linux/kernel/capability.c

316 lines
8.1 KiB
C
Raw Normal View History

/*
* linux/kernel/capability.c
*
* Copyright (C) 1997 Andrew Main <zefram@fysh.org>
*
V3 file capabilities: alter behavior of cap_setpcap The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1, can change the capabilities of another process, p2. This is not the meaning that was intended for this capability at all, and this implementation came about purely because, without filesystem capabilities, there was no way to use capabilities without one process bestowing them on another. Since we now have a filesystem support for capabilities we can fix the implementation of CAP_SETPCAP. The most significant thing about this change is that, with it in effect, no process can set the capabilities of another process. The capabilities of a program are set via the capability convolution rules: pI(post-exec) = pI(pre-exec) pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI) pE(post-exec) = fE ? pP(post-exec) : 0 at exec() time. As such, the only influence the pre-exec() program can have on the post-exec() program's capabilities are through the pI capability set. The correct implementation for CAP_SETPCAP (and that enabled by this patch) is that it can be used to add extra pI capabilities to the current process - to be picked up by subsequent exec()s when the above convolution rules are applied. Here is how it works: Let's say we have a process, p. It has capability sets, pE, pP and pI. Generally, p, can change the value of its own pI to pI' where (pI' & ~pI) & ~pP = 0. That is, the only new things in pI' that were not present in pI need to be present in pP. The role of CAP_SETPCAP is basically to permit changes to pI beyond the above: if (pE & CAP_SETPCAP) { pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */ } This capability is useful for things like login, which (say, via pam_cap) might want to raise certain inheritable capabilities for use by the children of the logged-in user's shell, but those capabilities are not useful to or needed by the login program itself. One such use might be to limit who can run ping. You set the capabilities of the 'ping' program to be "= cap_net_raw+i", and then only shells that have (pI & CAP_NET_RAW) will be able to run it. Without CAP_SETPCAP implemented as described above, login(pam_cap) would have to also have (pP & CAP_NET_RAW) in order to raise this capability and pass it on through the inheritable set. Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 10:05:59 +00:00
* Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org>
* 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net>
*/
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/security.h>
#include <linux/syscalls.h>
pid namespaces: define is_global_init() and is_container_init() is_init() is an ambiguous name for the pid==1 check. Split it into is_global_init() and is_container_init(). A cgroup init has it's tsk->pid == 1. A global init also has it's tsk->pid == 1 and it's active pid namespace is the init_pid_ns. But rather than check the active pid namespace, compare the task structure with 'init_pid_ns.child_reaper', which is initialized during boot to the /sbin/init process and never changes. Changelog: 2.6.22-rc4-mm2-pidns1: - Use 'init_pid_ns.child_reaper' to determine if a given task is the global init (/sbin/init) process. This would improve performance and remove dependence on the task_pid(). 2.6.21-mm2-pidns2: - [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc, ppc,avr32}/traps.c for the _exception() call to is_global_init(). This way, we kill only the cgroup if the cgroup's init has a bug rather than force a kernel panic. [akpm@linux-foundation.org: fix comment] [sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c] [bunk@stusta.de: kernel/pid.c: remove unused exports] [sukadev@us.ibm.com: Fix capability.c to work with threaded init] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by: Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 06:39:52 +00:00
#include <linux/pid_namespace.h>
#include <asm/uaccess.h>
/*
* Leveraged for setting/resetting capabilities
*/
const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
const kernel_cap_t __cap_full_set = CAP_FULL_SET;
const kernel_cap_t __cap_init_eff_set = CAP_INIT_EFF_SET;
EXPORT_SYMBOL(__cap_empty_set);
EXPORT_SYMBOL(__cap_full_set);
EXPORT_SYMBOL(__cap_init_eff_set);
