Commit Graph

12 Commits (371fefd6f2dc46668e00871930dde613b88d4bde)

Author SHA1 Message Date
Paul Mackerras 371fefd6f2 KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7.  The host still has to run single-threaded.

This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability.  The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.

To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode.  KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline).  To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it.  Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.

When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host.  This number is exported
to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.

We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host.  We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.

When a vcore starts to run, it executes in the context of one of the
vcpu threads.  The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).

It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running.  In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest.  It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.

Note that there is no fixed relationship between the hardware thread
number and the vcpu number.  Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
David Gibson 54738c0971 KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode.  H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.

Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
ioctl returns a file descriptor which can be used to mmap the newly
created table.  The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.

There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time.  Specifically, allowing this will avoid awkwardness
when we need to reset the table.  More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:56 +03:00
Scott Wood 5ce941ee42 KVM: PPC: booke: add sregs support
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:53 -04:00
Alexander Graf 17bd158006 KVM: PPC: Implement Level interrupts on Book3S
The current interrupt logic is just completely broken. We get a notification
from user space, telling us that an interrupt is there. But then user space
expects us that we just acknowledge an interrupt once we deliver it to the
guest.

This is not how real hardware works though. On real hardware, the interrupt
controller pulls the external interrupt line until it gets notified that the
interrupt was received.

So in reality we have two events: pulling and letting go of the interrupt line.

To maintain backwards compatibility, I added a new request for the pulling
part. The letting go part was implemented earlier already.

With this in place, we can now finally start guests that do not randomly stall
and stop to work at random times.

This patch implements above logic for Book3S.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:19 +02:00
Alexander Graf 18978768d8 KVM: PPC: Allow userspace to unset the IRQ line
Userspace can tell us that it wants to trigger an interrupt. But
so far it can't tell us that it wants to stop triggering one.

So let's interpret the parameter to the ioctl that we have anyways
to tell us if we want to raise or lower the interrupt line.

Signed-off-by: Alexander Graf <agraf@suse.de>

v2 -> v3:

 - Add CAP for unset irq
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:16:51 +03:00
Alexander Graf b104d06632 KVM: PPC: Enable MMIO to do 64 bits, fprs and qprs
Right now MMIO access can only happen for GPRs and is at most 32 bit wide.
That's actually enough for almost all types of hardware out there.

Unfortunately, the guest I was using used FPU writes to MMIO regions, so
it ended up writing 64 bit MMIOs using FPRs and QPRs.

So let's add code to handle those odd cases too.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-04-25 12:34:41 +03:00
Alexander Graf e15a113700 powerpc/kvm: Sync guest visible MMU state
Currently userspace has no chance to find out which virtual address space we're
in and resolve addresses. While that is a big problem for migration, it's also
unpleasent when debugging, as gdb and the monitor don't work on virtual
addresses.

This patch exports enough of the MMU segment state to userspace to make
debugging work and thus also includes the groundwork for migration.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-12-08 16:02:50 +11:00
Alexander Graf ec3c11aa5f Pass PVR in sregs
Right now sregs is unused on PPC, so we can use it for initialization
of the CPU.

KVM on BookE always virtualizes the host CPU. On Book3s we go a step further
and take the PVR from userspace that tells us what kind of CPU we are supposed
to virtualize, because we support Book3s_32 and Book3s_64 guests.

In order to get that information, we use the sregs ioctl, because we don't
want to reset the guest CPU on every normal register set.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-11-05 16:49:51 +11:00
Linus Torvalds ba1eb95cf3 Merge branch 'header-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'header-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (50 commits)
  x86: headers cleanup - setup.h
  emu101k1.h: fix duplicate include of <linux/types.h>
  compiler-gcc4: conditionalize #error on __KERNEL__
  remove __KERNEL_STRICT_NAMES
  make netfilter use strict integer types
  make drm headers use strict integer types
  make MTD headers use strict integer types
  make most exported headers use strict integer types
  make exported headers use strict posix types
  unconditionally include asm/types.h from linux/types.h
  make linux/types.h as assembly safe
  Neither asm/types.h nor linux/types.h is required for arch/ia64/include/asm/fpu.h
  headers_check fix cleanup: linux/reiserfs_fs.h
  headers_check fix cleanup: linux/nubus.h
  headers_check fix cleanup: linux/coda_psdev.h
  headers_check fix: x86, setup.h
  headers_check fix: x86, prctl.h
  headers_check fix: linux/reinserfs_fs.h
  headers_check fix: linux/socket.h
  headers_check fix: linux/nubus.h
  ...

Manually fix trivial conflicts in:
	include/linux/netfilter/xt_limit.h
	include/linux/netfilter/xt_statistic.h
2009-03-26 16:11:41 -07:00
Jan Kiszka d0bfb940ec KVM: New guest debug interface
This rips out the support for KVM_DEBUG_GUEST and introduces a new IOCTL
instead: KVM_SET_GUEST_DEBUG. The IOCTL payload consists of a generic
part, controlling the "main switch" and the single-step feature. The
arch specific part adds an x86 interface for intercepting both types of
debug exceptions separately and re-injecting them when the host was not
interested. Moveover, the foundation for guest debugging via debug
registers is layed.

To signal breakpoint events properly back to userland, an arch-specific
data block is now returned along KVM_EXIT_DEBUG. For x86, the arch block
contains the PC, the debug exception, and relevant debug registers to
tell debug events properly apart.

The availability of this new interface is signaled by
KVM_CAP_SET_GUEST_DEBUG. Empty stubs for not yet supported archs are
provided.

Note that both SVM and VTX are supported, but only the latter was tested
yet. Based on the experience with all those VTX corner case, I would be
fairly surprised if SVM will work out of the box.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-03-24 11:02:49 +02:00
Jaswinder Singh Rajput 9f2cd967b7 headers_check fix: powerpc, kvm.h
fix the following 'make headers_check' warnings:

  usr/include/asm-powerpc/kvm.h:23: include of <linux/types.h> is preferred over <asm/types.h>
  usr/include/asm-powerpc/kvm.h:26: found __[us]{8,16,32,64} type without #include <linux/types.h>

Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
2009-02-01 11:01:28 +05:30
Stephen Rothwell b8b572e101 powerpc: Move include files to arch/powerpc/include/asm
from include/asm-powerpc.  This is the result of a

mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm

Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly.  Of the latter only
one was outside the arch code and it is a driver only built for powerpc.

Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-04 12:02:00 +10:00