linux/drivers/media/dvb/ngene/ngene-core.c

4063 lines
102 KiB
C
Raw Normal View History

/*
* ngene.c: nGene PCIe bridge driver
*
* Copyright (C) 2005-2007 Micronas
*
* Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
* Modifications for new nGene firmware,
* support for EEPROM-copying,
* support for new dual DVB-S2 card prototype
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <asm/io.h>
#include <asm/div64.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/version.h>
#include <linux/byteorder/generic.h>
#include <linux/firmware.h>
#include "ngene.h"
#ifdef NGENE_COMMAND_API
#include "ngene-ioctls.h"
#endif
#define FW_INC 1
#ifdef FW_INC
#include "ngene_fw_15.h"
#include "ngene_fw_16.h"
#include "ngene_fw_17.h"
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static int load_firmware;
module_param(load_firmware, int, 0444);
MODULE_PARM_DESC(load_firmware, "Try to load firmware from file.");
#endif
static int copy_eeprom;
module_param(copy_eeprom, int, 0444);
MODULE_PARM_DESC(copy_eeprom, "Copy eeprom.");
static int ngene_fw_debug;
module_param(ngene_fw_debug, int, 0444);
MODULE_PARM_DESC(ngene_fw_debug, "Debug firmware.");
static int debug;
module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "Print debugging information.");
#define dprintk if (debug) printk
#define DEVICE_NAME "ngene"
#define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
#define ngwritel(dat, adr) writel((dat), (char *)(dev->iomem + (adr)))
#define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
#define ngreadl(adr) readl(dev->iomem + (adr))
#define ngreadb(adr) readb(dev->iomem + (adr))
#define ngcpyto(adr, src, count) memcpy_toio((char *) \
(dev->iomem + (adr)), (src), (count))
#define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), (char *) \
(dev->iomem + (adr)), (count))
/****************************************************************************/
/* Functions with missing kernel exports ************************************/
/****************************************************************************/
/* yeah, let's throw out all exports which are not used in kernel ... */
void my_dvb_ringbuffer_flush(struct dvb_ringbuffer *rbuf)
{
rbuf->pread = rbuf->pwrite;
rbuf->error = 0;
}
/****************************************************************************/
/* nGene interrupt handler **************************************************/
/****************************************************************************/
static void event_tasklet(unsigned long data)
{
struct ngene *dev = (struct ngene *)data;
while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
struct EVENT_BUFFER Event =
dev->EventQueue[dev->EventQueueReadIndex];
dev->EventQueueReadIndex =
(dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
dev->TxEventNotify(dev, Event.TimeStamp);
if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
dev->RxEventNotify(dev, Event.TimeStamp,
Event.RXCharacter);
}
}
static void demux_tasklet(unsigned long data)
{
struct ngene_channel *chan = (struct ngene_channel *)data;
struct SBufferHeader *Cur = chan->nextBuffer;
spin_lock_irq(&chan->state_lock);
while (Cur->ngeneBuffer.SR.Flags & 0x80) {
if (chan->mode & NGENE_IO_TSOUT) {
u32 Flags = chan->DataFormatFlags;
if (Cur->ngeneBuffer.SR.Flags & 0x20)
Flags |= BEF_OVERFLOW;
if (chan->pBufferExchange) {
if (!chan->pBufferExchange(chan,
Cur->Buffer1,
chan->Capture1Length,
Cur->ngeneBuffer.SR.
