Commit Graph

124 Commits (0ca1f7ceb1991099ed5273885ebcf4323948c72e)

Author SHA1 Message Date
Yan, Zheng a22285a6a3 Btrfs: Integrate metadata reservation with start_transaction
Besides simplify the code, this change makes sure all metadata
reservation for normal metadata operations are released after
committing transaction.

Changes since V1:

Add code that check if unlink and rmdir will free space.

Add ENOSPC handling for clone ioctl.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-05-25 10:34:50 -04:00
Linus Torvalds d6cf853d4d Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
  Btrfs: make sure the chunk allocator doesn't create zero length chunks
  Btrfs: fix data enospc check overflow
2010-04-12 18:37:04 -07:00
Chris Mason 9f680ce04e Btrfs: make sure the chunk allocator doesn't create zero length chunks
A recent commit allowed for smaller chunks to be created, but didn't
make sure they were always bigger than a stripe.  After some divides,
this led to zero length stripes.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-04-06 09:37:47 -04:00
Linus Torvalds 795d580bae Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
  Btrfs: add check for changed leaves in setup_leaf_for_split
  Btrfs: create snapshot references in same commit as snapshot
  Btrfs: fix small race with delalloc flushing waitqueue's
  Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
  Btrfs: fix chunk allocate size calculation
  Btrfs: kill max_extent mount option
  Btrfs: fail to mount if we have problems reading the block groups
  Btrfs: check btrfs_get_extent return for IS_ERR()
  Btrfs: handle kmalloc() failure in inode lookup ioctl
  Btrfs: dereferencing freed memory
  Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
  Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
  Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
  Btrfs: add NULL check for do_walk_down()
  Btrfs: remove duplicate include in ioctl.c

Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
2010-04-05 13:21:15 -07:00
Josef Bacik 0cad8a1130 Btrfs: fix chunk allocate size calculation
If the amount of free space left in a device is less than what we think should
be the minimum size, just ignore the minimum size and use the amount we have.  I
ran into this running tests on a 600mb volume, the chunk allocator wouldn't let
me allocate the last 52mb of the disk for data because we want to have at least
64mb chunks for data.  This patch fixes that problem.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-30 21:19:09 -04:00
Zhao Lei f3eae7e8a5 Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
We can use this simple method to make source more readable.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-30 21:19:09 -04:00
Zhao Lei ab59381ea4 Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
We need to check return value of btrfs_search_slot() in
btrfs_read_chunk_tree() and do corresponding error handing.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-30 21:19:09 -04:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Chris Mason 5ff7ba3a79 Btrfs: don't look at bio flags after submit_bio
After callling submit_bio, the bio can be freed at any time.  The
btrfs submission thread helper was checking the bio flags too late,
which might not give the correct answer.

When CONFIG_DEBUG_PAGE_ALLOC is turned on, it can lead to oopsen.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-15 11:00:15 -04:00
Xiao Guangrong a343832f1a btrfs: using btrfs_stack_device_id() get devid
We can use btrfs_stack_device_id() to get dev_item->devid

Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-15 11:00:14 -04:00
TARUISI Hiroaki 3a0524dc05 btrfs: Update existing btrfs_device for renaming device
When we scan devices in a multi-device filesystem, we memorize the original
name.  If the device gets a new name, later scans don't update the
in-kernel structures related to it, and we're not able to mount the
filesystem.

This patch updates device name during scaning.

Signed-off-by: TARUISI Hiroaki <taruishi.hiroak@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-15 11:00:10 -04:00
Chris Mason 51684082b1 Btrfs: run the backing dev more often in the submit_bio helper
The submit_bio helper thread can decide to loop back around to
service more bios.  This commit forces it to unplug first, which helps
reduce the latency seen by submitters.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-15 11:00:09 -04:00
Josef Bacik 035fe03a7a Btrfs: check total number of devices when removing missing
If you have a disk failure in RAID1 and then add a new disk to the
array, and then try to remove the missing volume, it will fail.  The
reason is the sanity check only looks at the total number of rw devices,
which is just 2 because we have 2 good disks and 1 bad one.  Instead
check the total number of devices in the array to make sure we can
actually remove the device.  Tested this with a failed disk setup and
with this test we can now run

btrfs-vol -r missing /mount/point

and it works fine.

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-01-28 16:20:39 -05:00
Josef Bacik 7f59203abe Btrfs: check return value of open_bdev_exclusive properly
Hit this problem while testing RAID1 failure stuff.  open_bdev_exclusive
returns ERR_PTR(), not NULL.  So change the return value properly.  This
is important if you accidently specify a device that doesn't exist when
trying to add a new device to an array, you will panic the box
dereferencing bdev.

