linux/drivers/scsi/arcmsr/arcmsr_hba.c

2695 lines
77 KiB
C
Raw Normal View History

/*
*******************************************************************************
** O.S : Linux
** FILE NAME : arcmsr_hba.c
** BY : Erich Chen
** Description: SCSI RAID Device Driver for
** ARECA RAID Host adapter
*******************************************************************************
** Copyright (C) 2002 - 2005, Areca Technology Corporation All rights reserved
**
** Web site: www.areca.com.tw
** E-mail: support@areca.com.tw
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License version 2 as
** published by the Free Software Foundation.
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*******************************************************************************
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
** For history of changes, see Documentation/scsi/ChangeLog.arcmsr
** Firmware Specification, see Documentation/scsi/arcmsr_spec.txt
*******************************************************************************
*/
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/aer.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsicam.h>
#include "arcmsr.h"
#ifdef CONFIG_SCSI_ARCMSR_RESET
static int sleeptime = 20;
static int retrycount = 12;
module_param(sleeptime, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(sleeptime, "The waiting period for FW ready while bus reset");
module_param(retrycount, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(retrycount, "The retry count for FW ready while bus reset");
#endif
MODULE_AUTHOR("Erich Chen <support@areca.com.tw>");
MODULE_DESCRIPTION("ARECA (ARC11xx/12xx/13xx/16xx) SATA/SAS RAID Host Bus Adapter");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(ARCMSR_DRIVER_VERSION);
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd);
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb);
static int arcmsr_abort(struct scsi_cmnd *);
static int arcmsr_bus_reset(struct scsi_cmnd *);
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *info);
static int arcmsr_queue_command(struct scsi_cmnd *cmd,
void (*done) (struct scsi_cmnd *));
static int arcmsr_probe(struct pci_dev *pdev,
const struct pci_device_id *id);
static void arcmsr_remove(struct pci_dev *pdev);
static void arcmsr_shutdown(struct pci_dev *pdev);
static void arcmsr_iop_init(struct AdapterControlBlock *acb);
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb);
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb);
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb);
static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb);
static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb);
static void arcmsr_request_device_map(unsigned long pacb);
static void arcmsr_request_hba_device_map(struct AdapterControlBlock *acb);
static void arcmsr_request_hbb_device_map(struct AdapterControlBlock *acb);
static void arcmsr_message_isr_bh_fn(struct work_struct *work);
static void *arcmsr_get_firmware_spec(struct AdapterControlBlock *acb, int mode);
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb);
static const char *arcmsr_info(struct Scsi_Host *);
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb);
static int arcmsr_adjust_disk_queue_depth(struct scsi_device *sdev,
int queue_depth, int reason)
{
if (reason != SCSI_QDEPTH_DEFAULT)
return -EOPNOTSUPP;
if (queue_depth > ARCMSR_MAX_CMD_PERLUN)
queue_depth = ARCMSR_MAX_CMD_PERLUN;
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, queue_depth);
return queue_depth;
}
static struct scsi_host_template arcmsr_scsi_host_template = {
.module = THIS_MODULE,
.name = "ARCMSR ARECA SATA/SAS RAID Host Bus Adapter"
ARCMSR_DRIVER_VERSION,
.info = arcmsr_info,
.queuecommand = arcmsr_queue_command,
.eh_abort_handler = arcmsr_abort,
.eh_bus_reset_handler = arcmsr_bus_reset,
.bios_param = arcmsr_bios_param,
.change_queue_depth = arcmsr_adjust_disk_queue_depth,
.can_queue = ARCMSR_MAX_OUTSTANDING_CMD,
.this_id = ARCMSR_SCSI_INITIATOR_ID,
.sg_tablesize = ARCMSR_MAX_SG_ENTRIES,
.max_sectors = ARCMSR_MAX_XFER_SECTORS,
.cmd_per_lun = ARCMSR_MAX_CMD_PERLUN,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = arcmsr_host_attrs,
};
static struct pci_device_id arcmsr_device_id_table[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1110)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1120)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1130)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1160)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1170)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1200)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1201)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1202)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1210)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1220)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1230)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1260)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1270)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1280)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1380)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1381)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1680)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1681)},
{0, 0}, /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, arcmsr_device_id_table);
static struct pci_driver arcmsr_pci_driver = {
.name = "arcmsr",
.id_table = arcmsr_device_id_table,
.probe = arcmsr_probe,
.remove = arcmsr_remove,
.shutdown = arcmsr_shutdown,
};
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t arcmsr_do_interrupt(int irq, void *dev_id)
{
irqreturn_t handle_state;
struct AdapterControlBlock *acb = dev_id;
spin_lock(acb->host->host_lock);
handle_state = arcmsr_interrupt(acb);
spin_unlock(acb->host->host_lock);
return handle_state;
}
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *geom)
{
int ret, heads, sectors, cylinders, total_capacity;
unsigned char *buffer;/* return copy of block device's partition table */
buffer = scsi_bios_ptable(bdev);
if (buffer) {
ret = scsi_partsize(buffer, capacity, &geom[2], &geom[0], &geom[1]);
kfree(buffer);
if (ret != -1)
return ret;
}
total_capacity = capacity;
heads = 64;
sectors = 32;
cylinders = total_capacity / (heads * sectors);
if (cylinders > 1024) {
heads = 255;
sectors = 63;
cylinders = total_capacity / (heads * sectors);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return 0;
}
static void arcmsr_define_adapter_type(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
u16 dev_id;
pci_read_config_word(pdev, PCI_DEVICE_ID, &dev_id);
switch (dev_id) {
case 0x1201 : {
acb->adapter_type = ACB_ADAPTER_TYPE_B;
}
break;
default : acb->adapter_type = ACB_ADAPTER_TYPE_A;
}
}
static int arcmsr_alloc_ccb_pool(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct pci_dev *pdev = acb->pdev;
void *dma_coherent;
dma_addr_t dma_coherent_handle, dma_addr;
struct CommandControlBlock *ccb_tmp;
int i, j;
acb->pmuA = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (!acb->pmuA) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n",
acb->host->host_no);
return -ENOMEM;
}
dma_coherent = dma_alloc_coherent(&pdev->dev,
ARCMSR_MAX_FREECCB_NUM *
sizeof (struct CommandControlBlock) + 0x20,
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent) {
iounmap(acb->pmuA);
return -ENOMEM;
}
acb->dma_coherent = dma_coherent;
acb->dma_coherent_handle = dma_coherent_handle;
if (((unsigned long)dma_coherent & 0x1F)) {
dma_coherent = dma_coherent +
(0x20 - ((unsigned long)dma_coherent & 0x1F));
dma_coherent_handle = dma_coherent_handle +
(0x20 - ((unsigned long)dma_coherent_handle & 0x1F));
}
dma_addr = dma_coherent_handle;