Clock, Flags)) {
/*
We didn't get data
Clear in service flag to make sure we
get called on next interrupt again.
leave fill/empty (0x80) flag alone
to avoid hardware running out of
buffers during startup, we hold only
in run state ( the source may be late
delivering data )
*/
if (chan->HWState == HWSTATE_RUN) {
Cur->ngeneBuffer.SR.Flags &=
~0x40;
break;
/* Stop proccessing stream */
}
} else {
/* We got a valid buffer,
so switch to run state */
chan->HWState = HWSTATE_RUN;
}
} else {
printk(KERN_ERR DEVICE_NAME ": OOPS\n");
if (chan->HWState == HWSTATE_RUN) {
Cur->ngeneBuffer.SR.Flags &= ~0x40;
break; /* Stop proccessing stream */
}
}
if (chan->AudioDTOUpdated) {
printk(KERN_INFO DEVICE_NAME
": Update AudioDTO = %d\n",
chan->AudioDTOValue);
Cur->ngeneBuffer.SR.DTOUpdate =
chan->AudioDTOValue;
chan->AudioDTOUpdated = 0;
}
} else {
if (chan->HWState == HWSTATE_RUN) {
u32 Flags = 0;
if (Cur->ngeneBuffer.SR.Flags & 0x01)
Flags |= BEF_EVEN_FIELD;
if (Cur->ngeneBuffer.SR.Flags & 0x20)
Flags |= BEF_OVERFLOW;
if (chan->pBufferExchange)
chan->pBufferExchange(chan,
Cur->Buffer1,
chan->
Capture1Length,
Cur->ngeneBuffer.
SR.Clock, Flags);
if (chan->pBufferExchange2)
chan->pBufferExchange2(chan,
Cur->Buffer2,
chan->
Capture2Length,
Cur->ngeneBuffer.
SR.Clock, Flags);
} else if (chan->HWState != HWSTATE_STOP)
chan->HWState = HWSTATE_RUN;
}
Cur->ngeneBuffer.SR.Flags = 0x00;
Cur = Cur->Next;
}
chan->nextBuffer = Cur;
spin_unlock_irq(&chan->state_lock);
}
static irqreturn_t irq_handler(int irq, void *dev_id)
{
struct ngene *dev = (struct ngene *)dev_id;
u32 icounts = 0;
irqreturn_t rc = IRQ_NONE;
u32 i = MAX_STREAM;
u8 *tmpCmdDoneByte;
if (dev->BootFirmware) {
icounts = ngreadl(NGENE_INT_COUNTS);
if (icounts != dev->icounts) {
ngwritel(0, FORCE_NMI);
dev->cmd_done = 1;
wake_up(&dev->cmd_wq);
dev->icounts = icounts;
rc = IRQ_HANDLED;
}
return rc;
}
ngwritel(0, FORCE_NMI);
spin_lock(&dev->cmd_lock);
tmpCmdDoneByte = dev->CmdDoneByte;
if (tmpCmdDoneByte &&
(*tmpCmdDoneByte ||
(dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
dev->CmdDoneByte = NULL;
dev->cmd_done = 1;
wake_up(&dev->cmd_wq);
rc = IRQ_HANDLED;
}
spin_unlock(&dev->cmd_lock);
if (dev->EventBuffer->EventStatus & 0x80) {
u8 nextWriteIndex =
(dev->EventQueueWriteIndex + 1) &
(EVENT_QUEUE_SIZE - 1);
if (nextWriteIndex != dev->EventQueueReadIndex) {
dev->EventQueue[dev->EventQueueWriteIndex] =
*(dev->EventBuffer);
dev->EventQueueWriteIndex = nextWriteIndex;
} else {
printk(KERN_ERR DEVICE_NAME ": event overflow\n");
dev->EventQueueOverflowCount += 1;
dev->EventQueueOverflowFlag = 1;
}
dev->EventBuffer->EventStatus &= ~0x80;
tasklet_schedule(&dev->event_tasklet);
rc = IRQ_HANDLED;
}
while (i > 0) {
i--;
spin_lock(&dev->channel[i].state_lock);
/* if (dev->channel[i].State>=KSSTATE_RUN) { */
if (dev->channel[i].nextBuffer) {
if ((dev->channel[i].nextBuffer->
ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
dev->channel[i].nextBuffer->
ngeneBuffer.SR.Flags |= 0x40;
tasklet_schedule(
&dev->channel[i].demux_tasklet);
rc = IRQ_HANDLED;
}
}
spin_unlock(&dev->channel[i].state_lock);
}
return rc;
}
/****************************************************************************/