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-01-28 16:20:39 -05:00
Josef Bacik f48b90756b Btrfs: do not mark the chunk as readonly if in degraded mode
If a RAID setup has chunks that span multiple disks, and one of those
disks has failed, btrfs_chunk_readonly will return 1 since one of the
disks in that chunk's stripes is dead and therefore not writeable.  So
instead if we are in degraded mode, return 0 so we can go ahead and
allocate stuff.  Without this patch all of the block groups in a RAID1
setup will end up read-only, which will mean we can't add new disks to
the array since we won't be able to make allocations.

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-01-28 16:20:39 -05:00
Jiri Slaby 2423fdfb96 Btrfs, fix memory leaks in error paths
Stanse found 2 memory leaks in relocate_block_group and
__btrfs_map_block. cluster and multi are not freed/assigned on all
paths. Fix that.

Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-01-17 20:40:20 -05:00
Josef Bacik 83d3c9696f Btrfs: make metadata chunks smaller
This patch makes us a bit less zealous about making sure we have enough free
metadata space by pearing down the size of new metadata chunks to 256mb instead
of 1gb.  Also, we used to try an allocate metadata chunks when allocating data,
but that sort of thing is done elsewhere now so we can just remove it.  With my
-ENOSPC test I used to have 3gb reserved for metadata out of 75gb, now I have
1.7gb.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-12-17 12:33:38 -05:00
Chris Mason 25472b880c Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable into for-linus 2009-10-01 12:58:13 -04:00
Julia Lawall fd2696f399 Btrfs: introduce missing kfree
Error handling code following a kzalloc should free the allocated data.

The semantic match that finds the problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)

// <smpl>
@r exists@
local idexpression x;
statement S;
expression E;
identifier f,f1,l;
position p1,p2;
expression *ptr != NULL;
@@

x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...);
...
if (x == NULL) S
<... when != x
     when != if (...) { <+...x...+> }
(
x->f1 = E
|
 (x->f1 == NULL || ...)
|
 f(...,x->f1,...)
)
...>
(
 return \(0\|<+...x...+>\|ptr\);
|
 return@p2 ...;
)

@script:python@
p1 << r.p1;
p2 << r.p2;
@@

print "* file: %s kmalloc %s return %s" % (p1[0].file,p1[0].line,p2[0].line)
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-29 13:51:04 -04:00
Chris Mason 54bcf382da Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable into for-linus
Conflicts:
	fs/btrfs/super.c
2009-09-24 10:00:58 -04:00
Josef Bacik ba1bf4818b Btrfs: make balance code choose more wisely when relocating
Currently, we can panic the box if the first block group we go to move is of a
type where there is no space left to move those extents.  For example, if we
fill the disk up with data, and then we try to balance and we have no room to
move the data nor room to allocate new chunks, we will panic.  Change this by
checking to see if we have room to move this chunk around, and if not, return
-ENOSPC and move on to the next chunk.  This will make sure we remove block
groups that are moveable, like if we have alot of empty metadata block groups,
and then that way we make room to be able to balance our data chunks as well.
Tested this with an fs that would panic on btrfs-vol -b normally, but no longer
panics with this patch.

V1->V2:
-actually search for a free extent on the device to make sure we can allocate a
chunk if need be.

-fix btrfs_shrink_device to make sure we actually try to relocate all the
chunks, and then if we can't return -ENOSPC so if we are doing a btrfs-vol -r
we don't remove the device with data still on it.

-check to make sure the block group we are going to relocate isn't the last one
in that particular space

-fix a bug in btrfs_shrink_device where we would change the device's size and
not fix it if we fail to do our relocate

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 19:23:48 -04:00
Chris Mason 890871be85 Btrfs: switch extent_map to a rw lock
There are two main users of the extent_map tree.  The
first is regular file inodes, where it is evenly spread
between readers and writers.

The second is the chunk allocation tree, which maps blocks from
logical addresses to phyiscal ones, and it is 99.99% reads.

The mapping tree is a point of lock contention during heavy IO
workloads, so this commit switches things to a rw lock.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:05 -04:00
Chris Mason 57fd5a5ff8 Btrfs: tweak congestion backoff
The btrfs io submission thread tries to back off congested devices in
favor of rotating off to another disk.

But, it tries to make sure it submits at least some IO before rotating
on (the others may be congested too), and so it has a magic number of
requests it tries to write before it hops.