ccb_tmp = (struct CommandControlBlock *)dma_coherent;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb_tmp->cdb_shifted_phyaddr = dma_addr >> 5;
ccb_tmp->acb = acb;
acb->pccb_pool[i] = ccb_tmp;
list_add_tail(&ccb_tmp->list, &acb->ccb_free_list);
dma_addr = dma_addr + sizeof(struct CommandControlBlock);
ccb_tmp++;
}
acb->vir2phy_offset = (unsigned long)ccb_tmp -(unsigned long)dma_addr;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GONE;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct pci_dev *pdev = acb->pdev;
struct MessageUnit_B *reg;
void __iomem *mem_base0, *mem_base1;
void *dma_coherent;
dma_addr_t dma_coherent_handle, dma_addr;
struct CommandControlBlock *ccb_tmp;
int i, j;
dma_coherent = dma_alloc_coherent(&pdev->dev,
((ARCMSR_MAX_FREECCB_NUM *
sizeof(struct CommandControlBlock) + 0x20) +
sizeof(struct MessageUnit_B)),
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent)
return -ENOMEM;
acb->dma_coherent = dma_coherent;
acb->dma_coherent_handle = dma_coherent_handle;
if (((unsigned long)dma_coherent & 0x1F)) {
dma_coherent = dma_coherent +
(0x20 - ((unsigned long)dma_coherent & 0x1F));
dma_coherent_handle = dma_coherent_handle +
(0x20 - ((unsigned long)dma_coherent_handle & 0x1F));
}
dma_addr = dma_coherent_handle;
ccb_tmp = (struct CommandControlBlock *)dma_coherent;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb_tmp->cdb_shifted_phyaddr = dma_addr >> 5;
ccb_tmp->acb = acb;
acb->pccb_pool[i] = ccb_tmp;
list_add_tail(&ccb_tmp->list, &acb->ccb_free_list);
dma_addr = dma_addr + sizeof(struct CommandControlBlock);
ccb_tmp++;
}
reg = (struct MessageUnit_B *)(dma_coherent +
ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock));
acb->pmuB = reg;
mem_base0 = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!mem_base0)
goto out;
mem_base1 = ioremap(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
if (!mem_base1) {
iounmap(mem_base0);
goto out;
}
reg->drv2iop_doorbell_reg = mem_base0 + ARCMSR_DRV2IOP_DOORBELL;
reg->drv2iop_doorbell_mask_reg = mem_base0 +
ARCMSR_DRV2IOP_DOORBELL_MASK;
reg->iop2drv_doorbell_reg = mem_base0 + ARCMSR_IOP2DRV_DOORBELL;
reg->iop2drv_doorbell_mask_reg = mem_base0 +
ARCMSR_IOP2DRV_DOORBELL_MASK;
reg->ioctl_wbuffer_reg = mem_base1 + ARCMSR_IOCTL_WBUFFER;
reg->ioctl_rbuffer_reg = mem_base1 + ARCMSR_IOCTL_RBUFFER;
reg->msgcode_rwbuffer_reg = mem_base1 + ARCMSR_MSGCODE_RWBUFFER;
acb->vir2phy_offset = (unsigned long)ccb_tmp -(unsigned long)dma_addr;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GOOD;
}
break;
}
return 0;
out:
dma_free_coherent(&acb->pdev->dev,
(ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock) + 0x20 +
sizeof(struct MessageUnit_B)), acb->dma_coherent, acb->dma_coherent_handle);
return -ENOMEM;
}
static void arcmsr_message_isr_bh_fn(struct work_struct *work)
{
struct AdapterControlBlock *acb = container_of(work, struct AdapterControlBlock, arcmsr_do_message_isr_bh);
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
char *acb_dev_map = (char *)acb->device_map;
uint32_t __iomem *signature = (uint32_t __iomem *) (&reg->message_rwbuffer[0]);
char __iomem *devicemap = (char __iomem *) (&reg->message_rwbuffer[21]);
int target, lun;
struct scsi_device *psdev;
char diff;
atomic_inc(&acb->rq_map_token);
if (readl(signature) == ARCMSR_SIGNATURE_GET_CONFIG) {
for (target = 0; target < ARCMSR_MAX_TARGETID - 1; target++) {
diff = (*acb_dev_map)^readb(devicemap);
if (diff != 0) {
char temp;
*acb_dev_map = readb(devicemap);
temp = *acb_dev_map;
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if ((temp & 0x01) == 1 && (diff & 0x01) == 1) {
scsi_add_device(acb->host, 0, target, lun);
} else if ((temp & 0x01) == 0 && (diff & 0x01) == 1) {
psdev = scsi_device_lookup(acb->host, 0, target, lun);
if (psdev != NULL) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
}
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
char *acb_dev_map = (char *)acb->device_map;
uint32_t __iomem *signature = (uint32_t __iomem *)(&reg->msgcode_rwbuffer_reg[0]);
char __iomem *devicemap = (char __iomem *)(&reg->msgcode_rwbuffer_reg[21]);
int target, lun;
struct scsi_device *psdev;
char diff;
atomic_inc(&acb->rq_map_token);
if (readl(signature) == ARCMSR_SIGNATURE_GET_CONFIG) {
for (target = 0; target < ARCMSR_MAX_TARGETID - 1; target++) {
diff = (*acb_dev_map)^readb(devicemap);
if (diff != 0) {
char temp;
*acb_dev_map = readb(devicemap);
temp = *acb_dev_map;
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if ((temp & 0x01) == 1 && (diff & 0x01) == 1) {
scsi_add_device(acb->host, 0, target, lun);
} else if ((temp & 0x01) == 0 && (diff & 0x01) == 1) {
psdev = scsi_device_lookup(acb->host, 0, target, lun);
if (psdev != NULL) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
}
}
}
}
static int arcmsr_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct Scsi_Host *host;
struct AdapterControlBlock *acb;
uint8_t bus, dev_fun;
int error;
error = pci_enable_device(pdev);
if (error)
goto out;
pci_set_master(pdev);
host = scsi_host_alloc(&arcmsr_scsi_host_template,
sizeof(struct AdapterControlBlock));
if (!host) {
error = -ENOMEM;
goto out_disable_device;
}
acb = (struct AdapterControlBlock *)host->hostdata;
memset(acb, 0, sizeof (struct AdapterControlBlock));
error = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (error) {
error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (error) {
printk(KERN_WARNING
"scsi%d: No suitable DMA mask available\n",
host->host_no);
goto out_host_put;
}
}
bus = pdev->bus->number;
dev_fun = pdev->devfn;
acb->host = host;
acb->pdev = pdev;
host->max_sectors = ARCMSR_MAX_XFER_SECTORS;
host->max_lun = ARCMSR_MAX_TARGETLUN;
host->max_id = ARCMSR_MAX_TARGETID;/*16:8*/
host->max_cmd_len = 16; /*this is issue of 64bit LBA, over 2T byte*/
host->sg_tablesize = ARCMSR_MAX_SG_ENTRIES;
host->can_queue = ARCMSR_MAX_FREECCB_NUM; /* max simultaneous cmds */
host->cmd_per_lun = ARCMSR_MAX_CMD_PERLUN;
host->this_id = ARCMSR_SCSI_INITIATOR_ID;
host->unique_id = (bus << 8) | dev_fun;
host->irq = pdev->irq;
error = pci_request_regions(pdev, "arcmsr");
if (error) {
goto out_host_put;
}
arcmsr_define_adapter_type(acb);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER;
INIT_LIST_HEAD(&acb->ccb_free_list);
INIT_WORK(&acb->arcmsr_do_message_isr_bh, arcmsr_message_isr_bh_fn);
error = arcmsr_alloc_ccb_pool(acb);
if (error)
goto out_release_regions;
arcmsr_iop_init(acb);
error = request_irq(pdev->irq, arcmsr_do_interrupt,
IRQF_SHARED, "arcmsr", acb);
if (error)
goto out_free_ccb_pool;
pci_set_drvdata(pdev, host);
if (strncmp(acb->firm_version, "V1.42", 5) >= 0)
host->max_sectors= ARCMSR_MAX_XFER_SECTORS_B;
error = scsi_add_host(host, &pdev->dev);
if (error)
goto out_free_irq;
error = arcmsr_alloc_sysfs_attr(acb);
if (error)
goto out_free_sysfs;
scsi_scan_host(host);
#ifdef CONFIG_SCSI_ARCMSR_AER
pci_enable_pcie_error_reporting(pdev);
#endif
atomic_set(&acb->rq_map_token, 16);
acb->fw_state = true;
init_timer(&acb->eternal_timer);
acb->eternal_timer.expires = jiffies + msecs_to_jiffies(10*HZ);
acb->eternal_timer.data = (unsigned long) acb;
acb->eternal_timer.function = &arcmsr_request_device_map;
add_timer(&acb->eternal_timer);
return 0;
out_free_sysfs:
out_free_irq:
free_irq(pdev->irq, acb);
out_free_ccb_pool:
arcmsr_free_ccb_pool(acb);
out_release_regions:
pci_release_regions(pdev);
out_host_put:
scsi_host_put(host);
out_disable_device:
pci_disable_device(pdev);
out:
return error;
}
static uint8_t arcmsr_hba_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t Index;
uint8_t Retries = 0x00;
do {
for (Index = 0; Index < 100; Index++) {
if (readl(&reg->outbound_intstatus) &
ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT,
&reg->outbound_intstatus);
return 0x00;
}
msleep(10);
}/*max 1 seconds*/
} while (Retries++ < 20);/*max 20 sec*/
