2006-06-26 07:25:09 +00:00
|
|
|
/*
|
2007-10-13 01:10:53 +00:00
|
|
|
* 8253/PIT functions
|
2006-06-26 07:25:09 +00:00
|
|
|
*
|
|
|
|
*/
|
2007-02-16 09:28:04 +00:00
|
|
|
#include <linux/clockchips.h>
|
2007-07-21 11:37:34 +00:00
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/interrupt.h>
|
2006-06-26 07:25:09 +00:00
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/module.h>
|
2007-07-21 11:37:34 +00:00
|
|
|
#include <linux/spinlock.h>
|
2006-06-26 07:25:09 +00:00
|
|
|
|
|
|
|
#include <asm/smp.h>
|
|
|
|
#include <asm/delay.h>
|
|
|
|
#include <asm/i8253.h>
|
|
|
|
#include <asm/io.h>
|
2008-01-30 12:30:02 +00:00
|
|
|
#include <asm/hpet.h>
|
2006-06-26 07:25:09 +00:00
|
|
|
|
|
|
|
DEFINE_SPINLOCK(i8253_lock);
|
|
|
|
EXPORT_SYMBOL(i8253_lock);
|
|
|
|
|
2008-01-30 12:30:03 +00:00
|
|
|
#ifdef CONFIG_X86_32
|
|
|
|
static void pit_disable_clocksource(void);
|
|
|
|
#else
|
|
|
|
static inline void pit_disable_clocksource(void) { }
|
|
|
|
#endif
|
|
|
|
|
2007-02-16 09:28:04 +00:00
|
|
|
/*
|
|
|
|
* HPET replaces the PIT, when enabled. So we need to know, which of
|
|
|
|
* the two timers is used
|
|
|
|
*/
|
|
|
|
struct clock_event_device *global_clock_event;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the PIT timer.
|
|
|
|
*
|
|
|
|
* This is also called after resume to bring the PIT into operation again.
|
|
|
|
*/
|
|
|
|
static void init_pit_timer(enum clock_event_mode mode,
|
|
|
|
struct clock_event_device *evt)
|
|
|
|
{
|
2008-01-30 12:30:47 +00:00
|
|
|
spin_lock(&i8253_lock);
|
2007-02-16 09:28:04 +00:00
|
|
|
|
|
|
|
switch(mode) {
|
|
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
|
|
/* binary, mode 2, LSB/MSB, ch 0 */
|
2008-01-30 12:33:14 +00:00
|
|
|
outb_pit(0x34, PIT_MODE);
|
|
|
|
outb_pit(LATCH & 0xff , PIT_CH0); /* LSB */
|
|
|
|
outb_pit(LATCH >> 8 , PIT_CH0); /* MSB */
|
2007-02-16 09:28:04 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
|
|
case CLOCK_EVT_MODE_UNUSED:
|
2007-07-21 11:37:38 +00:00
|
|
|
if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
|
|
|
|
evt->mode == CLOCK_EVT_MODE_ONESHOT) {
|
2008-01-30 12:33:14 +00:00
|
|
|
outb_pit(0x30, PIT_MODE);
|
|
|
|
outb_pit(0, PIT_CH0);
|
|
|
|
outb_pit(0, PIT_CH0);
|
2007-07-21 11:37:38 +00:00
|
|
|
}
|
2008-01-30 12:30:03 +00:00
|
|
|
pit_disable_clocksource();
|
2007-07-21 11:37:34 +00:00
|
|
|
break;
|
|
|
|
|
2007-03-22 21:46:18 +00:00
|
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
2007-02-16 09:28:04 +00:00
|
|
|
/* One shot setup */
|
2008-01-30 12:30:03 +00:00
|
|
|
pit_disable_clocksource();
|
2008-01-30 12:33:14 +00:00
|
|
|
outb_pit(0x38, PIT_MODE);
|
2007-07-21 11:37:34 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_RESUME:
|
|
|
|
/* Nothing to do here */
|
2007-02-16 09:28:04 +00:00
|
|
|
break;
|
|
|
|
}
|
2008-01-30 12:30:47 +00:00
|
|
|
spin_unlock(&i8253_lock);
|
2007-02-16 09:28:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Program the next event in oneshot mode
|
|
|
|
*
|
|
|
|
* Delta is given in PIT ticks
|
|
|
|
*/
|
|
|
|
static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
|
2006-06-26 07:25:09 +00:00
|
|
|
{
|
2008-01-30 12:30:47 +00:00
|
|
|
spin_lock(&i8253_lock);
|
2008-01-30 12:33:14 +00:00
|
|
|
outb_pit(delta & 0xff , PIT_CH0); /* LSB */
|
|
|
|
outb_pit(delta >> 8 , PIT_CH0); /* MSB */
|
2008-01-30 12:30:47 +00:00
|
|
|
spin_unlock(&i8253_lock);
|
2007-02-16 09:28:04 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On UP the PIT can serve all of the possible timer functions. On SMP systems
|
|
|
|
* it can be solely used for the global tick.
