zeroes to the new blocks will also erase existing blocks. All
these conditions are pagecache and/or filesystem corruption.
The problem comes about because we didn't keep track of which buffers
actually are new or old. However it is not enough just to keep only this
state, because at the point we start dirtying parts of the page (new
blocks, with zeroes), the handling of IO errors becomes impossible without
buffers because the page may only be partially uptodate, in which case the
page flags allone cannot capture the state of the parts of the page.
So allocate all buffers for the page upfront, but leave them unattached so
that they don't pick up any other references and can be freed when we're
done. If the error path is hit, then zero the new buffers as the regular
buffer path does, then attach the buffers to the page so that it can
actually be written out correctly and be subject to the normal IO error
handling paths.
As an upshot, we save 1K of kernel stack on ia64 or powerpc 64K page
systems.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As bi_end_io is only called once when the reqeust is complete,
the 'size' argument is now redundant. Remove it.
Now there is no need for bio_endio to subtract the size completed
from bi_size. So don't do that either.
While we are at it, change bi_end_io to return void.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Fix page index to offset conversion overflows in buffer layer, ecryptfs,
and ocfs2.
It would be nice to convert the whole tree to page_offset, but for now
just fix the bugs.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many filesystems need a ->page-mkwrite callout to correctly
set up pages that have been written to by mmap. This is especially
important when mmap is writing into holes as it allows filesystems
to correctly account for and allocate space before the mmap
write is allowed to proceed.
Protection against truncate races is provided by locking the page
and checking to see whether the page mapping is correct and whether
it is beyond EOF so we don't end up allowing allocations beyond
the current EOF or changing EOF as a result of a mmap write.
SGI-PV: 940392
SGI-Modid: 2.6.x-xfs-melb:linux:29146a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
It is a bug to set a page dirty if it is not uptodate unless it has
buffers. If the page has buffers, then the page may be dirty (some buffers
dirty) but not uptodate (some buffers not uptodate). The exception to this
rule is if the set_page_dirty caller is racing with truncate or invalidate.
A buffer can not be set dirty if it is not uptodate.
If either of these situations occurs, it indicates there could be some data
loss problem. Some of these warnings could be a harmless one where the
page or buffer is set uptodate immediately after it is dirtied, however we
should fix those up, and enforce this ordering.
Bring the order of operations for truncate into line with those of
invalidate. This will prevent a page from being able to go !uptodate while
we're holding the tree_lock, which is probably a good thing anyway.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we are out of memory of a suitable size we enter reclaim. The current
reclaim algorithm targets pages in LRU order, which is great for fairness at
order-0 but highly unsuitable if you desire pages at higher orders. To get
pages of higher order we must shoot down a very high proportion of memory;
>95% in a lot of cases.
This patch set adds a lumpy reclaim algorithm to the allocator. It targets
groups of pages at the specified order anchored at the end of the active and
inactive lists. This encourages groups of pages at the requested orders to
move from active to inactive, and active to free lists. This behaviour is
only triggered out of direct reclaim when higher order pages have been
requested.
This patch set is particularly effective when utilised with an
anti-fragmentation scheme which groups pages of similar reclaimability
together.
This patch set is based on Peter Zijlstra's lumpy reclaim V2 patch which forms
the foundation. Credit to Mel Gorman for sanitity checking.
Mel said:
The patches have an application with hugepage pool resizing.
When lumpy-reclaim is used used with ZONE_MOVABLE, the hugepages pool can
be resized with greater reliability. Testing on a desktop machine with 2GB
of RAM showed that growing the hugepage pool with ZONE_MOVABLE on it's own
was very slow as the success rate was quite low. Without lumpy-reclaim,
each attempt to grow the pool by 100 pages would yield 1 or 2 hugepages.
With lumpy-reclaim, getting 40 to 70 hugepages on each attempt was typical.
[akpm@osdl.org: ia64 pfn_to_nid fixes and loop cleanup]
[bunk@stusta.de: static declarations for internal functions]
[a.p.zijlstra@chello.nl: initial lumpy V2 implementation]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is often known at allocation time whether a page may be migrated or not.
This patch adds a flag called __GFP_MOVABLE and a new mask called
GFP_HIGH_MOVABLE. Allocations using the __GFP_MOVABLE can be either migrated
using the page migration mechanism or reclaimed by syncing with backing
storage and discarding.
An API function very similar to alloc_zeroed_user_highpage() is added for
__GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable(). The
flags used by alloc_zeroed_user_highpage() are not changed because it would
change the semantics of an existing API. After this patch is applied there
are no in-kernel users of alloc_zeroed_user_highpage() so it probably should
be marked deprecated if this patch is merged.
