Greg prefers this to go through the trivial tree.
http://lkml.org/lkml/2010/6/24/1
There are about 2500 void functions in drivers/usb
Only a few used return; at end of function.
Standardize them a bit.
Moved a statement down a line in drivers/usb/host/u132-hcd.c
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The usbcore headers: hcd.h and hub.h are shared between usbcore,
HCDs and a couple of other drivers (e.g. USBIP modules).
So, it makes sense to move them into a more public location and
to cleanup dependency of those modules on kernel internal headers.
This patch moves hcd.h from drivers/usb/core into include/linux/usb/
Signed-of-by: Eric Lescouet <eric@lescouet.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This patch fixes crashes when usbmon attempts to access GART aperture.
The old code attempted to take a bus address and convert it into a
virtual address, which clearly was impossible on systems with actual
IOMMUs. Let us not persist in this foolishness, and use transfer_buffer
in all cases instead.
I think downsides are negligible. The ones I see are:
- A driver may pass an address of one buffer down as transfer_buffer,
and entirely different entity mapped for DMA, resulting in misleading
output of usbmon. Note, however, that PIO based controllers would
do transfer the same data that usbmon sees here.
- Out of tree drivers may crash usbmon if they store garbage in
transfer_buffer. I inspected the in-tree drivers, and clarified
the documentation in comments.
- Drivers that use get_user_pages will not be possible to monitor.
I only found one driver with this problem (drivers/staging/rspiusb).
- Same happens with with usb_storage transferring from highmem, but
it works fine on 64-bit systems, so I think it's not a concern.
At least we don't crash anymore.
Why didn't we do this in 2.6.10? That's because back in those days
it was popular not to fill in transfer_buffer, so almost all
traffic would be invisible (e.g. all of HID was like that).
But now, the tree is almost 100% PIO friendly, so we can do the
right thing at last.
Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
usbmon registers the notifier chain, takes the bus lock and then goes to
scan the existing devices for hooking up.
Unfortunately, if usb_mon gets initialized while USB bus discovery is
going on, it's possible that usbmon gets a notifier on one cpu (which runs
without USB locks), and the scan is going on and also finds the new bus,
resulting in a double sysfs registration, which then produces a WARNING.
Pete Zaitcev did the bug diagnostics on this one
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Paolo asked to enable the mmap. I kept it off because I'm do not
entirely understand how it workse these days after ->nopage etc.
But it seems like working somewhat at least.
Signed-Off-By: Pete Zaitcev <zaitcev@gmail.com>
Cc: Paolo Abeni <paolo.abeni@email.it>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as978) reorganizes the way usbmon uses urb->status. It
now accepts the status value as an argument.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Two things:
- mbus can be NULL (in case of bus removal while reader is reading)
- Remove a useless assignment
Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as949) changes the usbmon driver to use the new urb->ep
field rather than urb->pipe.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Cc: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add a class which allows for an easier integration with udev.
This code was originally written by Paolo Abeni, and arrived to my tree
as a part of big patch to add binary API on December 18. As I understand,
Paolo always meant the class to be a part of the whole thing. This is his
udev rule to go along with the patch:
KERNEL=="usbmon[0-9]*", NAME="usbmon%n", MODE="0440",OWNER="root",GROUP="bin"
Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the "bus zero" feature to the usbmon. If a user process specifies bus
with number zero, it receives events from all buses. This is useful when
we wish to see initial enumeration when a bus is created, typically after
a modprobe. Until now, an application had to loop until a new bus could
be open, then start capturing on it. This procedure was cumbersome and
could lose initial events. Also, often it's too bothersome to find exactly
to which bus a specific device is attached.
Paolo Albeni provided the original concept implementation. I added the
handling of "bus->monitored" flag and generally fixed it up.
Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch adds a new, "binary" API in addition to the old, text API usbmon
had before. The new API allows for less CPU use, and it allows to capture
all data from a packet where old API only captured 32 bytes at most. There
are some limitations and conditions to this, e.g. in case someone constructs
a URB with 1GB of data, it's not likely to be captured, because even the
huge buffers of the new reader are finite. Nonetheless, I expect this new
capability to capture all data for all real life scenarios.
The downside is, a special user mode application is required where cat(1)
worked before. I have sample code at http://people.redhat.com/zaitcev/linux/
and Paolo Abeni is working on patching libpcap.
This patch was initially written by Paolo and later I tweaked it, and
we had a little back-and-forth. So this is a jointly authored patch, but
I am submitting this I am responsible for the bugs.
Signed-off-by: Paolo Abeni <paolo.abeni@email.it>
Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as755b) fixes a bug in usbmon. Rather than assuming all
USB host controllers use DMA, the code will check the usb_bus data
structure. If DMA isn't used, we don't want to try peeking into a
non-existent DMA buffer!
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
As part of the ongoing program to flatten out the HCD bus-glue layer,
this patch (as771b) eliminates the hcpriv, release, and kref fields
from struct usb_bus. hcpriv and release were not being used for
anything worthwhile, and kref has been moved into the enclosing
usb_hcd structure.
Along with those changes, the patch gets rid of usb_bus_get and
usb_bus_put, replacing them with usb_get_hcd and usb_put_hcd.
The one interesting aspect is that the dev_set_drvdata call was
removed from usb_put_hcd, where it clearly doesn't belong. This means
the driver private data won't get reset to NULL. It shouldn't cause
any problems, since the private data is undefined when no driver is
bound.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This update contains one bug fix: some lines can come out truncated,
because of the safety cutoff. This happened because I forgot to update
the size when status packets began to be printed.
The rest is:
- Comments updates
- Allow snooping with pkmap on x86_64, which is cache-coherent
- Enlarge event buffers (certainly we can have a couple of pages)
- Add event counter
First touch upon usbmon for 2.6.18.
Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
the patch below converts a bunch of semaphores-used-as-mutex in the USB
code to mutexes
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!