return 0xff;
}
static uint8_t arcmsr_hbb_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
uint32_t Index;
uint8_t Retries = 0x00;
do {
for (Index = 0; Index < 100; Index++) {
if (readl(reg->iop2drv_doorbell_reg)
& ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN
, reg->iop2drv_doorbell_reg);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell_reg);
return 0x00;
}
msleep(10);
}/*max 1 seconds*/
} while (Retries++ < 20);/*max 20 sec*/
return 0xff;
}
static uint8_t arcmsr_abort_hba_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, acb->host->host_no);
return 0xff;
}
return 0x00;
}
static uint8_t arcmsr_abort_hbb_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ABORT_CMD, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, acb->host->host_no);
return 0xff;
}
return 0x00;
}
static uint8_t arcmsr_abort_allcmd(struct AdapterControlBlock *acb)
{
uint8_t rtnval = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
rtnval = arcmsr_abort_hba_allcmd(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
rtnval = arcmsr_abort_hbb_allcmd(acb);
}
}
return rtnval;
}
static void arcmsr_pci_unmap_dma(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
scsi_dma_unmap(pcmd);
}
static void arcmsr_ccb_complete(struct CommandControlBlock *ccb, int stand_flag)
{
struct AdapterControlBlock *acb = ccb->acb;
struct scsi_cmnd *pcmd = ccb->pcmd;
arcmsr_pci_unmap_dma(ccb);
if (stand_flag == 1)
atomic_dec(&acb->ccboutstandingcount);
ccb->startdone = ARCMSR_CCB_DONE;
ccb->ccb_flags = 0;
list_add_tail(&ccb->list, &acb->ccb_free_list);
pcmd->scsi_done(pcmd);
}
static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
int retry_count = 30;
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
do {
if (!arcmsr_hba_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout, retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
int retry_count = 30;
writel(ARCMSR_MESSAGE_FLUSH_CACHE, reg->drv2iop_doorbell_reg);
do {
if (!arcmsr_hbb_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout,retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_flush_adapter_cache(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_flush_hba_cache(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_flush_hbb_cache(acb);
}
}
}
static void arcmsr_report_sense_info(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)pcmd->sense_buffer;
pcmd->result = DID_OK << 16;
if (sensebuffer) {
int sense_data_length =
sizeof(struct SENSE_DATA) < SCSI_SENSE_BUFFERSIZE
? sizeof(struct SENSE_DATA) : SCSI_SENSE_BUFFERSIZE;
memset(sensebuffer, 0, SCSI_SENSE_BUFFERSIZE);
memcpy(sensebuffer, ccb->arcmsr_cdb.SenseData, sense_data_length);
sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS;
sensebuffer->Valid = 1;
}
}
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb)
{
u32 orig_mask = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A : {
struct MessageUnit_A __iomem *reg = acb->pmuA;
orig_mask = readl(&reg->outbound_intmask);
writel(orig_mask|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE, \
&reg->outbound_intmask);
}
break;
case ACB_ADAPTER_TYPE_B : {
struct MessageUnit_B *reg = acb->pmuB;
orig_mask = readl(reg->iop2drv_doorbell_mask_reg);
writel(0, reg->iop2drv_doorbell_mask_reg);
}
break;
}
return orig_mask;
}
static void arcmsr_report_ccb_state(struct AdapterControlBlock *acb, \
struct CommandControlBlock *ccb, uint32_t flag_ccb)
{
uint8_t id, lun;
id = ccb->pcmd->device->id;
lun = ccb->pcmd->device->lun;
if (!(flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR)) {
if (acb->devstate[id][lun] == ARECA_RAID_GONE)
acb->devstate[id][lun] = ARECA_RAID_GOOD;
ccb->pcmd->result = DID_OK << 16;
arcmsr_ccb_complete(ccb, 1);
} else {
switch (ccb->arcmsr_cdb.DeviceStatus) {
case ARCMSR_DEV_SELECT_TIMEOUT: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb, 1);
}
break;
case ARCMSR_DEV_ABORTED:
case ARCMSR_DEV_INIT_FAIL: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_BAD_TARGET << 16;
arcmsr_ccb_complete(ccb, 1);
}
break;
case ARCMSR_DEV_CHECK_CONDITION: {
acb->devstate[id][lun] = ARECA_RAID_GOOD;
arcmsr_report_sense_info(ccb);
arcmsr_ccb_complete(ccb, 1);
}
break;
default:
printk(KERN_NOTICE
"arcmsr%d: scsi id = %d lun = %d"
" isr get command error done, "
"but got unknown DeviceStatus = 0x%x \n"
, acb->host->host_no
, id
, lun
, ccb->arcmsr_cdb.DeviceStatus);
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb, 1);
break;
}
}
}
static void arcmsr_drain_donequeue(struct AdapterControlBlock *acb, uint32_t flag_ccb)
{
struct CommandControlBlock *ccb;
ccb = (struct CommandControlBlock *)(acb->vir2phy_offset + (flag_ccb << 5));
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if (ccb->startdone == ARCMSR_CCB_ABORTED) {
struct scsi_cmnd *abortcmd = ccb->pcmd;
if (abortcmd) {
abortcmd->result |= DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
printk(KERN_NOTICE "arcmsr%d: ccb ='0x%p' \
isr got aborted command \n", acb->host->host_no, ccb);
}
}
printk(KERN_NOTICE "arcmsr%d: isr get an illegal ccb command \
done acb = '0x%p'"
"ccb = '0x%p' ccbacb = '0x%p' startdone = 0x%x"
" ccboutstandingcount = %d \n"
, acb->host->host_no
, acb
, ccb
, ccb->acb
, ccb->startdone
, atomic_read(&acb->ccboutstandingcount));
}
else
arcmsr_report_ccb_state(acb, ccb, flag_ccb);
}
static void arcmsr_done4abort_postqueue(struct AdapterControlBlock *acb)
{
int i = 0;
uint32_t flag_ccb;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_intstatus;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
/*clear and abort all outbound posted Q*/
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while (((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF)
&& (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) {
arcmsr_drain_donequeue(acb, flag_ccb);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear all outbound posted Q*/
for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) {
if ((flag_ccb = readl(&reg->done_qbuffer[i])) != 0) {
writel(0, &reg->done_qbuffer[i]);
arcmsr_drain_donequeue(acb, flag_ccb);
}
writel(0, &reg->post_qbuffer[i]);
}
reg->doneq_index = 0;
reg->postq_index = 0;
}
break;
}
}
static void arcmsr_remove(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
int poll_count = 0;
arcmsr_free_sysfs_attr(acb);
scsi_remove_host(host);
flush_scheduled_work();
del_timer_sync(&acb->eternal_timer);
arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
acb->acb_flags &= ~ACB_F_IOP_INITED;
for (poll_count = 0; poll_count < ARCMSR_MAX_OUTSTANDING_CMD; poll_count++) {
if (!atomic_read(&acb->ccboutstandingcount))
break;
arcmsr_interrupt(acb);/* FIXME: need spinlock */
msleep(25);
}
if (atomic_read(&acb->ccboutstandingcount)) {
int i;
arcmsr_abort_allcmd(acb);
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->startdone = ARCMSR_CCB_ABORTED;
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
}
}
}
free_irq(pdev->irq, acb);
arcmsr_free_ccb_pool(acb);
pci_release_regions(pdev);
scsi_host_put(host);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static void arcmsr_shutdown(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)host->hostdata;
del_timer_sync(&acb->eternal_timer);
arcmsr_disable_outbound_ints(acb);
flush_scheduled_work();
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
}
static int arcmsr_module_init(void)
{
int error = 0;
error = pci_register_driver(&arcmsr_pci_driver);
return error;
}
static void arcmsr_module_exit(void)
{
pci_unregister_driver(&arcmsr_pci_driver);
}
module_init(arcmsr_module_init);
module_exit(arcmsr_module_exit);
static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb,
u32 intmask_org)
{
u32 mask;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A : {
struct MessageUnit_A __iomem *reg = acb->pmuA;