This makes the magic number smaller.  Testing shows that we're spending
too much time on congested devices and leaving the other devices idle.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:05 -04:00
Jens Axboe 1f98a13f62 bio: first step in sanitizing the bio->bi_rw flag testing
Get rid of any functions that test for these bits and make callers
use bio_rw_flagged() directly. Then it is at least directly apparent
what variable and flag they check.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 14:33:31 +02:00
Chris Mason 9779b72f05 Btrfs: find smallest available device extent during chunk allocation
Allocating new block group is easy when the disk has plenty of space.
But things get difficult as the disk fills up, especially if
the FS has been run through btrfs-vol -b.  The balance operation
is likely to make the total bytes available on the device greater
than the largest extent we'll actually be able to allocate.

But the device extent allocation code incorrectly assumes that a device
with 5G free will be able to allocate a 5G extent.  It isn't normally a
problem because device extents don't get freed unless btrfs-vol -b
is run.

This fixes the device extent allocator to remember the largest free
extent it can find, and then uses that value as a fallback.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 16:41:41 -04:00
Yan Zheng 1fcbac581b Btrfs: find_free_dev_extent doesn't handle holes at the start of the device
find_free_dev_extent does not properly handle the case where
the device is not complete free, and there is a free extent
at the beginning of the device.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 11:22:47 -04:00
David Woodhouse 3acada49c2 Btrfs: Remove broken sanity check from btrfs_rmap_block()
It was never actually doing anything anyway (see the loop condition),
and it would be difficult to make it work for RAID[56].

Even if it was actually working, it's checking for the wrong thing
anyway. Instead of checking whether we list a block which _doesn't_ land
at the relevant physical location, it should be checking that we _have_
listed all the logical blocks which refer to the required physical
location on all devices.

This function is only called from remove_sb_from_cache() to ensure that
we reserve the logical blocks which would reside at the same physical
location as the superblock copies. So listing more blocks than we need
is actually OK.

With RAID[56] we're going to throw away an entire stripe for each block
we have to ignore, so we _are_ going to list blocks other than the
ones which actually contain the superblock.

Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-22 16:49:01 -04:00
Yan Zheng bf1fb512a5 Btrfs: properly update space information after shrinking device.
Change 'goto done' to 'break' for the case of all device extents have
been freed, so that the code updates space information will be execute.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-22 09:59:00 -04:00
Chris Mason e5e9a5206a Btrfs: avoid races between super writeout and device list updates
On multi-device filesystems, btrfs writes supers to all of the devices
before considering a sync complete.  There wasn't any additional
locking between super writeout and the device list management code
because device management was done inside a transaction and
super writeout only happened  with no transation writers running.

With the btrfs fsync log and other async transaction updates, this
has been racey for some time.  This adds a mutex to protect
the device list.  The existing volume mutex could not be reused due to
transaction lock ordering requirements.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 15:17:02 -04:00
Chris Mason c289811cc0 Btrfs: autodetect SSD devices
During mount, btrfs will check the queue nonrot flag
for all the devices found in the FS.  If they are all
non-rotating, SSD mode is enabled by default.

If the FS was mounted with -o nossd, the non-rotating
flag is ignored.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:52 -04:00
Chris Mason d644d8a1e3 Btrfs: avoid IO stalls behind congested devices in a multi-device FS
The btrfs IO submission threads try to service a bunch of devices with a small
number of threads.  They do a congestion check to try and avoid waiting
on requests for a busy device.

The checks make sure we've sent a few requests down to a given device just so
that we aren't bouncing between busy devices without actually sending down
any IO.  The counter used to decide if we can switch to the next device
is somewhat overloaded.  It is also being used to decide if we've done
a good batch of requests between the WRITE_SYNC or regular priority lists.
It may get reset to zero often, leaving us hammering on a busy device
instead of moving on to another disk.

This commit adds a new counter for the number of bios sent while
servicing a device.  It doesn't get reset or fiddled with.  On
multi-device filesystems, this fixes IO stalls in streaming
write workloads.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:49 -04:00
Chris Mason d84275c938 Btrfs: don't allow WRITE_SYNC bios to starve out regular writes
Btrfs uses dedicated threads to submit bios when checksumming is on,
which allows us to make sure the threads dedicated to checksumming don't get
stuck waiting for requests.  For each btrfs device, there are
two lists of bios.  One list is for WRITE_SYNC bios and the other
is for regular priority bios.

The IO submission threads used to process all of the WRITE_SYNC bios first and
then switch to the regular bios.  This commit makes sure we don't completely
starve the regular bios by rotating between the two lists.