file capabilities: add no_file_caps switch (v4) Add a no_file_caps boot option when file capabilities are compiled into the kernel (CONFIG_SECURITY_FILE_CAPABILITIES=y). This allows distributions to ship a kernel with file capabilities compiled in, without forcing users to use (and understand and trust) them. When no_file_caps is specified at boot, then when a process executes a file, any file capabilities stored with that file will not be used in the calculation of the process' new capability sets. This means that booting with the no_file_caps boot option will not be the same as booting a kernel with file capabilities compiled out - in particular a task with CAP_SETPCAP will not have any chance of passing capabilities to another task (which isn't "really" possible anyway, and which may soon by killed altogether by David Howells in any case), and it will instead be able to put new capabilities in its pI. However since fI will always be empty and pI is masked with fI, it gains the task nothing. We also support the extra prctl options, setting securebits and dropping capabilities from the per-process bounding set. The other remaining difference is that killpriv, task_setscheduler, setioprio, and setnice will continue to be hooked. That will be noticable in the case where a root task changed its uid while keeping some caps, and another task owned by the new uid tries to change settings for the more privileged task. Changelog: Nov 05 2008: (v4) trivial port on top of always-start-\ with-clear-caps patch Sep 23 2008: nixed file_caps_enabled when file caps are not compiled in as it isn't used. Document no_file_caps in kernel-parameters.txt. Signed-off-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-05 22:08:52 +00:00
int file_caps_enabled = 1;
static int __init file_caps_disable(char *str)
{
file_caps_enabled = 0;
return 1;
}
__setup("no_file_caps", file_caps_disable);
/*
* More recent versions of libcap are available from:
*
* http://www.kernel.org/pub/linux/libs/security/linux-privs/
*/
static void warn_legacy_capability_use(void)
{
static int warned;
if (!warned) {
char name[sizeof(current->comm)];
printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
" (legacy support in use)\n",
get_task_comm(name, current));
warned = 1;
}
}
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
/*
* Version 2 capabilities worked fine, but the linux/capability.h file
* that accompanied their introduction encouraged their use without
* the necessary user-space source code changes. As such, we have
* created a version 3 with equivalent functionality to version 2, but
* with a header change to protect legacy source code from using
* version 2 when it wanted to use version 1. If your system has code
* that trips the following warning, it is using version 2 specific
* capabilities and may be doing so insecurely.
*
* The remedy is to either upgrade your version of libcap (to 2.10+,
* if the application is linked against it), or recompile your
* application with modern kernel headers and this warning will go
* away.
*/
static void warn_deprecated_v2(void)
{
static int warned;
if (!warned) {
char name[sizeof(current->comm)];
printk(KERN_INFO "warning: `%s' uses deprecated v2"
" capabilities in a way that may be insecure.\n",
get_task_comm(name, current));
warned = 1;
}
}
/*
* Version check. Return the number of u32s in each capability flag
* array, or a negative value on error.
*/
static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
{
__u32 version;
if (get_user(version, &header->version))
return -EFAULT;
switch (version) {
case _LINUX_CAPABILITY_VERSION_1:
warn_legacy_capability_use();
*tocopy = _LINUX_CAPABILITY_U32S_1;
break;
case _LINUX_CAPABILITY_VERSION_2:
warn_deprecated_v2();
/*
* fall through - v3 is otherwise equivalent to v2.
*/
case _LINUX_CAPABILITY_VERSION_3:
*tocopy = _LINUX_CAPABILITY_U32S_3;
break;
default:
if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
return -EFAULT;
return -EINVAL;
}
return 0;
}
/*
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
* The only thing that can change the capabilities of the current
* process is the current process. As such, we can't be in this code
* at the same time as we are in the process of setting capabilities
* in this process. The net result is that we can limit our use of
* locks to when we are reading the caps of another process.