mask = intmask_org & ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE |
ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE|
ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE);
writel(mask, &reg->outbound_intmask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff;
}
break;
case ACB_ADAPTER_TYPE_B : {
struct MessageUnit_B *reg = acb->pmuB;
mask = intmask_org | (ARCMSR_IOP2DRV_DATA_WRITE_OK |
ARCMSR_IOP2DRV_DATA_READ_OK |
ARCMSR_IOP2DRV_CDB_DONE |
ARCMSR_IOP2DRV_MESSAGE_CMD_DONE);
writel(mask, reg->iop2drv_doorbell_mask_reg);
acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f;
}
}
}
static int arcmsr_build_ccb(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb, struct scsi_cmnd *pcmd)
{
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
int8_t *psge = (int8_t *)&arcmsr_cdb->u;
__le32 address_lo, address_hi;
int arccdbsize = 0x30;
int nseg;
ccb->pcmd = pcmd;
memset(arcmsr_cdb, 0, sizeof(struct ARCMSR_CDB));
arcmsr_cdb->Bus = 0;
arcmsr_cdb->TargetID = pcmd->device->id;
arcmsr_cdb->LUN = pcmd->device->lun;
arcmsr_cdb->Function = 1;
arcmsr_cdb->CdbLength = (uint8_t)pcmd->cmd_len;
arcmsr_cdb->Context = (unsigned long)arcmsr_cdb;
memcpy(arcmsr_cdb->Cdb, pcmd->cmnd, pcmd->cmd_len);
nseg = scsi_dma_map(pcmd);
if (nseg > ARCMSR_MAX_SG_ENTRIES)
return FAILED;
BUG_ON(nseg < 0);
if (nseg) {
__le32 length;
int i, cdb_sgcount = 0;
struct scatterlist *sg;
/* map stor port SG list to our iop SG List. */
scsi_for_each_sg(pcmd, sg, nseg, i) {
/* Get the physical address of the current data pointer */
length = cpu_to_le32(sg_dma_len(sg));
address_lo = cpu_to_le32(dma_addr_lo32(sg_dma_address(sg)));
address_hi = cpu_to_le32(dma_addr_hi32(sg_dma_address(sg)));
if (address_hi == 0) {
struct SG32ENTRY *pdma_sg = (struct SG32ENTRY *)psge;
pdma_sg->address = address_lo;
pdma_sg->length = length;
psge += sizeof (struct SG32ENTRY);
arccdbsize += sizeof (struct SG32ENTRY);
} else {
struct SG64ENTRY *pdma_sg = (struct SG64ENTRY *)psge;
pdma_sg->addresshigh = address_hi;
pdma_sg->address = address_lo;
pdma_sg->length = length|cpu_to_le32(IS_SG64_ADDR);
psge += sizeof (struct SG64ENTRY);
arccdbsize += sizeof (struct SG64ENTRY);
}
cdb_sgcount++;
}
arcmsr_cdb->sgcount = (uint8_t)cdb_sgcount;
arcmsr_cdb->DataLength = scsi_bufflen(pcmd);
if ( arccdbsize > 256)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE;
}
if (pcmd->sc_data_direction == DMA_TO_DEVICE ) {
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE;
ccb->ccb_flags |= CCB_FLAG_WRITE;
}
return SUCCESS;
}
static void arcmsr_post_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb)
{
uint32_t cdb_shifted_phyaddr = ccb->cdb_shifted_phyaddr;
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
atomic_inc(&acb->ccboutstandingcount);
ccb->startdone = ARCMSR_CCB_START;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE)
writel(cdb_shifted_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,
&reg->inbound_queueport);
else {
writel(cdb_shifted_phyaddr, &reg->inbound_queueport);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
uint32_t ending_index, index = reg->postq_index;
ending_index = ((index + 1) % ARCMSR_MAX_HBB_POSTQUEUE);
writel(0, &reg->post_qbuffer[ending_index]);
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) {
writel(cdb_shifted_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,\
&reg->post_qbuffer[index]);
}
else {
writel(cdb_shifted_phyaddr, &reg->post_qbuffer[index]);
}
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;/*if last index number set it to 0 */
reg->postq_index = index;
writel(ARCMSR_DRV2IOP_CDB_POSTED, reg->drv2iop_doorbell_reg);
}
break;
}
}
static void arcmsr_stop_hba_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, acb->host->host_no);
}
}
static void arcmsr_stop_hbb_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_STOP_BGRB, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, acb->host->host_no);
}
}
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_stop_hba_bgrb(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_stop_hbb_bgrb(acb);
}
break;
}
}
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
iounmap(acb->pmuA);
dma_free_coherent(&acb->pdev->dev,
ARCMSR_MAX_FREECCB_NUM * sizeof (struct CommandControlBlock) + 0x20,
acb->dma_coherent,
acb->dma_coherent_handle);
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
iounmap((u8 *)reg->drv2iop_doorbell_reg - ARCMSR_DRV2IOP_DOORBELL);
iounmap((u8 *)reg->ioctl_wbuffer_reg - ARCMSR_IOCTL_WBUFFER);
dma_free_coherent(&acb->pdev->dev,
(ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock) + 0x20 +
sizeof(struct MessageUnit_B)), acb->dma_coherent, acb->dma_coherent_handle);
}
}
}
void arcmsr_iop_message_read(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell_reg);
}
break;
}
}
static void arcmsr_iop_message_wrote(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_DRV2IOP_DATA_WRITE_OK, reg->drv2iop_doorbell_reg);
}
break;
}
}
struct QBUFFER __iomem *arcmsr_get_iop_rqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *qbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
qbuffer = (struct QBUFFER __iomem *)&reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
qbuffer = (struct QBUFFER __iomem *)reg->ioctl_rbuffer_reg;
}
break;
}
return qbuffer;
}
static struct QBUFFER __iomem *arcmsr_get_iop_wqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *pqbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
pqbuffer = (struct QBUFFER __iomem *) &reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
pqbuffer = (struct QBUFFER __iomem *)reg->ioctl_wbuffer_reg;
}
break;
}
return pqbuffer;
}
static void arcmsr_iop2drv_data_wrote_handle(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *prbuffer;
struct QBUFFER *pQbuffer;
uint8_t __iomem *iop_data;
int32_t my_empty_len, iop_len, rqbuf_firstindex, rqbuf_lastindex;
rqbuf_lastindex = acb->rqbuf_lastindex;
rqbuf_firstindex = acb->rqbuf_firstindex;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = (uint8_t __iomem *)prbuffer->data;
iop_len = prbuffer->data_len;
my_empty_len = (rqbuf_firstindex - rqbuf_lastindex -1)&(ARCMSR_MAX_QBUFFER -1);
if (my_empty_len >= iop_len)
{
while (iop_len > 0) {
pQbuffer = (struct QBUFFER *)&acb->rqbuffer[rqbuf_lastindex];
memcpy(pQbuffer, iop_data,1);
rqbuf_lastindex++;
rqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
acb->rqbuf_lastindex = rqbuf_lastindex;
arcmsr_iop_message_read(acb);
}
else {
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
}
}
static void arcmsr_iop2drv_data_read_handle(struct AdapterControlBlock *acb)
{
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READED;
if (acb->wqbuf_firstindex != acb->wqbuf_lastindex) {
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
while ((acb->wqbuf_firstindex != acb->wqbuf_lastindex) && \
(allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_firstindex];
memcpy(iop_data, pQbuffer, 1);
acb->wqbuf_firstindex++;
acb->wqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
pwbuffer->data_len = allxfer_len;
arcmsr_iop_message_wrote(acb);
}
if (acb->wqbuf_firstindex == acb->wqbuf_lastindex) {
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED;
}
}
static void arcmsr_hba_doorbell_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
}
static void arcmsr_hba_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t flag_ccb;
struct MessageUnit_A __iomem *reg = acb->pmuA;
while ((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF) {
arcmsr_drain_donequeue(acb, flag_ccb);
}
}
static void arcmsr_hbb_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t index;
uint32_t flag_ccb;
struct MessageUnit_B *reg = acb->pmuB;
index = reg->doneq_index;
while ((flag_ccb = readl(&reg->done_qbuffer[index])) != 0) {
writel(0, &reg->done_qbuffer[index]);
arcmsr_drain_donequeue(acb, flag_ccb);