|
|
|
|
*
|
2007-10-19 23:13:56 +00:00
|
|
|
* The profiling and update capabilities are switched off once the local apic is
|
2007-02-16 09:28:04 +00:00
|
|
|
* registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
|
|
|
|
* !using_apic_timer decisions in do_timer_interrupt_hook()
|
|
|
|
*/
|
2008-02-12 20:10:27 +00:00
|
|
|
static struct clock_event_device pit_clockevent = {
|
2007-02-16 09:28:04 +00:00
|
|
|
.name = "pit",
|
|
|
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
|
|
|
.set_mode = init_pit_timer,
|
|
|
|
.set_next_event = pit_next_event,
|
|
|
|
.shift = 32,
|
|
|
|
.irq = 0,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the conversion factor and the min/max deltas of the clock event
|
|
|
|
* structure and register the clock event source with the framework.
|
|
|
|
*/
|
|
|
|
void __init setup_pit_timer(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Start pit with the boot cpu mask and make it global after the
|
|
|
|
* IO_APIC has been initialized.
|
|
|
|
*/
|
2007-04-30 16:27:25 +00:00
|
|
|
pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
|
2008-04-19 14:55:16 +00:00
|
|
|
pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC,
|
|
|
|
pit_clockevent.shift);
|
2007-02-16 09:28:04 +00:00
|
|
|
pit_clockevent.max_delta_ns =
|
|
|
|
clockevent_delta2ns(0x7FFF, &pit_clockevent);
|
|
|
|
pit_clockevent.min_delta_ns =
|
|
|
|
clockevent_delta2ns(0xF, &pit_clockevent);
|
|
|
|
clockevents_register_device(&pit_clockevent);
|
|
|
|
global_clock_event = &pit_clockevent;
|
2006-06-26 07:25:09 +00:00
|
|
|
}
|
2006-06-26 07:25:12 +00:00
|
|
|
|
2007-10-12 21:04:06 +00:00
|
|
|
#ifndef CONFIG_X86_64
|
2006-06-26 07:25:12 +00:00
|
|
|
/*
|
|
|
|
* Since the PIT overflows every tick, its not very useful
|
|
|
|
* to just read by itself. So use jiffies to emulate a free
|
|
|
|
* running counter:
|
|
|
|
*/
|
|
|
|
static cycle_t pit_read(void)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int count;
|
2006-06-26 07:25:16 +00:00
|
|
|
u32 jifs;
|
|
|
|
static int old_count;
|
|
|
|
static u32 old_jifs;
|
2006-06-26 07:25:12 +00:00
|
|
|
|
|
|
|
spin_lock_irqsave(&i8253_lock, flags);
|
2007-02-16 09:28:04 +00:00
|
|
|
/*
|
2006-06-26 07:25:16 +00:00
|
|
|
* Although our caller may have the read side of xtime_lock,
|
|
|
|
* this is now a seqlock, and we are cheating in this routine
|
|
|
|
* by having side effects on state that we cannot undo if
|
|
|
|
* there is a collision on the seqlock and our caller has to
|
|
|
|
* retry. (Namely, old_jifs and old_count.) So we must treat
|
|
|
|
* jiffies as volatile despite the lock. We read jiffies
|
|
|
|
* before latching the timer count to guarantee that although
|
|
|
|
* the jiffies value might be older than the count (that is,
|
|
|
|
* the counter may underflow between the last point where
|
|
|
|
* jiffies was incremented and the point where we latch the
|
|
|
|
* count), it cannot be newer.