*/
static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
kernel_cap_t *pIp, kernel_cap_t *pPp)
{
int ret;
if (pid && (pid != task_pid_vnr(current))) {
struct task_struct *target;
rcu_read_lock();
target = find_task_by_vpid(pid);
if (!target)
ret = -ESRCH;
else
ret = security_capget(target, pEp, pIp, pPp);
rcu_read_unlock();
} else
ret = security_capget(current, pEp, pIp, pPp);
return ret;
}
/**
* sys_capget - get the capabilities of a given process.
* @header: pointer to struct that contains capability version and
* target pid data
* @dataptr: pointer to struct that contains the effective, permitted,
* and inheritable capabilities that are returned
*
* Returns 0 on success and < 0 on error.
*/
SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
{
int ret = 0;
pid_t pid;
unsigned tocopy;
kernel_cap_t pE, pI, pP;
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
ret = cap_validate_magic(header, &tocopy);
if ((dataptr == NULL) || (ret != 0))
return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
if (get_user(pid, &header->pid))
return -EFAULT;
if (pid < 0)
return -EINVAL;
ret = cap_get_target_pid(pid, &pE, &pI, &pP);
if (!ret) {
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
unsigned i;
for (i = 0; i < tocopy; i++) {
kdata[i].effective = pE.cap[i];
kdata[i].permitted = pP.cap[i];
kdata[i].inheritable = pI.cap[i];
}
/*
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
* Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
* we silently drop the upper capabilities here. This
* has the effect of making older libcap
* implementations implicitly drop upper capability
* bits when they perform a: capget/modify/capset
* sequence.
*
* This behavior is considered fail-safe
* behavior. Upgrading the application to a newer
* version of libcap will enable access to the newer
* capabilities.
*
* An alternative would be to return an error here
* (-ERANGE), but that causes legacy applications to
* unexpectidly fail; the capget/modify/capset aborts
* before modification is attempted and the application
* fails.
*/
if (copy_to_user(dataptr, kdata, tocopy
* sizeof(struct __user_cap_data_struct))) {
return -EFAULT;
}
}
return ret;
}
/**
* sys_capset - set capabilities for a process or (*) a group of processes
* @header: pointer to struct that contains capability version and
* target pid data
* @data: pointer to struct that contains the effective, permitted,
* and inheritable capabilities
*
* Set capabilities for the current process only. The ability to any other
* process(es) has been deprecated and removed.
*
* The restrictions on setting capabilities are specified as:
*
* I: any raised capabilities must be a subset of the old permitted
* P: any raised capabilities must be a subset of the old permitted
* E: must be set to a subset of new permitted
*
* Returns 0 on success and < 0 on error.
*/
SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
{
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
unsigned i, tocopy, copybytes;
kernel_cap_t inheritable, permitted, effective;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
struct cred *new;
int ret;
pid_t pid;
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
ret = cap_validate_magic(header, &tocopy);
if (ret != 0)
return ret;
if (get_user(pid, &header->pid))
return -EFAULT;
/* may only affect current now */
if (pid != 0 && pid != task_pid_vnr(current))
return -EPERM;
copybytes = tocopy * sizeof(struct __user_cap_data_struct);
if (copybytes > sizeof(kdata))
return -EFAULT;
if (copy_from_user(&kdata, data, copybytes))
return -EFAULT;
for (i = 0; i < tocopy; i++) {
effective.cap[i] = kdata[i].effective;
permitted.cap[i] = kdata[i].permitted;
inheritable.cap[i] = kdata[i].inheritable;
}
capabilities: remain source compatible with 32-bit raw legacy capability support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-28 05:05:17 +00:00
while (i < _KERNEL_CAPABILITY_U32S) {
effective.cap[i] = 0;
permitted.cap[i] = 0;
inheritable.cap[i] = 0;
i++;
}
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
new = prepare_creds();
if (!new)
return -ENOMEM;
ret = security_capset(new, current_cred(),
&effective, &inheritable, &permitted);
if (ret < 0)
goto error;
audit_log_capset(pid, new, current_cred());
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
return commit_creds(new);
error:
abort_creds(new);
return ret;
}
security: Fix setting of PF_SUPERPRIV by __capable() Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 10:37:28 +00:00
/**
* capable - Determine if the current task has a superior capability in effect
* @cap: The capability to be tested for
*
* Return true if the current task has the given superior capability currently
* available for use, false if not.