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
}
}
/*
**********************************************************************************
** Handle a message interrupt
**
** The only message interrupt we expect is in response to a query for the current adapter config.
** We want this in order to compare the drivemap so that we can detect newly-attached drives.
**********************************************************************************
*/
static void arcmsr_hba_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_A *reg = acb->pmuA;
/*clear interrupt and message state*/
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT, &reg->outbound_intstatus);
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static void arcmsr_hbb_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
/*clear interrupt and message state*/
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg);
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static int arcmsr_handle_hba_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_intstatus;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
if (!(outbound_intstatus & ARCMSR_MU_OUTBOUND_HANDLE_INT)) {
return 1;
}
writel(outbound_intstatus, &reg->outbound_intstatus);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT) {
arcmsr_hba_doorbell_isr(acb);
}
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT) {
arcmsr_hba_postqueue_isr(acb);
}
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
/* messenger of "driver to iop commands" */
arcmsr_hba_message_isr(acb);
}
return 0;
}
static int arcmsr_handle_hbb_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_B *reg = acb->pmuB;
outbound_doorbell = readl(reg->iop2drv_doorbell_reg) &
acb->outbound_int_enable;
if (!outbound_doorbell)
return 1;
writel(~outbound_doorbell, reg->iop2drv_doorbell_reg);
/*in case the last action of doorbell interrupt clearance is cached,
this action can push HW to write down the clear bit*/
readl(reg->iop2drv_doorbell_reg);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell_reg);
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE) {
arcmsr_hbb_postqueue_isr(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
/* messenger of "driver to iop commands" */
arcmsr_hbb_message_isr(acb);
}
return 0;
}
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (arcmsr_handle_hba_isr(acb)) {
return IRQ_NONE;
}
}
break;
case ACB_ADAPTER_TYPE_B: {
if (arcmsr_handle_hbb_isr(acb)) {
return IRQ_NONE;
}
}
break;
}
return IRQ_HANDLED;
}
static void arcmsr_iop_parking(struct AdapterControlBlock *acb)
{
if (acb) {
/* stop adapter background rebuild */
if (acb->acb_flags & ACB_F_MSG_START_BGRB) {
uint32_t intmask_org;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
}
void arcmsr_post_ioctldata2iop(struct AdapterControlBlock *acb)
{
int32_t wqbuf_firstindex, wqbuf_lastindex;
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) {
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
wqbuf_firstindex = acb->wqbuf_firstindex;
wqbuf_lastindex = acb->wqbuf_lastindex;
while ((wqbuf_firstindex != wqbuf_lastindex) && (allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[wqbuf_firstindex];
memcpy(iop_data, pQbuffer, 1);
wqbuf_firstindex++;
wqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
acb->wqbuf_firstindex = wqbuf_firstindex;
pwbuffer->data_len = allxfer_len;
arcmsr_iop_message_wrote(acb);
}
}
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
struct CMD_MESSAGE_FIELD *pcmdmessagefld;
int retvalue = 0, transfer_len = 0;
char *buffer;
struct scatterlist *sg;
uint32_t controlcode = (uint32_t ) cmd->cmnd[5] << 24 |
(uint32_t ) cmd->cmnd[6] << 16 |
(uint32_t ) cmd->cmnd[7] << 8 |
(uint32_t ) cmd->cmnd[8];
/* 4 bytes: Areca io control code */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg), KM_IRQ0) + sg->offset;
if (scsi_sg_count(cmd) > 1) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
transfer_len += sg->length;
if (transfer_len > sizeof(struct CMD_MESSAGE_FIELD)) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
pcmdmessagefld = (struct CMD_MESSAGE_FIELD *) buffer;
switch(controlcode) {
case ARCMSR_MESSAGE_READ_RQBUFFER: {
unsigned char *ver_addr;
uint8_t *pQbuffer, *ptmpQbuffer;
int32_t allxfer_len = 0;
ver_addr = kmalloc(1032, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
ptmpQbuffer = ver_addr;
while ((acb->rqbuf_firstindex != acb->rqbuf_lastindex)
&& (allxfer_len < 1031)) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_firstindex];
memcpy(ptmpQbuffer, pQbuffer, 1);
acb->rqbuf_firstindex++;
acb->rqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
ptmpQbuffer++;
allxfer_len++;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
struct QBUFFER __iomem *prbuffer;
uint8_t __iomem *iop_data;
int32_t iop_len;
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = prbuffer->data;
iop_len = readl(&prbuffer->data_len);
while (iop_len > 0) {
acb->rqbuffer[acb->rqbuf_lastindex] = readb(iop_data);
acb->rqbuf_lastindex++;
acb->rqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
arcmsr_iop_message_read(acb);
}
memcpy(pcmdmessagefld->messagedatabuffer, ver_addr, allxfer_len);
pcmdmessagefld->cmdmessage.Length = allxfer_len;
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
kfree(ver_addr);
}
break;
case ARCMSR_MESSAGE_WRITE_WQBUFFER: {
unsigned char *ver_addr;
int32_t my_empty_len, user_len, wqbuf_firstindex, wqbuf_lastindex;
uint8_t *pQbuffer, *ptmpuserbuffer;
ver_addr = kmalloc(1032, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
ptmpuserbuffer = ver_addr;
user_len = pcmdmessagefld->cmdmessage.Length;
memcpy(ptmpuserbuffer, pcmdmessagefld->messagedatabuffer, user_len);
wqbuf_lastindex = acb->wqbuf_lastindex;
wqbuf_firstindex = acb->wqbuf_firstindex;
if (wqbuf_lastindex != wqbuf_firstindex) {
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
arcmsr_post_ioctldata2iop(acb);
/* has error report sensedata */
sensebuffer->ErrorCode = 0x70;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
} else {
my_empty_len = (wqbuf_firstindex-wqbuf_lastindex - 1)
&(ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= user_len) {
while (user_len > 0) {
pQbuffer =
&acb->wqbuffer[acb->wqbuf_lastindex];
memcpy(pQbuffer, ptmpuserbuffer, 1);
acb->wqbuf_lastindex++;
acb->wqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
ptmpuserbuffer++;
user_len--;
}
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_CLEARED) {
acb->acb_flags &=
~ACB_F_MESSAGE_WQBUFFER_CLEARED;
arcmsr_post_ioctldata2iop(acb);
}
} else {
/* has error report sensedata */
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
sensebuffer->ErrorCode = 0x70;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
}
}
kfree(ver_addr);
}
break;
case ARCMSR_MESSAGE_CLEAR_RQBUFFER: {
uint8_t *pQbuffer = acb->rqbuffer;
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_firstindex = 0;
acb->rqbuf_lastindex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_CLEAR_WQBUFFER: {
uint8_t *pQbuffer = acb->wqbuffer;
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |=
(ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->wqbuf_firstindex = 0;
acb->wqbuf_lastindex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: {
uint8_t *pQbuffer;
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |=
(ACB_F_MESSAGE_WQBUFFER_CLEARED
| ACB_F_MESSAGE_RQBUFFER_CLEARED
| ACB_F_MESSAGE_WQBUFFER_READED);
acb->rqbuf_firstindex = 0;
acb->rqbuf_lastindex = 0;
acb->wqbuf_firstindex = 0;
acb->wqbuf_lastindex = 0;