Note that this patch includes a minor cleanup to the use of __GFP_ZERO in
shmem.c to keep all flag modifications to inode->mapping in the
shmem_dir_alloc() helper function. This clean-up suggestion is courtesy of
Hugh Dickens.
Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the
concept. Credit to Hugh Dickens for catching issues with shmem swap vector
and ramfs allocations.
[akpm@linux-foundation.org: build fix]
[hugh@veritas.com: __GFP_ZERO cleanup]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bug was introduced by 01f2705daf.
It misses to convert the first argument, it should be "new_page".
This became a cause of fatfs corruption.
Cc: Nate Diller <nate.diller@gmail.com>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
grow_dev_page() simply passes GFP_NOFS to find_or_create_page. This means
the allocation of radix tree nodes is done with GFP_NOFS and the allocation
of a new page is done using GFP_NOFS.
The mapping has a flags field that contains the necessary allocation flags
for the page cache allocation. These need to be consulted in order to get
DMA and HIGHMEM allocations etc right. And yes a blockdev could be
allowing Highmem allocations if its a ramdisk.
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress. This
patch introduces such notifications and causes them to be used during
suspend and resume transitions. It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).
[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's very common for file systems to need to zero part or all of a page,
the simplist way is just to use kmap_atomic() and memset(). There's
actually a library function in include/linux/highmem.h that does exactly
that, but it's confusingly named memclear_highpage_flush(), which is
descriptive of *how* it does the work rather than what the *purpose* is.
So this patchset renames the function to zero_user_page(), and calls it
from the various places that currently open code it.
This first patch introduces the new function call, and converts all the
core kernel callsites, both the open-coded ones and the old
memclear_highpage_flush() ones. Following this patch is a series of
conversions for each file system individually, per AKPM, and finally a
patch deprecating the old call. The diffstat below shows the entire
patchset.
[akpm@linux-foundation.org: fix a few things]
Signed-off-by: Nate Diller <nate.diller@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
block_write_full_page() forgot to propagate ENPSOC into the address_space.
Cc: Guillaume Chazarain <guichaz@yahoo.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by
SLAB.
I think its purpose was to have a callback after an object has been freed
to verify that the state is the constructor state again? The callback is
performed before each freeing of an object.
I would think that it is much easier to check the object state manually
before the free. That also places the check near the code object
manipulation of the object.
Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
compiled with SLAB debugging on. If there would be code in a constructor
handling SLAB_DEBUG_INITIAL then it would have to be conditional on
SLAB_DEBUG otherwise it would just be dead code. But there is no such code
in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real
use of, difficult to understand and there are easier ways to accomplish the
same effect (i.e. add debug code before kfree).
There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
clear in fs inode caches. Remove the pointless checks (they would even be
pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
This is the last slab flag that SLUB did not support. Remove the check for
unimplemented flags from SLUB.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove duplicate work in kill_bdev().
It currently invalidates and then truncates the bdev's mapping.
invalidate_mapping_pages() will opportunistically remove pages from the
mapping. And truncate_inode_pages() will forcefully remove all pages.
The only thing truncate doesn't do is flush the bh lrus. So do that
explicitly. This avoids (very unlikely) but possible invalid lookup
results if the same bdev is quickly re-issued.
It also will prevent extreme kernel latencies which are observed when
blockdevs which have a large amount of pagecache are unmounted, by avoiding
invalidate_mapping_pages() on that path. invalidate_mapping_pages() has no
cond_resched (it can be called under spinlock), whereas truncate_inode_pages()
has one.
[akpm@linux-foundation.org: restore nrpages==0 optimisation]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the destroy_dirty_buffers argument from invalidate_bdev(), it hasn't
been used in 6 years (so akpm says).
find * -name \*.[ch] | xargs grep -l invalidate_bdev |
while read file; do
quilt add $file;
sed -ie 's/invalidate_bdev(\([^,]*\),[^)]*)/invalidate_bdev(\1)/g' $file;
done
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__block_write_full_page is calling SetPageUptodate without the page locked.
This is unusual, but not incorrect, as PG_writeback is still set.
However the next patch will require that SetPageUptodate always be called with
the page locked. Simply don't bother setting the page uptodate in this case
(it is unusual that the write path does such a thing anyway). Instead just
leave it to the read side to bring the page uptodate when it notices that all
buffers are uptodate.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a regression caused by 22c8ca78f2.
nobh_prepare_write() no longer marks the page uptodate, so
nobh_truncate_page() needs to do it.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nobh_prepare_write leaks data similarly to how simple_prepare_write did. Fix
by not marking the page uptodate until nobh_commit_write time. Again, this
could break weird use-cases, but none appear to exist in the tree.
We can safely remove the set_page_dirty, because as the comment says,
nobh_commit_write does set_page_dirty. If a filesystem wants to allocate
backing store for a page dirtied via mmap, page_mkwrite is the suggested
approach.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew noticed that unlocking the page before submitting all buffers for
writeout could cause problems if the IO completes before we've finished
messing around with the page buffers, and they subsequently get freed.
