Commit Graph

4 Commits (321f0e70225abc792d74902a2bc4a60164265fd4)

Author SHA1 Message Date
Paul Mackerras 8943633cf9 KVM: PPC: Work around POWER7 DABR corruption problem
It turns out that on POWER7, writing to the DABR can cause a corrupted
value to be written if the PMU is active and updating SDAR in continuous
sampling mode.  To work around this, we make sure that the PMU is inactive
and SDAR updates are disabled (via MMCRA) when we are context-switching
DABR.

When the guest sets DABR via the H_SET_DABR hypercall, we use a slightly
different workaround, which is to read back the DABR and write it again
if it got corrupted.

While we are at it, make it consistent that the saving and restoring
of the guest's non-volatile GPRs and the FPRs are done with the guest
setup of the PMU active.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 14:01:36 +03:00
Paul Mackerras a5ddea0e78 KVM: PPC: Book3S HV: Save and restore CR in __kvmppc_vcore_entry
The ABI specifies that CR fields CR2--CR4 are nonvolatile across function
calls.  Currently __kvmppc_vcore_entry doesn't save and restore the CR,
leading to CR2--CR4 getting corrupted with guest values, possibly leading
to incorrect behaviour in its caller.  This adds instructions to save
and restore CR at the points where we save and restore the nonvolatile
GPRs.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2012-04-03 16:42:30 +10:00
Paul Mackerras 9e368f2915 KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode.  Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.

There are several differences between the PPC970 and POWER7 in how
guests are managed.  These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits.  Notably, on PPC970:

* The LPCR, LPID or RMOR registers don't exist, and the functions of
  those registers are provided by bits in HID4 and one bit in HID0.

* External interrupts can be directed to the hypervisor, but unlike
  POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
  SRR0/1 not HSRR0/1.

* There is no virtual RMA (VRMA) mode; the guest must use an RMO
  (real mode offset) area.

* The TLB entries are not tagged with the LPID, so it is necessary to
  flush the whole TLB on partition switch.  Furthermore, when switching
  partitions we have to ensure that no other CPU is executing the tlbie
  or tlbsync instructions in either the old or the new partition,
  otherwise undefined behaviour can occur.

* The PMU has 8 counters (PMC registers) rather than 6.

* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.

* The SLB has 64 entries rather than 32.

* There is no mediated external interrupt facility, so if we switch to
  a guest that has a virtual external interrupt pending but the guest
  has MSR[EE] = 0, we have to arrange to have an interrupt pending for
  it so that we can get control back once it re-enables interrupts.  We
  do that by sending ourselves an IPI with smp_send_reschedule after
  hard-disabling interrupts.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:59 +03:00
Paul Mackerras de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00