pQbuffer = acb->rqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
pQbuffer = acb->wqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_RETURN_CODE_3F: {
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_3F;
}
break;
case ARCMSR_MESSAGE_SAY_HELLO: {
int8_t *hello_string = "Hello! I am ARCMSR";
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
memcpy(pcmdmessagefld->messagedatabuffer, hello_string
, (int16_t)strlen(hello_string));
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_SAY_GOODBYE:
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
arcmsr_iop_parking(acb);
break;
case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE:
if (!acb->fw_state) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
goto message_out;
}
arcmsr_flush_adapter_cache(acb);
break;
default:
retvalue = ARCMSR_MESSAGE_FAIL;
}
message_out:
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset, KM_IRQ0);
return retvalue;
}
static struct CommandControlBlock *arcmsr_get_freeccb(struct AdapterControlBlock *acb)
{
struct list_head *head = &acb->ccb_free_list;
struct CommandControlBlock *ccb = NULL;
if (!list_empty(head)) {
ccb = list_entry(head->next, struct CommandControlBlock, list);
list_del(head->next);
}
return ccb;
}
static void arcmsr_handle_virtual_command(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
switch (cmd->cmnd[0]) {
case INQUIRY: {
unsigned char inqdata[36];
char *buffer;
struct scatterlist *sg;
if (cmd->device->lun) {
cmd->result = (DID_TIME_OUT << 16);
cmd->scsi_done(cmd);
return;
}
inqdata[0] = TYPE_PROCESSOR;
/* Periph Qualifier & Periph Dev Type */
inqdata[1] = 0;
/* rem media bit & Dev Type Modifier */
inqdata[2] = 0;
/* ISO, ECMA, & ANSI versions */
inqdata[4] = 31;
/* length of additional data */
strncpy(&inqdata[8], "Areca ", 8);
/* Vendor Identification */
strncpy(&inqdata[16], "RAID controller ", 16);
/* Product Identification */
strncpy(&inqdata[32], "R001", 4); /* Product Revision */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg), KM_IRQ0) + sg->offset;
memcpy(buffer, inqdata, sizeof(inqdata));
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset, KM_IRQ0);
cmd->scsi_done(cmd);
}
break;
case WRITE_BUFFER:
case READ_BUFFER: {
if (arcmsr_iop_message_xfer(acb, cmd))
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
}
break;
default:
cmd->scsi_done(cmd);
}
}
static int arcmsr_queue_command(struct scsi_cmnd *cmd,
void (* done)(struct scsi_cmnd *))
{
struct Scsi_Host *host = cmd->device->host;
struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata;
struct CommandControlBlock *ccb;
int target = cmd->device->id;
int lun = cmd->device->lun;
uint8_t scsicmd = cmd->cmnd[0];
cmd->scsi_done = done;
cmd->host_scribble = NULL;
cmd->result = 0;
if ((scsicmd == SYNCHRONIZE_CACHE) || (scsicmd == SEND_DIAGNOSTIC)) {
if (acb->devstate[target][lun] == ARECA_RAID_GONE) {
cmd->result = (DID_NO_CONNECT << 16);
}
cmd->scsi_done(cmd);
return 0;
}
if (acb->acb_flags & ACB_F_BUS_RESET) {
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t intmask_org, outbound_doorbell;
if ((readl(&reg->outbound_msgaddr1) &
ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) {
printk(KERN_NOTICE "arcmsr%d: bus reset and return busy\n",
acb->host->host_no);
return SCSI_MLQUEUE_HOST_BUSY;
}
acb->acb_flags &= ~ACB_F_FIRMWARE_TRAP;
printk(KERN_NOTICE "arcmsr%d: hardware bus reset and reset ok\n",
acb->host->host_no);
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_get_firmware_spec(acb, 1);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* clear Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
/*clear interrupt */
writel(outbound_doorbell, &reg->outbound_doorbell);
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK,
&reg->inbound_doorbell);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
acb->acb_flags &= ~ACB_F_BUS_RESET;
}
break;
case ACB_ADAPTER_TYPE_B: {
}
}
}
if (target == 16) {
/* virtual device for iop message transfer */
arcmsr_handle_virtual_command(acb, cmd);
return 0;
}
if (acb->devstate[target][lun] == ARECA_RAID_GONE) {
uint8_t block_cmd;
block_cmd = cmd->cmnd[0] & 0x0f;
if (block_cmd == 0x08 || block_cmd == 0x0a) {
printk(KERN_NOTICE
"arcmsr%d: block 'read/write'"
"command with gone raid volume"
" Cmd = %2x, TargetId = %d, Lun = %d \n"
, acb->host->host_no
, cmd->cmnd[0]
, target, lun);
cmd->result = (DID_NO_CONNECT << 16);
cmd->scsi_done(cmd);
return 0;
}
}
if (atomic_read(&acb->ccboutstandingcount) >=
ARCMSR_MAX_OUTSTANDING_CMD)
return SCSI_MLQUEUE_HOST_BUSY;
ccb = arcmsr_get_freeccb(acb);
if (!ccb)
return SCSI_MLQUEUE_HOST_BUSY;
if ( arcmsr_build_ccb( acb, ccb, cmd ) == FAILED ) {
cmd->result = (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1);
cmd->scsi_done(cmd);
return 0;
}
arcmsr_post_ccb(acb, ccb);
return 0;
}
static void *arcmsr_get_hba_config(struct AdapterControlBlock *acb, int mode)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
char *acb_firm_model = acb->firm_model;
char *acb_firm_version = acb->firm_version;
char *acb_device_map = acb->device_map;
char __iomem *iop_firm_model = (char __iomem *)(&reg->message_rwbuffer[15]);
char __iomem *iop_firm_version = (char __iomem *)(&reg->message_rwbuffer[17]);
char __iomem *iop_device_map = (char __iomem *) (&reg->message_rwbuffer[21]);
int count;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
return NULL;
}
if (mode == 1) {
count = 8;
while (count) {
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count) {
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count = 16;
while (count) {
*acb_device_map = readb(iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
printk(KERN_INFO "ARECA RAID ADAPTER%d: FIRMWARE VERSION %s \n"
, acb->host->host_no
, acb->firm_version);
acb->signature = readl(&reg->message_rwbuffer[0]);
acb->firm_request_len = readl(&reg->message_rwbuffer[1]);
acb->firm_numbers_queue = readl(&reg->message_rwbuffer[2]);
acb->firm_sdram_size = readl(&reg->message_rwbuffer[3]);
acb->firm_hd_channels = readl(&reg->message_rwbuffer[4]);
}
return reg->message_rwbuffer;
}
static void __iomem *arcmsr_get_hbb_config(struct AdapterControlBlock *acb, int mode)
{
struct MessageUnit_B *reg = acb->pmuB;
uint32_t __iomem *lrwbuffer = reg->msgcode_rwbuffer_reg;
char *acb_firm_model = acb->firm_model;
char *acb_firm_version = acb->firm_version;
char *acb_device_map = acb->device_map;
char __iomem *iop_firm_model = (char __iomem *)(&lrwbuffer[15]);
/*firm_model,15,60-67*/
char __iomem *iop_firm_version = (char __iomem *)(&lrwbuffer[17]);
/*firm_version,17,68-83*/
char __iomem *iop_device_map = (char __iomem *) (&lrwbuffer[21]);
/*firm_version,21,84-99*/
int count;
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
return NULL;
}
if (mode == 1) {
count = 8;
while (count)
{
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count)
{
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count = 16;
while (count) {
*acb_device_map = readb(iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
printk(KERN_INFO "ARECA RAID ADAPTER%d: FIRMWARE VERSION %s \n",
acb->host->host_no,
acb->firm_version);
acb->signature = readl(lrwbuffer++);
/*firm_signature,1,00-03*/
acb->firm_request_len = readl(lrwbuffer++);
/*firm_request_len,1,04-07*/
acb->firm_numbers_queue = readl(lrwbuffer++);
/*firm_numbers_queue,2,08-11*/
acb->firm_sdram_size = readl(lrwbuffer++);
/*firm_sdram_size,3,12-15*/
acb->firm_hd_channels = readl(lrwbuffer);
/*firm_ide_channels,4,16-19*/
}
return reg->msgcode_rwbuffer_reg;