*
* This sets PF_SUPERPRIV on the task if the capability is available on the
* assumption that it's about to be used.
*/
int capable(int cap)
{
if (unlikely(!cap_valid(cap))) {
printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
BUG();
}
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3] Fix a regression in cap_capable() due to: commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0 Author: David Howells <dhowells@redhat.com> Date: Fri Nov 14 10:39:26 2008 +1100 CRED: Differentiate objective and effective subjective credentials on a task The problem is that the above patch allows a process to have two sets of credentials, and for the most part uses the subjective credentials when accessing current's creds. There is, however, one exception: cap_capable(), and thus capable(), uses the real/objective credentials of the target task, whether or not it is the current task. Ordinarily this doesn't matter, since usually the two cred pointers in current point to the same set of creds. However, sys_faccessat() makes use of this facility to override the credentials of the calling process to make its test, without affecting the creds as seen from other processes. One of the things sys_faccessat() does is to make an adjustment to the effective capabilities mask, which cap_capable(), as it stands, then ignores. The affected capability check is in generic_permission(): if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; This change passes the set of credentials to be tested down into the commoncap and SELinux code. The security functions called by capable() and has_capability() select the appropriate set of credentials from the process being checked. This can be tested by compiling the following program from the XFS testsuite: /* * t_access_root.c - trivial test program to show permission bug. * * Written by Michael Kerrisk - copyright ownership not pursued. * Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html */ #include <limits.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #define UID 500 #define GID 100 #define PERM 0 #define TESTPATH "/tmp/t_access" static void errExit(char *msg) { perror(msg); exit(EXIT_FAILURE); } /* errExit */ static void accessTest(char *file, int mask, char *mstr) { printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask)); } /* accessTest */ int main(int argc, char *argv[]) { int fd, perm, uid, gid; char *testpath; char cmd[PATH_MAX + 20]; testpath = (argc > 1) ? argv[1] : TESTPATH; perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM; uid = (argc > 3) ? atoi(argv[3]) : UID; gid = (argc > 4) ? atoi(argv[4]) : GID; unlink(testpath); fd = open(testpath, O_RDWR | O_CREAT, 0); if (fd == -1) errExit("open"); if (fchown(fd, uid, gid) == -1) errExit("fchown"); if (fchmod(fd, perm) == -1) errExit("fchmod"); close(fd); snprintf(cmd, sizeof(cmd), "ls -l %s", testpath); system(cmd); if (seteuid(uid) == -1) errExit("seteuid"); accessTest(testpath, 0, "0"); accessTest(testpath, R_OK, "R_OK"); accessTest(testpath, W_OK, "W_OK"); accessTest(testpath, X_OK, "X_OK"); accessTest(testpath, R_OK | W_OK, "R_OK | W_OK"); accessTest(testpath, R_OK | X_OK, "R_OK | X_OK"); accessTest(testpath, W_OK | X_OK, "W_OK | X_OK"); accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK"); exit(EXIT_SUCCESS); } /* main */ This can be run against an Ext3 filesystem as well as against an XFS filesystem. If successful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns 0 access(/tmp/xxx, W_OK) returns 0 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns 0 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 If unsuccessful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns -1 access(/tmp/xxx, W_OK) returns -1 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns -1 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 I've also tested the fix with the SELinux and syscalls LTP testsuites. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: J. Bruce Fields <bfields@citi.umich.edu> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-06 22:27:01 +00:00
if (security_capable(cap) == 0) {
security: Fix setting of PF_SUPERPRIV by __capable() Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 10:37:28 +00:00
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
EXPORT_SYMBOL(capable);