Even if there were no bug, it is a good idea to bring the error case
into line with the common case here.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While compiling my code with -Wconversion using gcc-trunk, I always get a
bunch of warrning from headers, here is fix for them:
__getblk is alawys called with unsigned argument,
but it takes signed, the same story with __bread,__breadahead and so on.
Signed-off-by: Tomasz Kvarsin
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, XFS uses BH_PrivateStart for flagging unwritten extent state in a
bufferhead. Recently, I found the long standing mmap/unwritten extent
conversion bug, and it was to do with partial page invalidation not clearing
the unwritten flag from bufferheads attached to the page but beyond EOF. See
here for a full explaination:
http://oss.sgi.com/archives/xfs/2006-12/msg00196.html
The solution I have checked into the XFS dev tree involves duplicating code
from block_invalidatepage to clear the unwritten flag from the bufferhead(s),
and then calling block_invalidatepage() to do the rest.
Christoph suggested that this would be better solved by pushing the unwritten
flag into the common buffer head flags and just adding the call to
discard_buffer():
http://oss.sgi.com/archives/xfs/2006-12/msg00239.html
The following patch makes BH_Unwritten a first class citizen.
Signed-off-by: Dave Chinner <dgc@sgi.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
unlock_buffer(), like unlock_page(), must not clear the lock without
ensuring that the critical section is closed.
Mingming later sent the same patch, saying:
We are running SDET benchmark and saw double free issue for ext3 extended
attributes block, which complains the same xattr block already being freed (in
ext3_xattr_release_block()). The problem could also been triggered by
multiple threads loop untar/rm a kernel tree.
The race is caused by missing a memory barrier at unlock_buffer() before the
lock bit being cleared, resulting in possible concurrent h_refcounter update.
That causes a reference counter leak, then later leads to the double free that
we have seen.
Inside unlock_buffer(), there is a memory barrier is placed *after* the lock
bit is being cleared, however, there is no memory barrier *before* the bit is
cleared. On some arch the h_refcount update instruction and the clear bit
instruction could be reordered, thus leave the critical section re-entered.
The race is like this: For example, if the h_refcount is initialized as 1,
cpu 0: cpu1
-------------------------------------- -----------------------------------
lock_buffer() /* test_and_set_bit */
clear_buffer_locked(bh);
lock_buffer() /* test_and_set_bit */
h_refcount = h_refcount+1; /* = 2*/ h_refcount = h_refcount + 1; /*= 2 */
clear_buffer_locked(bh);
.... ......
We lost a h_refcount here. We need a memory barrier before the buffer head lock
bit being cleared to force the order of the two writes. Please apply.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all calls to invalidate_inode_pages() into open-coded calls to
invalidate_mapping_pages().
Leave the invalidate_inode_pages() wrapper in place for now, marked as
deprecated.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix commit ecdfc9787f
Not to put too fine a point on it, but in a nutshell...
__set_page_dirty_buffers() | try_to_free_buffers()
---------------------------+---------------------------
| spin_lock(private_lock);
| drop_bufers()
| spin_unlock(private_lock);
spin_lock(private_lock) |
!page_has_buffers() |
spin_unlock(private_lock) |
SetPageDirty() |
| cancel_dirty_page()
oops!
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's not pretty, but it appears that ext3 with data=journal will clean
pages without ever actually telling the VM that they are clean. This,
in turn, will result in the VM (and balance_dirty_pages() in particular)
to never realize that the pages got cleaned, and wait forever for an
event that already happened.
Technically, this seems to be a problem with ext3 itself, but it used to
be hidden by 'try_to_free_buffers()' noticing this situation on its own,
and just working around the filesystem problem.
This commit re-instates that hack, in order to avoid a regression for
the 2.6.20 release. This fixes bugzilla 7844:
http://bugzilla.kernel.org/show_bug.cgi?id=7844
Peter Zijlstra points out that we should probably retain the debugging
code that this removes from cancel_dirty_page(), and I agree, but for
the imminent release we might as well just silence the warning too
(since it's not a new bug: anything that triggers that warning has been
around forever).
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: Jens Axboe <jens.axboe@oracle.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert bd_mount_mutex back to a semaphore so that xfs_freeze -f /mnt/newtest;
xfs_freeze -u /mnt/newtest works safely and doesn't produce lockdep warnings.
(XFS unlocks the semaphore from a different task, by design. The mutex
code warns about this)
Signed-off-by: Dave Chinner <dgc@sgi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is preparatory work in our continuing saga on some hard-to-trigger
file corruption with shared writable mmap() after the dirty page
tracking changes (commit d08b3851da etc)
were merged.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Account for the number of byte writes which this process caused to not happen
after all.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Accounting writes is fairly simple: whenever a process flips a page from clean
to dirty, we accuse it of having caused a write to underlying storage of
PAGE_CACHE_SIZE bytes.