}
static void *arcmsr_get_firmware_spec(struct AdapterControlBlock *acb, int mode)
{
void *rtnval = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
rtnval = arcmsr_get_hba_config(acb, mode);
}
break;
case ACB_ADAPTER_TYPE_B: {
rtnval = arcmsr_get_hbb_config(acb, mode);
}
break;
}
return rtnval;
}
static void arcmsr_polling_hba_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, outbound_intstatus, poll_ccb_done = 0, poll_count = 0;
polling_hba_ccb_retry:
poll_count++;
outbound_intstatus = readl(&reg->outbound_intstatus) & acb->outbound_int_enable;
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while (1) {
if ((flag_ccb = readl(&reg->outbound_queueport)) == 0xFFFFFFFF) {
if (poll_ccb_done)
break;
else {
msleep(25);
if (poll_count > 100)
break;
goto polling_hba_ccb_retry;
}
}
ccb = (struct CommandControlBlock *)(acb->vir2phy_offset + (flag_ccb << 5));
poll_ccb_done = (ccb == poll_ccb) ? 1:0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
, acb->host->host_no
, ccb->pcmd->device->id
, ccb->pcmd->device->lun
, ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
poll_ccb_done = 1;
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
arcmsr_report_ccb_state(acb, ccb, flag_ccb);
}
}
static void arcmsr_polling_hbb_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_B *reg = acb->pmuB;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, poll_ccb_done = 0, poll_count = 0;
int index;
polling_hbb_ccb_retry:
poll_count++;
/* clear doorbell interrupt */
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg);
while (1) {
index = reg->doneq_index;
if ((flag_ccb = readl(&reg->done_qbuffer[index])) == 0) {
if (poll_ccb_done)
break;
else {
msleep(25);
if (poll_count > 100)
break;
goto polling_hbb_ccb_retry;
}
}
writel(0, &reg->done_qbuffer[index]);
index++;
/*if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
/* check ifcommand done with no error*/
ccb = (struct CommandControlBlock *)\
(acb->vir2phy_offset + (flag_ccb << 5));/*frame must be 32 bytes aligned*/
poll_ccb_done = (ccb == poll_ccb) ? 1:0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: \
scsi id = %d lun = %d ccb = '0x%p' poll command abort successfully \n"
,acb->host->host_no
,ccb->pcmd->device->id
,ccb->pcmd->device->lun
,ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
arcmsr_report_ccb_state(acb, ccb, flag_ccb);
} /*drain reply FIFO*/
}
static void arcmsr_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_polling_hba_ccbdone(acb,poll_ccb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_polling_hbb_ccbdone(acb,poll_ccb);
}
}
}
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb)
{
uint32_t cdb_phyaddr, ccb_phyaddr_hi32;
dma_addr_t dma_coherent_handle;
/*
********************************************************************
** here we need to tell iop 331 our freeccb.HighPart
** if freeccb.HighPart is not zero
********************************************************************
*/
dma_coherent_handle = acb->dma_coherent_handle;
cdb_phyaddr = (uint32_t)(dma_coherent_handle);
ccb_phyaddr_hi32 = (uint32_t)((cdb_phyaddr >> 16) >> 16);
/*
***********************************************************************
** if adapter type B, set window of "post command Q"
***********************************************************************
*/
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (ccb_phyaddr_hi32 != 0) {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t intmask_org;
intmask_org = arcmsr_disable_outbound_ints(acb);
writel(ARCMSR_SIGNATURE_SET_CONFIG, \
&reg->message_rwbuffer[0]);
writel(ccb_phyaddr_hi32, &reg->message_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, \
&reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: ""set ccb high \
part physical address timeout\n",
acb->host->host_no);
return 1;
}
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
unsigned long post_queue_phyaddr;
uint32_t __iomem *rwbuffer;
struct MessageUnit_B *reg = acb->pmuB;
uint32_t intmask_org;
intmask_org = arcmsr_disable_outbound_ints(acb);
reg->postq_index = 0;
reg->doneq_index = 0;
writel(ARCMSR_MESSAGE_SET_POST_WINDOW, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d:can not set diver mode\n", \
acb->host->host_no);
return 1;
}
post_queue_phyaddr = cdb_phyaddr + ARCMSR_MAX_FREECCB_NUM * \
sizeof(struct CommandControlBlock) + offsetof(struct MessageUnit_B, post_qbuffer) ;
rwbuffer = reg->msgcode_rwbuffer_reg;
/* driver "set config" signature */
writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++);
/* normal should be zero */
writel(ccb_phyaddr_hi32, rwbuffer++);
/* postQ size (256 + 8)*4 */
writel(post_queue_phyaddr, rwbuffer++);
/* doneQ size (256 + 8)*4 */
writel(post_queue_phyaddr + 1056, rwbuffer++);
/* ccb maxQ size must be --> [(256 + 8)*4]*/
writel(1056, rwbuffer);
writel(ARCMSR_MESSAGE_SET_CONFIG, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \
timeout \n",acb->host->host_no);
return 1;
}
writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'can not set diver mode \n"\
,acb->host->host_no);
return 1;
}
arcmsr_enable_outbound_ints(acb, intmask_org);
}
break;
}
return 0;
}
static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb)
{
uint32_t firmware_state = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
do {
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
do {
firmware_state = readl(reg->iop2drv_doorbell_reg);
} while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell_reg);
}
break;
}
}
static void arcmsr_request_hba_device_map(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
if (unlikely(atomic_read(&acb->rq_map_token) == 0)) {
acb->fw_state = false;
} else {
/*to prevent rq_map_token from changing by other interrupt, then
avoid the dead-lock*/
acb->fw_state = true;
atomic_dec(&acb->rq_map_token);
if (!(acb->fw_state) ||
(acb->ante_token_value == atomic_read(&acb->rq_map_token))) {
atomic_set(&acb->rq_map_token, 16);
}
acb->ante_token_value = atomic_read(&acb->rq_map_token);
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
}
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6000));
return;
}
static void arcmsr_request_hbb_device_map(struct AdapterControlBlock *acb)
{
struct MessageUnit_B __iomem *reg = acb->pmuB;
if (unlikely(atomic_read(&acb->rq_map_token) == 0)) {
acb->fw_state = false;
} else {
/*to prevent rq_map_token from changing by other interrupt, then
avoid the dead-lock*/
acb->fw_state = true;
atomic_dec(&acb->rq_map_token);
if (!(acb->fw_state) ||
(acb->ante_token_value == atomic_read(&acb->rq_map_token))) {
atomic_set(&acb->rq_map_token, 16);
}
acb->ante_token_value = atomic_read(&acb->rq_map_token);
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell_reg);
}
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6000));
return;
}
static void arcmsr_request_device_map(unsigned long pacb)
{
struct AdapterControlBlock *acb = (struct AdapterControlBlock *)pacb;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_request_hba_device_map(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_request_hbb_device_map(acb);
}
break;
}
}
static void arcmsr_start_hba_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n", acb->host->host_no);
}
}
static void arcmsr_start_hbb_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_START_BGRB, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n",acb->host->host_no);
}
}
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_start_hba_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_start_hbb_bgrb(acb);