/* nGene command interface **************************************************/
/****************************************************************************/
static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
{
int ret;
u8 *tmpCmdDoneByte;
dev->cmd_done = 0;
if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
dev->BootFirmware = 1;
dev->icounts = ngreadl(NGENE_INT_COUNTS);
ngwritel(0, NGENE_COMMAND);
ngwritel(0, NGENE_COMMAND_HI);
ngwritel(0, NGENE_STATUS);
ngwritel(0, NGENE_STATUS_HI);
ngwritel(0, NGENE_EVENT);
ngwritel(0, NGENE_EVENT_HI);
} else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
u64 fwio = dev->PAFWInterfaceBuffer;
ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
ngwritel(fwio >> 32, NGENE_COMMAND_HI);
ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
}
memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
if (dev->BootFirmware)
ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
spin_lock_irq(&dev->cmd_lock);
tmpCmdDoneByte = dev->ngenetohost + com->out_len;
if (!com->out_len)
tmpCmdDoneByte++;
*tmpCmdDoneByte = 0;
dev->ngenetohost[0] = 0;
dev->ngenetohost[1] = 0;
dev->CmdDoneByte = tmpCmdDoneByte;
spin_unlock_irq(&dev->cmd_lock);
/* Notify 8051. */
ngwritel(1, FORCE_INT);
ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
if (!ret) {
/*ngwritel(0, FORCE_NMI);*/
printk(KERN_ERR DEVICE_NAME
": Command timeout cmd=%02x prev=%02x\n",
com->cmd.hdr.Opcode, dev->prev_cmd);
return -1;
}
if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
dev->BootFirmware = 0;
dev->prev_cmd = com->cmd.hdr.Opcode;
msleep(10);
if (!com->out_len)
return 0;
memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
return 0;
}
static int ngene_command(struct ngene *dev, struct ngene_command *com)
{
int result;
down(&dev->cmd_mutex);
result = ngene_command_mutex(dev, com);
up(&dev->cmd_mutex);
return result;
}
int ngene_command_nop(struct ngene *dev)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_NOP;
com.cmd.hdr.Length = 0;
com.in_len = 0;
com.out_len = 0;
return ngene_command(dev, &com);
}
int ngene_command_i2c_read(struct ngene *dev, u8 adr,
u8 *out, u8 outlen, u8 *in, u8 inlen, int flag)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_I2C_READ;
com.cmd.hdr.Length = outlen + 3;
com.cmd.I2CRead.Device = adr << 1;
memcpy(com.cmd.I2CRead.Data, out, outlen);
com.cmd.I2CRead.Data[outlen] = inlen;
com.cmd.I2CRead.Data[outlen + 1] = 0;
com.in_len = outlen + 3;
com.out_len = inlen + 1;
if (ngene_command(dev, &com) < 0)
return -EIO;
if ((com.cmd.raw8[0] >> 1) != adr)
return -EIO;
if (flag)
memcpy(in, com.cmd.raw8, inlen + 1);
else
memcpy(in, com.cmd.raw8 + 1, inlen);
return 0;
}
int ngene_command_i2c_write(struct ngene *dev, u8 adr, u8 *out, u8 outlen)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_I2C_WRITE;
com.cmd.hdr.Length = outlen + 1;
com.cmd.I2CRead.Device = adr << 1;
memcpy(com.cmd.I2CRead.Data, out, outlen);
com.in_len = outlen + 1;
com.out_len = 1;
if (ngene_command(dev, &com) < 0)
return -EIO;
if (com.cmd.raw8[0] == 1)
return -EIO;
return 0;
}
static int ngene_command_load_firmware(struct ngene *dev,
u8 *ngene_fw, u32 size)
{
#define FIRSTCHUNK (1024)
u32 cleft;
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