|
|
|
|
*/
|
|
|
|
jifs = jiffies;
|
2008-01-30 12:33:14 +00:00
|
|
|
outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
|
|
|
|
count = inb_pit(PIT_CH0); /* read the latched count */
|
|
|
|
count |= inb_pit(PIT_CH0) << 8;
|
2006-06-26 07:25:12 +00:00
|
|
|
|
|
|
|
/* VIA686a test code... reset the latch if count > max + 1 */
|
|
|
|
if (count > LATCH) {
|
2008-01-30 12:33:14 +00:00
|
|
|
outb_pit(0x34, PIT_MODE);
|
|
|
|
outb_pit(LATCH & 0xff, PIT_CH0);
|
|
|
|
outb_pit(LATCH >> 8, PIT_CH0);
|
2006-06-26 07:25:12 +00:00
|
|
|
count = LATCH - 1;
|
|
|
|
}
|
|
|
|
|
2006-06-26 07:25:16 +00:00
|
|
|
/*
|
|
|
|
* It's possible for count to appear to go the wrong way for a
|
|
|
|
* couple of reasons:
|
|
|
|
*
|
|
|
|
* 1. The timer counter underflows, but we haven't handled the
|
|
|
|
* resulting interrupt and incremented jiffies yet.
|
|
|
|
* 2. Hardware problem with the timer, not giving us continuous time,
|
|
|
|
* the counter does small "jumps" upwards on some Pentium systems,
|
|
|
|
* (see c't 95/10 page 335 for Neptun bug.)
|
|
|
|
*
|
|
|
|
* Previous attempts to handle these cases intelligently were
|
|
|
|
* buggy, so we just do the simple thing now.
|
|
|
|
*/
|
|
|
|
if (count > old_count && jifs == old_jifs) {
|
|
|
|
count = old_count;
|
|
|
|
}
|
|
|
|
old_count = count;
|
|
|
|
old_jifs = jifs;
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&i8253_lock, flags);
|
2006-06-26 07:25:12 +00:00
|
|
|
|
2006-06-26 07:25:16 +00:00
|
|
|
count = (LATCH - 1) - count;
|
2006-06-26 07:25:12 +00:00
|
|
|
|
|
|
|
return (cycle_t)(jifs * LATCH) + count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct clocksource clocksource_pit = {
|
|
|
|
.name = "pit",
|
|
|
|
.rating = 110,
|
|
|
|
.read = pit_read,
|
2006-06-26 07:25:16 +00:00
|
|
|
.mask = CLOCKSOURCE_MASK(32),
|
2006-06-26 07:25:12 +00:00
|
|
|
.mult = 0,
|
|
|
|
.shift = 20,
|
|
|
|
};
|
|
|
|
|
2008-01-30 12:30:03 +00:00
|
|
|
static void pit_disable_clocksource(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Use mult to check whether it is registered or not
|
|
|
|
*/
|
|
|
|
if (clocksource_pit.mult) {
|
|
|
|
clocksource_unregister(&clocksource_pit);
|
|
|
|
clocksource_pit.mult = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-06-26 07:25:12 +00:00
|
|
|
static int __init init_pit_clocksource(void)
|
|
|
|
{
|
2008-01-30 12:30:02 +00:00
|
|
|
/*
|
|
|
|
* Several reasons not to register PIT as a clocksource:
|
|
|
|
*
|
|
|
|
* - On SMP PIT does not scale due to i8253_lock
|
|
|
|
* - when HPET is enabled
|
|
|
|
* - when local APIC timer is active (PIT is switched off)
|
|
|
|
*/
|
|
|
|
if (num_possible_cpus() > 1 || is_hpet_enabled() ||
|
|
|
|
pit_clockevent.mode != CLOCK_EVT_MODE_PERIODIC)
|
2006-06-26 07:25:12 +00:00
|
|
|
return 0;
|
|
|
|
|
2008-04-19 14:55:15 +00:00
|
|
|
clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE,
|
|
|
|
clocksource_pit.shift);
|
2006-06-26 07:25:14 +00:00
|
|
|
return clocksource_register(&clocksource_pit);
|
2006-06-26 07:25:12 +00:00
|
|
|
}
|
2007-03-05 08:30:50 +00:00
|
|
|
arch_initcall(init_pit_clocksource);
|
2007-10-12 21:04:06 +00:00
|
|
|
|
|
|
|
#endif
|