This may overestimate the amount of writing: the page-dirtying may cause only
one buffer_head's worth of writeout. Fixing that is possible, but probably a
bit messy and isn't obviously important.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Save a tabstop in __set_page_dirty_nobuffers() and __set_page_dirty_buffers()
and a few other places. No functional changes.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There was lots of #ifdef noise in the kernel due to hotcpu_notifier(fn,
prio) not correctly marking 'fn' as used in the !HOTPLUG_CPU case, and thus
generating compiler warnings of unused symbols, hence forcing people to add
#ifdefs.
the compiler can skip truly unused functions just fine:
text data bss dec hex filename
1624412 728710 3674856 6027978 5bfaca vmlinux.before
1624412 728710 3674856 6027978 5bfaca vmlinux.after
[akpm@osdl.org: topology.c fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When IO error happens on metadata buffer, buffer is freed from memory and
later fsync() is called, filesystems like ext2 fail to report EIO. We
solve the problem by introducing a pointer to associated address space into
the buffer_head. When a buffer is removed from a list of metadata buffers
associated with an address space, IO error is transferred from the buffer to
the address space, so that fsync can later report it.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A couple of flush_dcache_page()s are missing on the I/O-error paths.
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If grow_buffers() is for some reason passed a block number which wants to lie
outside the maximum-addressable pagecache range (PAGE_SIZE * 4G bytes) then it
will accidentally truncate `index' and will then instnatiate a page at the
wrong pagecache offset. This causes __getblk_slow() to go into an infinite
loop.
This can happen with corrupted disks, or with software errors elsewhere.
Detect that, and handle it.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This was triggered, but not the fault of, the dirty page accounting
patches. Suitable for -stable as well, after it goes upstream.
Unable to handle kernel NULL pointer dereference at virtual address 0000004c
EIP is at _spin_lock+0x12/0x66
Call Trace:
[<401766e7>] __set_page_dirty_buffers+0x15/0xc0
[<401401e7>] set_page_dirty+0x2c/0x51
[<40140db2>] set_page_dirty_balance+0xb/0x3b
[<40145d29>] __do_fault+0x1d8/0x279
[<40147059>] __handle_mm_fault+0x125/0x951
[<401133f1>] do_page_fault+0x440/0x59f
[<4034d0c1>] error_code+0x39/0x40
[<08048a33>] 0x8048a33
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move some functions out of the buffering code that aren't strictly buffering
specific. This is a precursor to being able to disable the block layer.
(*) Moved some stuff out of fs/buffer.c:
(*) The file sync and general sync stuff moved to fs/sync.c.
(*) The superblock sync stuff moved to fs/super.c.
(*) do_invalidatepage() moved to mm/truncate.c.
(*) try_to_release_page() moved to mm/filemap.c.
(*) Moved some related declarations between header files:
(*) declarations for do_invalidatepage() and try_to_release_page() moved
to linux/mm.h.
(*) __set_page_dirty_buffers() moved to linux/buffer_head.h.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Tracking of dirty pages in shared writeable mmap()s.
The idea is simple: write protect clean shared writeable pages, catch the
write-fault, make writeable and set dirty. On page write-back clean all the
PTE dirty bits and write protect them once again.
The implementation is a tad harder, mainly because the default
backing_dev_info capabilities were too loosely maintained. Hence it is not
enough to test the backing_dev_info for cap_account_dirty.
The current heuristic is as follows, a VMA is eligible when:
- its shared writeable
(vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)
- it is not a 'special' mapping
(vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0
- the backing_dev_info is cap_account_dirty
mapping_cap_account_dirty(vma->vm_file->f_mapping)
- f_op->mmap() didn't change the default page protection
Page from remap_pfn_range() are explicitly excluded because their COW
semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and
because they don't have a backing store anyway.
mprotect() is taught about the new behaviour as well. However it overrides
the last condition.
Cleaning the pages on write-back is done with page_mkclean() a new rmap call.
It can be called on any page, but is currently only implemented for mapped
pages, if the page is found the be of a VMA that accounts dirty pages it will
also wrprotect the PTE.
Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from
under ->private_lock. This seems to be safe, since ->private_lock is used to
serialize access to the buffers, not the page itself. This is needed because
clear_page_dirty() will call into page_mkclean() and would thereby violate
locking order.
[dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We can immediately bail from invalidate_bdev() if the blockdev has no
pagecache.
This solves the huge IPI storms which hald is causing on the big ia64
machines when it polls CDROM drives.
Acked-by: Jes Sorensen <jes@sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>