Commit graph

11 commits

Author SHA1 Message Date
David Sterba
182608c829 btrfs: remove old unused commented out code
Remove code which has been #if0-ed out for a very long time and does not
seem to be related to current codebase anymore.

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-06 12:34:10 +02:00
David Sterba
f2a97a9dbd btrfs: remove all unused functions
Remove static and global declarations and/or definitions. Reduces size
of btrfs.ko by ~3.4kB.

  text    data     bss     dec     hex filename
402081    7464     200  409745   64091 btrfs.ko.base
398620    7144     200  405964   631cc btrfs.ko.remove-all

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-06 12:34:03 +02:00
liubo
1abe9b8a13 Btrfs: add initial tracepoint support for btrfs
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
              dd-7822  [000]  2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
              dd-7822  [000]  2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
 btrfs-transacti-7804  [001]  2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
 btrfs-transacti-7804  [001]  2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
 btrfs-transacti-7804  [001]  2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
   flush-btrfs-2-7821  [001]  2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
   flush-btrfs-2-7821  [001]  2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
   flush-btrfs-2-7821  [001]  2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
   flush-btrfs-2-7821  [000]  2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
 btrfs-endio-wri-7800  [001]  2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
 btrfs-endio-wri-7800  [001]  2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)

Here is what I have added:

1) ordere_extent:
        btrfs_ordered_extent_add
        btrfs_ordered_extent_remove
        btrfs_ordered_extent_start
        btrfs_ordered_extent_put

These provide critical information to understand how ordered_extents are
updated.

2) extent_map:
        btrfs_get_extent

extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.

3) writepage:
        __extent_writepage
        btrfs_writepage_end_io_hook

Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.

4) inode:
        btrfs_inode_new
        btrfs_inode_request
        btrfs_inode_evict

These can show where and when a inode is created, when a inode is evicted.

5) sync:
        btrfs_sync_file
        btrfs_sync_fs

These show sync arguments.

6) transaction:
        btrfs_transaction_commit

In transaction based filesystem, it will be useful to know the generation and
who does commit.

7) back reference and cow:
	btrfs_delayed_tree_ref
	btrfs_delayed_data_ref
	btrfs_delayed_ref_head
	btrfs_cow_block

Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.

8) chunk:
	btrfs_chunk_alloc
	btrfs_chunk_free

Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.

9) reserved_extent:
	btrfs_reserved_extent_alloc
	btrfs_reserved_extent_free

These can show how btrfs uses its space.

Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:33 -04:00
Yan, Zheng
a22285a6a3 Btrfs: Integrate metadata reservation with start_transaction
Besides simplify the code, this change makes sure all metadata
reservation for normal metadata operations are released after
committing transaction.

Changes since V1:

Add code that check if unlink and rmdir will free space.

Add ENOSPC handling for clone ioctl.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-05-25 10:34:50 -04:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Yan Zheng
5d4f98a28c Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.

When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one.  At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.

The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root.  This commit reduces the
transaction overhead by avoiding the need for dead root records.

When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.

This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.

We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.

This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.

This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.

This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.

The improved balancing code scales significantly better with a large
number of snapshots.

This is a very large commit and was written in a number of
pieces.  But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:46 -04:00
Jim Owens
2e966ed22c Btrfs: remove unused ftrace include
Signed-off-by: jim owens <jowens@hp.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-02 17:02:55 -04:00
Chris Mason
1a81af4d1d Btrfs: make sure btrfs_update_delayed_ref doesn't increase ref_mod
btrfs_update_delayed_ref is optimized to add and remove different
references in one pass through the delayed ref tree.  It is a zero
sum on the total number of refs on a given extent.

But, the code was recording an extra ref in the head node.  This
never made it down to the disk but was used when deciding if it was
safe to free the extent while dropping snapshots.

The fix used here is to make sure the ref_mod count is unchanged
on the head ref when btrfs_update_delayed_ref is called.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-25 09:55:11 -04:00
Chris Mason
c3e69d58e8 Btrfs: process the delayed reference queue in clusters
The delayed reference queue maintains pending operations that need to
be done to the extent allocation tree.  These are processed by
finding records in the tree that are not currently being processed one at
a time.

This is slow because it uses lots of time searching through the rbtree
and because it creates lock contention on the extent allocation tree
when lots of different procs are running delayed refs at the same time.

This commit changes things to grab a cluster of refs for processing,
using a cursor into the rbtree as the starting point of the next search.
This way we walk smoothly through the rbtree.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:26 -04:00
Chris Mason
1887be66dc Btrfs: try to cleanup delayed refs while freeing extents
When extents are freed, it is likely that we've removed the last
delayed reference update for the extent.  This checks the delayed
ref tree when things are freed, and if no ref updates area left it
immediately processes the delayed ref.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:26 -04:00
Chris Mason
56bec294de Btrfs: do extent allocation and reference count updates in the background
The extent allocation tree maintains a reference count and full
back reference information for every extent allocated in the
filesystem.  For subvolume and snapshot trees, every time
a block goes through COW, the new copy of the block adds a reference
on every block it points to.

If a btree node points to 150 leaves, then the COW code needs to go
and add backrefs on 150 different extents, which might be spread all
over the extent allocation tree.

These updates currently happen during btrfs_cow_block, and most COWs
happen during btrfs_search_slot.  btrfs_search_slot has locks held
on both the parent and the node we are COWing, and so we really want
to avoid IO during the COW if we can.

This commit adds an rbtree of pending reference count updates and extent
allocations.  The tree is ordered by byte number of the extent and byte number
of the parent for the back reference.  The tree allows us to:

1) Modify back references in something close to disk order, reducing seeks
2) Significantly reduce the number of modifications made as block pointers
are balanced around
3) Do all of the extent insertion and back reference modifications outside
of the performance critical btrfs_search_slot code.

#3 has the added benefit of greatly reducing the btrfs stack footprint.
The extent allocation tree modifications are done without the deep
(and somewhat recursive) call chains used in the past.

These delayed back reference updates must be done before the transaction
commits, and so the rbtree is tied to the transaction.  Throttling is
implemented to help keep the queue of backrefs at a reasonable size.

Since there was a similar mechanism in place for the extent tree
extents, that is removed and replaced by the delayed reference tree.

Yan Zheng <yan.zheng@oracle.com> helped review and fixup this code.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:25 -04:00