com.cmd.hdr.Length = 0;
com.in_len = 0;
com.out_len = 0;
ngene_command(dev, &com);
cleft = (size + 3) & ~3;
if (cleft > FIRSTCHUNK) {
ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
cleft - FIRSTCHUNK);
cleft = FIRSTCHUNK;
}
ngene_fw[FW_DEBUG_DEFAULT - PROGRAM_SRAM] = ngene_fw_debug;
ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
memset(&com, 0, sizeof(struct ngene_command));
com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
com.cmd.hdr.Length = 4;
com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
com.in_len = 4;
com.out_len = 0;
return ngene_command(dev, &com);
}
int ngene_command_imem_read(struct ngene *dev, u8 adr, u8 *data, int type)
{
struct ngene_command com;
com.cmd.hdr.Opcode = type ? CMD_SFR_READ : CMD_IRAM_READ;
com.cmd.hdr.Length = 1;
com.cmd.SfrIramRead.address = adr;
com.in_len = 1;
com.out_len = 2;
if (ngene_command(dev, &com) < 0)
return -EIO;
*data = com.cmd.raw8[1];
return 0;
}
int ngene_command_imem_write(struct ngene *dev, u8 adr, u8 data, int type)
{
struct ngene_command com;
com.cmd.hdr.Opcode = type ? CMD_SFR_WRITE : CMD_IRAM_WRITE;
com.cmd.hdr.Length = 2;
com.cmd.SfrIramWrite.address = adr;
com.cmd.SfrIramWrite.data = data;
com.in_len = 2;
com.out_len = 1;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
static int ngene_command_config_uart(struct ngene *dev, u8 config,
tx_cb_t *tx_cb, rx_cb_t *rx_cb)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_CONFIGURE_UART;
com.cmd.hdr.Length = sizeof(struct FW_CONFIGURE_UART) - 2;
com.cmd.ConfigureUart.UartControl = config;
com.in_len = sizeof(struct FW_CONFIGURE_UART);
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
dev->TxEventNotify = tx_cb;
dev->RxEventNotify = rx_cb;
dprintk(KERN_DEBUG DEVICE_NAME ": Set UART config %02x.\n", config);
return 0;
}
static void tx_cb(struct ngene *dev, u32 ts)
{
dev->tx_busy = 0;
wake_up_interruptible(&dev->tx_wq);
}
static void rx_cb(struct ngene *dev, u32 ts, u8 c)
{
int rp = dev->uart_rp;
int nwp, wp = dev->uart_wp;
/* dprintk(KERN_DEBUG DEVICE_NAME ": %c\n", c); */
nwp = (wp + 1) % (UART_RBUF_LEN);
if (nwp == rp)
return;
dev->uart_rbuf[wp] = c;
dev->uart_wp = nwp;
wake_up_interruptible(&dev->rx_wq);
}
static int ngene_command_config_buf(struct ngene *dev, u8 config)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
com.cmd.hdr.Length = 1;
com.cmd.ConfigureBuffers.config = config;
com.in_len = 1;
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
com.cmd.hdr.Length = 6;
memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
com.in_len = 6;
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
static int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
com.cmd.hdr.Length = 1;
com.cmd.SetGpioPin.select = select | (level << 7);
com.in_len = 1;
com.out_len = 0;
return ngene_command(dev, &com);
}
/* The reset is only wired to GPIO4 on MicRacer Revision 1.10 !
Also better set bootdelay to 1 in nvram or less. */
static void ngene_reset_decypher(struct ngene *dev)
{
printk(KERN_INFO DEVICE_NAME ": Resetting Decypher.\n");
ngene_command_gpio_set(dev, 4, 0);
msleep(1);
ngene_command_gpio_set(dev, 4, 1);
msleep(2000);
}
/*
02000640 is sample on rising edge.
02000740 is sample on falling edge.