break;
}
}
static void arcmsr_clear_doorbell_queue_buffer(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_doorbell;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
/*clear doorbell interrupt */
writel(outbound_doorbell, &reg->outbound_doorbell);
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear interrupt and message state*/
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg);
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell_reg);
/* let IOP know data has been read */
}
break;
}
}
static void arcmsr_enable_eoi_mode(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
return;
case ACB_ADAPTER_TYPE_B:
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ACTIVE_EOI_MODE, reg->drv2iop_doorbell_reg);
if(arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "ARCMSR IOP enables EOI_MODE TIMEOUT");
return;
}
}
break;
}
return;
}
static void arcmsr_hardware_reset(struct AdapterControlBlock *acb)
{
uint8_t value[64];
int i;
/* backup pci config data */
for (i = 0; i < 64; i++) {
pci_read_config_byte(acb->pdev, i, &value[i]);
}
/* hardware reset signal */
pci_write_config_byte(acb->pdev, 0x84, 0x20);
msleep(1000);
/* write back pci config data */
for (i = 0; i < 64; i++) {
pci_write_config_byte(acb->pdev, i, value[i]);
}
msleep(1000);
return;
}
/*
****************************************************************************
****************************************************************************
*/
#ifdef CONFIG_SCSI_ARCMSR_RESET
int arcmsr_sleep_for_bus_reset(struct scsi_cmnd *cmd)
{
struct Scsi_Host *shost = NULL;
spinlock_t *host_lock = NULL;
int i, isleep;
shost = cmd->device->host;
host_lock = shost->host_lock;
printk(KERN_NOTICE "Host %d bus reset over, sleep %d seconds (busy %d, can queue %d) ...........\n",
shost->host_no, sleeptime, shost->host_busy, shost->can_queue);
isleep = sleeptime / 10;
spin_unlock_irq(host_lock);
if (isleep > 0) {
for (i = 0; i < isleep; i++) {
msleep(10000);
printk(KERN_NOTICE "^%d^\n", i);
}
}
isleep = sleeptime % 10;
if (isleep > 0) {
msleep(isleep * 1000);
printk(KERN_NOTICE "^v^\n");
}
spin_lock_irq(host_lock);
printk(KERN_NOTICE "***** wake up *****\n");
return 0;
}
#endif
static void arcmsr_iop_init(struct AdapterControlBlock *acb)
{
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_wait_firmware_ready(acb);
arcmsr_iop_confirm(acb);
arcmsr_get_firmware_spec(acb, 1);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* empty doorbell Qbuffer if door bell ringed */
arcmsr_clear_doorbell_queue_buffer(acb);
arcmsr_enable_eoi_mode(acb);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
}
static uint8_t arcmsr_iop_reset(struct AdapterControlBlock *acb)
{
struct CommandControlBlock *ccb;
uint32_t intmask_org;
uint8_t rtnval = 0x00;
int i = 0;
if (atomic_read(&acb->ccboutstandingcount) != 0) {
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
/* talk to iop 331 outstanding command aborted */
rtnval = arcmsr_abort_allcmd(acb);
/* wait for 3 sec for all command aborted*/
ssleep(3);
/* clear all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
arcmsr_ccb_complete(ccb, 1);
}
}
atomic_set(&acb->ccboutstandingcount, 0);
/* enable all outbound interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
return rtnval;
}
return rtnval;
}
static int arcmsr_bus_reset(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)cmd->device->host->hostdata;
int retry = 0;
if (acb->acb_flags & ACB_F_BUS_RESET)
return SUCCESS;
printk(KERN_NOTICE "arcmsr%d: bus reset ..... \n", acb->adapter_index);
acb->acb_flags |= ACB_F_BUS_RESET;
acb->num_resets++;
while (atomic_read(&acb->ccboutstandingcount) != 0 && retry < 4) {
arcmsr_interrupt(acb);
retry++;
}
if (arcmsr_iop_reset(acb)) {
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
printk(KERN_NOTICE "arcmsr%d: do hardware bus reset, num_resets = %d num_aborts = %d \n",
acb->adapter_index, acb->num_resets, acb->num_aborts);
arcmsr_hardware_reset(acb);
acb->acb_flags |= ACB_F_FIRMWARE_TRAP;
acb->acb_flags &= ~ACB_F_IOP_INITED;
#ifdef CONFIG_SCSI_ARCMSR_RESET
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t intmask_org, outbound_doorbell;
int retry_count = 0;
sleep_again:
arcmsr_sleep_for_bus_reset(cmd);
if ((readl(&reg->outbound_msgaddr1) &
ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) {
printk(KERN_NOTICE "arcmsr%d: hardware bus reset and return busy, retry=%d \n",
acb->host->host_no, retry_count);
if (retry_count > retrycount) {
printk(KERN_NOTICE "arcmsr%d: hardware bus reset and return busy, retry aborted \n",
acb->host->host_no);
return SUCCESS;
}
retry_count++;
goto sleep_again;
}
acb->acb_flags &= ~ACB_F_FIRMWARE_TRAP;
acb->acb_flags |= ACB_F_IOP_INITED;
acb->acb_flags &= ~ACB_F_BUS_RESET;
printk(KERN_NOTICE "arcmsr%d: hardware bus reset and reset ok \n",
acb->host->host_no);
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_get_firmware_spec(acb, 1);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* clear Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell); /*clear interrupt */
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
atomic_set(&acb->rq_map_token, 16);
init_timer(&acb->eternal_timer);
acb->eternal_timer.expires = jiffies + msecs_to_jiffies(20*HZ);
acb->eternal_timer.data = (unsigned long) acb;
acb->eternal_timer.function = &arcmsr_request_device_map;
add_timer(&acb->eternal_timer);
#endif
}
break;
case ACB_ADAPTER_TYPE_B: {
}
}
} else {
acb->acb_flags &= ~ACB_F_BUS_RESET;
}
return SUCCESS;
}
static void arcmsr_abort_one_cmd(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb)
{
u32 intmask;
ccb->startdone = ARCMSR_CCB_ABORTED;
/*
** Wait for 3 sec for all command done.
*/
ssleep(3);
intmask = arcmsr_disable_outbound_ints(acb);
arcmsr_polling_ccbdone(acb, ccb);
arcmsr_enable_outbound_ints(acb, intmask);
}
static int arcmsr_abort(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)cmd->device->host->hostdata;
int i = 0;
printk(KERN_NOTICE
"arcmsr%d: abort device command of scsi id = %d lun = %d \n",
acb->host->host_no, cmd->device->id, cmd->device->lun);
acb->num_aborts++;
/*
************************************************
** the all interrupt service routine is locked
** we need to handle it as soon as possible and exit
************************************************
*/
if (!atomic_read(&acb->ccboutstandingcount))
return SUCCESS;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START && ccb->pcmd == cmd) {
arcmsr_abort_one_cmd(acb, ccb);
break;
}
}
return SUCCESS;
}
static const char *arcmsr_info(struct Scsi_Host *host)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
static char buf[256];
char *type;
int raid6 = 1;
switch (acb->pdev->device) {
case PCI_DEVICE_ID_ARECA_1110:
case PCI_DEVICE_ID_ARECA_1200:
case PCI_DEVICE_ID_ARECA_1202:
case PCI_DEVICE_ID_ARECA_1210:
raid6 = 0;
/*FALLTHRU*/
case PCI_DEVICE_ID_ARECA_1120:
case PCI_DEVICE_ID_ARECA_1130:
case PCI_DEVICE_ID_ARECA_1160:
case PCI_DEVICE_ID_ARECA_1170:
case PCI_DEVICE_ID_ARECA_1201:
case PCI_DEVICE_ID_ARECA_1220:
case PCI_DEVICE_ID_ARECA_1230:
case PCI_DEVICE_ID_ARECA_1260:
case PCI_DEVICE_ID_ARECA_1270:
case PCI_DEVICE_ID_ARECA_1280:
type = "SATA";
break;
case PCI_DEVICE_ID_ARECA_1380:
case PCI_DEVICE_ID_ARECA_1381:
case PCI_DEVICE_ID_ARECA_1680:
case PCI_DEVICE_ID_ARECA_1681:
type = "SAS";
break;
default:
type = "X-TYPE";
break;
}
sprintf(buf, "Areca %s Host Adapter RAID Controller%s\n %s",
type, raid6 ? "( RAID6 capable)" : "",
ARCMSR_DRIVER_VERSION);
return buf;
}