Commit Graph

11 Commits (05736a427f7e16be948ccbf39782bd3a6ae16b14)

Author SHA1 Message Date
Steven Rostedt 6f93fc076a ftrace: x86 use copy to and from user functions
The modification of code is performed either by kstop_machine, before
SMP starts, or on module code before the module is executed. There is
no reason to do the modifications from assembly. The copy to and from
user functions are sufficient and produces cleaner and easier to read
code.

Thanks to Benjamin Herrenschmidt for suggesting the idea.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-14 10:36:03 +02:00
Steven Rostedt 732f3ca7d4 ftrace: use only 5 byte nops for x86
Mathieu Desnoyers revealed a bug in the original code. The nop that is
used to relpace the mcount caller can be a two part nop. This runs the
risk where a process can be preempted after executing the first nop, but
before the second part of the nop.

The ftrace code calls kstop_machine to keep multiple CPUs from executing
code that is being modified, but it does not protect against a task preempting
in the middle of a two part nop.

If the above preemption happens and the tracer is enabled, after the
kstop_machine runs, all those nops will be calls to the trace function.
If the preempted process that was preempted between the two nops is executed
again, it will execute half of the call to the trace function, and this
might crash the system.

This patch instead uses what both the latest Intel and AMD spec suggests.
That is the P6_NOP5 sequence of "0x0f 0x1f 0x44 0x00 0x00".

Note, some older CPUs and QEMU might fault on this nop, so this nop
is executed with fault handling first. If it detects a fault, it will then
use the code "0x66 0x66 0x66 0x66 0x90". If that faults, it will then
default to a simple "jmp 1f; .byte 0x00 0x00 0x00; 1:". The jmp is
not optimal but will do if the first two can not be executed.

TODO: Examine the cpuid to determine the nop to use.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-14 10:35:01 +02:00
Steven Rostedt 0a37605c22 ftrace: x86 mcount stub
x86 now sets up the mcount locations through the build and no longer
needs to record the ip when the function is executed. This patch changes
the initial mcount to simply return. There's no need to do any other work.
If the ftrace start up test fails, the original mcount will be what everything
will use, so having this as fast as possible is a good thing.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-14 10:34:58 +02:00
Abhishek Sagar 395a59d0f8 ftrace: store mcount address in rec->ip
Record the address of the mcount call-site. Currently all archs except sparc64
record the address of the instruction following the mcount call-site. Some
general cleanups are entailed. Storing mcount addresses in rec->ip enables
looking them up in the kprobe hash table later on to check if they're kprobe'd.

Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: davem@davemloft.net
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-23 22:10:56 +02:00
Ingo Molnar ee4311adf1 ftrace: build fix with gcc 4.3
fix:

arch/x86/kernel/ftrace.c: Assembler messages:
arch/x86/kernel/ftrace.c:82: Error: bad register name `%sil'
make[1]: *** [arch/x86/kernel/ftrace.o] Error 1

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-17 17:43:53 +02:00
Abhishek Sagar 1d74f2a0f6 ftrace: remove ftrace_ip_converted()
Remove the unneeded function ftrace_ip_converted().

Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10 11:57:49 +02:00
Steven Rostedt a56be3fe2f ftrace: fix the fault label in updating code
The fault label to jump to on fault of updating the code was misplaced
preventing the fault from being recorded.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 21:16:12 +02:00
Steven Rostedt d61f82d066 ftrace: use dynamic patching for updating mcount calls
This patch replaces the indirect call to the mcount function
pointer with a direct call that will be patched by the
dynamic ftrace routines.

On boot up, the mcount function calls the ftace_stub function.
When the dynamic ftrace code is initialized, the ftrace_stub
is replaced with a call to the ftrace_record_ip, which records
the instruction pointers of the locations that call it.

Later, the ftraced daemon will call kstop_machine and patch all
the locations to nops.

When a ftrace is enabled, the original calls to mcount will now
be set top call ftrace_caller, which will do a direct call
to the registered ftrace function. This direct call is also patched
when the function that should be called is updated.

All patching is performed by a kstop_machine routine to prevent any
type of race conditions that is associated with modifying code
on the fly.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 20:33:47 +02:00
Steven Rostedt 3c1720f00b ftrace: move memory management out of arch code
This patch moves the memory management of the ftrace
records out of the arch code and into the generic code
making the arch code simpler.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 20:33:35 +02:00
Steven Rostedt dfa60aba04 ftrace: use nops instead of jmp
This patch patches the call to mcount with nops instead
of a jmp over the mcount call.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 20:33:28 +02:00
Steven Rostedt 3d0833953e ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.

The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.

Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.

e.g.

  call ftrace  /* 5 bytes */

is replaced with

  jmp 3f  /* jmp is 2 bytes and we jump 3 forward */
3:

When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace.  When it is disabled,
we replace the code back to the jmp.

Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls.  A large batch is allocated at
boot up to get most of the calls there.

Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 20:33:09 +02:00