02000040 is ignore "valid" signal
0: FD_CTL1 Bit 7,6 must be 0,1
7 disable(fw controlled)
6 0-AUX,1-TS
5 0-par,1-ser
4 0-lsb/1-msb
3,2 reserved
1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
2: FD_STA is read-only. 0-sync
3: FD_INSYNC is number of 47s to trigger "in sync".
4: FD_OUTSYNC is number of 47s to trigger "out of sync".
5: FD_MAXBYTE1 is low-order of bytes per packet.
6: FD_MAXBYTE2 is high-order of bytes per packet.
7: Top byte is unused.
*/
/****************************************************************************/
static u8 TSFeatureDecoderSetup[8 * 4] = {
0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
0x72, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
};
/* Set NGENE I2S Config to 16 bit packed */
static u8 I2SConfiguration[] = {
0x00, 0x10, 0x00, 0x00,
0x80, 0x10, 0x00, 0x00,
};
static u8 SPDIFConfiguration[10] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/* Set NGENE I2S Config to transport stream compatible mode */
static u8 TS_I2SConfiguration[4] = { 0x3E, 0x1A, 0x00, 0x00 }; /*3e 18 00 00 ?*/
static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x20, 0x00, 0x00 };
static u8 ITUDecoderSetup[4][16] = {
{0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
{0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
{0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
{0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
};
/*
* 50 48 60 gleich
* 27p50 9f 00 22 80 42 69 18 ...
* 27p60 93 00 22 80 82 69 1c ...
*/
/* Maxbyte to 1144 (for raw data) */
static u8 ITUFeatureDecoderSetup[8] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
};
static void FillTSBuffer(void *Buffer, int Length, u32 Flags)
{
u32 *ptr = Buffer;
memset(Buffer, Length, 0xff);
while (Length > 0) {
if (Flags & DF_SWAP32)
*ptr = 0x471FFF10;
else
*ptr = 0x10FF1F47;
ptr += (188 / 4);
Length -= 188;
}
}
static void clear_tsin(struct ngene_channel *chan)
{
struct SBufferHeader *Cur = chan->nextBuffer;
do {
memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
Cur = Cur->Next;
} while (Cur != chan->nextBuffer);
}
static void flush_buffers(struct ngene_channel *chan)
{
u8 val;
do {
msleep(1);
spin_lock_irq(&chan->state_lock);
val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
spin_unlock_irq(&chan->state_lock);
} while (val);
}
static void clear_buffers(struct ngene_channel *chan)
{
struct SBufferHeader *Cur = chan->nextBuffer;
do {
memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
if (chan->mode & NGENE_IO_TSOUT)
FillTSBuffer(Cur->Buffer1,
chan->Capture1Length,
chan->DataFormatFlags);
Cur = Cur->Next;
} while (Cur != chan->nextBuffer);
if (chan->mode & NGENE_IO_TSOUT) {
chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
chan->AudioDTOValue;
chan->AudioDTOUpdated = 0;
Cur = chan->TSIdleBuffer.Head;
do {
memset(&Cur->ngeneBuffer.SR, 0,
sizeof(Cur->ngeneBuffer.SR));
FillTSBuffer(Cur->Buffer1,
chan->Capture1Length,
chan->DataFormatFlags);
Cur = Cur->Next;
} while (Cur != chan->TSIdleBuffer.Head);
}
}
int ngene_command_stream_control(struct ngene *dev, u8 stream, u8 control,
u8 mode, u8 flags)
{
struct ngene_channel *chan = &dev->channel[stream];