WRITE_SYNC bios are still favored 2:1 over the regular bios, and this tries
to run in batches to avoid seeking.  Benchmarking shows this eliminates
stalls during streaming buffered writes on both multi-device and
single device filesystems.

If the regular bios starve, the system can end up with a large amount of ram
pinned down in writeback pages.  If we are a little more fair between the two
classes, we're able to keep throughput up and make progress on the bulk of
our dirty ram.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:49 -04:00
Yan Zheng 5d4f98a28c Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.

When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one.  At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.

The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root.  This commit reduces the
transaction overhead by avoiding the need for dead root records.

When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.

This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.

We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.

This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.

This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.

This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.

The improved balancing code scales significantly better with a large
number of snapshots.

This is a very large commit and was written in a number of
pieces.  But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:46 -04:00
Yan Zheng 2cc3c559fb Btrfs: set device->total_disk_bytes when adding new device
It was not being properly initialized, and so the size saved to
disk was not correct.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-04 09:23:57 -04:00
Chris Ball d6397baee4 Btrfs: When shrinking, only update disk size on success
Previously, we updated a device's size prior to attempting a shrink
operation.  This patch moves the device resizing logic to only happen if
the shrink completes successfully.  In the process, it introduces a new
field to btrfs_device -- disk_total_bytes -- to track the on-disk size.

Signed-off-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-27 07:40:51 -04:00
Chris Mason ffbd517d5a Btrfs: use WRITE_SYNC for synchronous writes
Part of reducing fsync/O_SYNC/O_DIRECT latencies is using WRITE_SYNC for
writes we plan on waiting on in the near future.  This patch
mirrors recent changes in other filesystems and the generic code to
use WRITE_SYNC when WB_SYNC_ALL is passed and to use WRITE_SYNC for
other latency critical writes.

Btrfs uses async worker threads for checksumming before the write is done,
and then again to actually submit the bios.  The bio submission code just
runs a per-device list of bios that need to be sent down the pipe.

This list is split into low priority and high priority lists so the
WRITE_SYNC IO happens first.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-20 15:53:08 -04:00
Chris Mason bedf762ba3 Btrfs: unplug in the async bio submission threads
Btrfs pages being written get set to writeback, and then may go through
a number of steps before they hit the block layer.  This includes compression,
checksumming and async bio submission.

The end result is that someone who writes a page and then does
wait_on_page_writeback is likely to unplug the queue before the bio they
cared about got there.

We could fix this by marking bios sync, or by doing more frequent unplugs,
but this commit just changes the async bio submission code to unplug
after it has processed all the bios for a device.  The async bio submission
does a fair job of collection bios, so this shouldn't be a huge problem
for reducing merging at the elevator.

For streaming O_DIRECT writes on a 5 drive array, it boosts performance
from 386MB/s to 460MB/s.

Thanks to Hisashi Hifumi for helping with this work.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-03 10:32:58 -04:00
Chris Mason b765ead57d Btrfs: keep processing bios for a given bdev if our proc is batching
Btrfs uses async helper threads to submit write bios so the checksumming
helper threads don't block on the disk.

The submit bio threads may process bios for more than one block device,
so when they find one device congested they try to move on to other
devices instead of blocking in get_request_wait for one device.

This does a pretty good job of keeping multiple devices busy, but the
congested flag has a number of problems.  A congested device may still
give you a request, and other procs that aren't backing off the congested
device may starve you out.

This commit uses the io_context stored in current to decide if our process
has been made a batching process by the block layer.  If so, it keeps
sending IO down for at least one batch.  This helps make sure we do
a good amount of work each time we visit a bdev, and avoids large IO
stalls in multi-device workloads.

It's also very ugly.  A better solution is in the works with Jens Axboe.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-03 10:27:10 -04:00
Chris Mason 913d952eb5 Btrfs: Clear space_info full when adding new devices
The full flag on the space info structs tells the allocator not to try
and allocate more chunks because the devices in the FS are fully allocated.

When more devices are added, we need to clear the full flag so the allocator
knows it has more space available.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-10 13:17:18 -04:00
Chris Mason 4184ea7f90 Btrfs: Fix locking around adding new space_info
Storage allocated to different raid levels in btrfs is tracked by
a btrfs_space_info structure, and all of the current space_infos are
collected into a list_head.

Most filesystems have 3 or 4 of these structs total, and the list is
only changed when new raid levels are added or at unmount time.

This commit adds rcu locking on the list head, and properly frees
things at unmount time.  It also clears the space_info->full flag
whenever new space is added to the FS.