struct ngene_command com;
u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
u16 BsSDO = 0x9B00;
/* down(&dev->stream_mutex); */
while (down_trylock(&dev->stream_mutex)) {
printk(KERN_INFO DEVICE_NAME ": SC locked\n");
msleep(1);
}
memset(&com, 0, sizeof(com));
com.cmd.hdr.Opcode = CMD_CONTROL;
com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
if (chan->mode & NGENE_IO_TSOUT)
com.cmd.StreamControl.Stream |= 0x07;
com.cmd.StreamControl.Control = control |
(flags & SFLAG_ORDER_LUMA_CHROMA);
com.cmd.StreamControl.Mode = mode;
com.in_len = sizeof(struct FW_STREAM_CONTROL);
com.out_len = 0;
printk(KERN_INFO DEVICE_NAME ": Stream=%02x, Control=%02x, Mode=%02x\n",
com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
com.cmd.StreamControl.Mode);
chan->Mode = mode;
if (!(control & 0x80)) {
spin_lock_irq(&chan->state_lock);
if (chan->State == KSSTATE_RUN) {
chan->State = KSSTATE_ACQUIRE;
chan->HWState = HWSTATE_STOP;
spin_unlock_irq(&chan->state_lock);
if (ngene_command(dev, &com) < 0) {
up(&dev->stream_mutex);
return -1;
}
/* clear_buffers(chan); */
flush_buffers(chan);
up(&dev->stream_mutex);
return 0;
}
spin_unlock_irq(&chan->state_lock);
up(&dev->stream_mutex);
return 0;
}
if (mode & SMODE_AUDIO_CAPTURE) {
com.cmd.StreamControl.CaptureBlockCount =
chan->Capture1Length / AUDIO_BLOCK_SIZE;
com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
} else if (mode & SMODE_TRANSPORT_STREAM) {
com.cmd.StreamControl.CaptureBlockCount =
chan->Capture1Length / TS_BLOCK_SIZE;
com.cmd.StreamControl.MaxLinesPerField =
chan->Capture1Length / TS_BLOCK_SIZE;
com.cmd.StreamControl.Buffer_Address =
chan->TSRingBuffer.PAHead;
if (chan->mode & NGENE_IO_TSOUT) {
com.cmd.StreamControl.BytesPerVBILine =
chan->Capture1Length / TS_BLOCK_SIZE;
com.cmd.StreamControl.Stream |= 0x07;
}
} else {
com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
com.cmd.StreamControl.MinLinesPerField = 100;
com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
if (mode & SMODE_VBI_CAPTURE) {
com.cmd.StreamControl.MaxVBILinesPerField =
chan->nVBILines;
com.cmd.StreamControl.MinVBILinesPerField = 0;
com.cmd.StreamControl.BytesPerVBILine =
chan->nBytesPerVBILine;
}
if (flags & SFLAG_COLORBAR)
com.cmd.StreamControl.Stream |= 0x04;
}
spin_lock_irq(&chan->state_lock);
if (mode & SMODE_AUDIO_CAPTURE) {
chan->nextBuffer = chan->RingBuffer.Head;
if (mode & SMODE_AUDIO_SPDIF) {
com.cmd.StreamControl.SetupDataLen =
sizeof(SPDIFConfiguration);
com.cmd.StreamControl.SetupDataAddr = BsSPI;
memcpy(com.cmd.StreamControl.SetupData,
SPDIFConfiguration, sizeof(SPDIFConfiguration));
} else {
com.cmd.StreamControl.SetupDataLen = 4;
com.cmd.StreamControl.SetupDataAddr = BsSDI;
memcpy(com.cmd.StreamControl.SetupData,
I2SConfiguration +
4 * dev->card_info->i2s[stream], 4);
}
} else if (mode & SMODE_TRANSPORT_STREAM) {
chan->nextBuffer = chan->TSRingBuffer.Head;
if (stream >= STREAM_AUDIOIN1) {
if (chan->mode & NGENE_IO_TSOUT) {
com.cmd.StreamControl.SetupDataLen =
sizeof(TS_I2SOutConfiguration);
com.cmd.StreamControl.SetupDataAddr = BsSDO;
memcpy(com.cmd.StreamControl.SetupData,