The locking for the space info list goes like this:

reads: protected by rcu_read_lock()
writes: protected by the chunk_mutex

At unmount time we don't need special locking because all the readers
are gone.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-10 12:39:20 -04:00
Chris Mason 4008c04a07 Btrfs: make a lockdep class for the extent buffer locks
Btrfs is currently using spin_lock_nested with a nested value based
on the tree depth of the block.  But, this doesn't quite work because
the max tree depth is bigger than what spin_lock_nested can deal with,
and because locks are sometimes taken before the level field is filled in.

The solution here is to use lockdep_set_class_and_name instead, and to
set the class before unlocking the pages when the block is read from the
disk and just after init of a freshly allocated tree block.

btrfs_clear_path_blocking is also changed to take the locks in the proper
order, and it also makes sure all the locks currently held are properly
set to blocking before it tries to retake the spinlocks.  Otherwise, lockdep
gets upset about bad lock orderin.

The lockdep magic cam from Peter Zijlstra <peterz@infradead.org>

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-12 14:09:45 -05:00
Julia Lawall 3f3420df50 Btrfs: fs/btrfs/volumes.c: remove useless kzalloc
The call to kzalloc is followed by a kmalloc whose result is stored in the
same variable.

The semantic match that finds the problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)

// <smpl>
@r exists@
local idexpression x;
statement S;
expression E;
identifier f,l;
position p1,p2;
expression *ptr != NULL;
@@

(
if ((x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...)) == NULL) S
|
x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...);
...
if (x == NULL) S
)
<... when != x
     when != if (...) { <+...x...+> }
x->f = E
...>
(
 return \(0\|<+...x...+>\|ptr\);
|
 return@p2 ...;
)

@script:python@
p1 << r.p1;
p2 << r.p2;
@@

print "* file: %s kmalloc %s return %s" % (p1[0].file,p1[0].line,p2[0].line)
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-12 10:16:03 -05:00
Chris Mason a683705153 Btrfs: Catch missed bios in the async bio submission thread
The async bio submission thread was missing some bios that were
added after it had decided there was no work left to do.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 09:19:41 -05:00
Qinghuang Feng c6e308713a Btrfs: simplify iteration codes
Merge list_for_each* and list_entry to list_for_each_entry*

Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-21 10:59:08 -05:00
Roland Dreier 119e10cf1b Btrfs: Remove extra KERN_INFO in the middle of a line
The "devid <xxx> transid <xxx>" printk in btrfs_scan_one_device()
actually follows another printk that doesn't end in a newline (since the
intention is for the two printks to make one line of output), so the
KERN_INFO just ends up messing up the output:

    device label exp <6>devid 1 transid 9 /dev/sda5

Fix this by changing the extra KERN_INFO to KERN_CONT.

Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-21 10:49:16 -05:00
Huang Weiyi 7eaebe7d50 Btrfs: removed unused #include <version.h>'s
Removed unused #include <version.h>'s in btrfs

Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-21 10:49:16 -05:00
Chris Mason 1d9e2ae949 Btrfs: Clear the device->running_pending flag before bailing on congestion
Btrfs maintains a queue of async bio submissions so the checksumming
threads don't have to wait on get_request_wait.  In order to avoid
extra wakeups, this code has a running_pending flag that is used
to tell new submissions they don't need to wake the thread.

When the threads notice congestion on a single device, they
may decide to requeue the job and move on to other devices.  This
makes sure the running_pending flag is cleared before the
job is requeued.

It should help avoid IO stalls by making sure the task is woken up
when new submissions come in.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-16 11:58:19 -05:00
Chris Mason d397712bcc Btrfs: Fix checkpatch.pl warnings
There were many, most are fixed now.  struct-funcs.c generates some warnings
but these are bogus.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-05 21:25:51 -05:00
Yan Zheng e4404d6e8d Btrfs: shared seed device
This patch makes seed device possible to be shared by
multiple mounted file systems. The sharing is achieved
by cloning seed device's btrfs_fs_devices structure.
Thanks you,

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-12-12 10:03:26 -05:00
Chris Mason c3027eb552 Btrfs: Add inode sequence number for NFS and reserved space in a few structs
This adds a sequence number to the btrfs inode that is increased on
every update.  NFS will be able to use that to detect when an inode has
changed, without relying on inaccurate time fields.

While we're here, this also:

Puts reserved space into the super block and inode

Adds a log root transid to the super so we can pick the newest super
based on the fsync log as well as the main transaction ID.  For now
the log root transid is always zero, but that'll get fixed.

Adds a starting offset to the dev_item.  This will let us do better
alignment calculations if we know the start of a partition on the disk.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-08 16:40:21 -05:00