TS_I2SOutConfiguration,
sizeof(TS_I2SOutConfiguration));
} else {
com.cmd.StreamControl.SetupDataLen =
sizeof(TS_I2SConfiguration);
com.cmd.StreamControl.SetupDataAddr = BsSDI;
memcpy(com.cmd.StreamControl.SetupData,
TS_I2SConfiguration,
sizeof(TS_I2SConfiguration));
}
} else {
com.cmd.StreamControl.SetupDataLen = 8;
com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
memcpy(com.cmd.StreamControl.SetupData,
TSFeatureDecoderSetup +
8 * dev->card_info->tsf[stream], 8);
}
} else {
chan->nextBuffer = chan->RingBuffer.Head;
com.cmd.StreamControl.SetupDataLen =
16 + sizeof(ITUFeatureDecoderSetup);
com.cmd.StreamControl.SetupDataAddr = BsUVI;
memcpy(com.cmd.StreamControl.SetupData,
ITUDecoderSetup[chan->itumode], 16);
memcpy(com.cmd.StreamControl.SetupData + 16,
ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
}
clear_buffers(chan);
chan->State = KSSTATE_RUN;
if (mode & SMODE_TRANSPORT_STREAM)
chan->HWState = HWSTATE_RUN;
else
chan->HWState = HWSTATE_STARTUP;
spin_unlock_irq(&chan->state_lock);
if (ngene_command(dev, &com) < 0) {
up(&dev->stream_mutex);
return -1;
}
up(&dev->stream_mutex);
return 0;
}
int ngene_stream_control(struct ngene *dev, u8 stream, u8 control, u8 mode,
u16 lines, u16 bpl, u16 vblines, u16 vbibpl)
{
if (!(mode & SMODE_TRANSPORT_STREAM))
return -EINVAL;
if (lines * bpl > MAX_VIDEO_BUFFER_SIZE)
return -EINVAL;
if ((mode & SMODE_TRANSPORT_STREAM) && (((bpl * lines) & 0xff) != 0))
return -EINVAL;
if ((mode & SMODE_VIDEO_CAPTURE) && (bpl & 7) != 0)
return -EINVAL;
return ngene_command_stream_control(dev, stream, control, mode, 0);
}
/****************************************************************************/
/* I2C **********************************************************************/
/****************************************************************************/
static void ngene_i2c_set_bus(struct ngene *dev, int bus)
{
if (!(dev->card_info->i2c_access & 2))
return;
if (dev->i2c_current_bus == bus)
return;
switch (bus) {
case 0:
ngene_command_gpio_set(dev, 3, 0);
ngene_command_gpio_set(dev, 2, 1);
break;
case 1:
ngene_command_gpio_set(dev, 2, 0);
ngene_command_gpio_set(dev, 3, 1);
break;
}
dev->i2c_current_bus = bus;
}
static int ngene_i2c_master_xfer(struct i2c_adapter *adapter,
struct i2c_msg msg[], int num)
{
struct ngene_channel *chan =
(struct ngene_channel *)i2c_get_adapdata(adapter);
struct ngene *dev = chan->dev;
down(&dev->i2c_switch_mutex);
ngene_i2c_set_bus(dev, chan->number);
if (num == 2 && msg[1].flags & I2C_M_RD && !(msg[0].flags & I2C_M_RD))
if (!ngene_command_i2c_read(dev, msg[0].addr,
msg[0].buf, msg[0].len,
msg[1].buf, msg[1].len, 0))
goto done;
if (num == 1 && !(msg[0].flags & I2C_M_RD))
if (!ngene_command_i2c_write(dev, msg[0].addr,
msg[0].buf, msg[0].len))
goto done;
if (num == 1 && (msg[0].flags & I2C_M_RD))
if (!ngene_command_i2c_read(dev, msg[0].addr, 0, 0,
msg[0].buf, msg[0].len, 0))
goto done;
up(&dev->i2c_switch_mutex);
return -EIO;
done:
up(&dev->i2c_switch_mutex);
return num;
}
static int ngene_i2c_algo_control(struct i2c_adapter *adap,
unsigned int cmd, unsigned long arg)
{
struct ngene_channel *chan =
(struct ngene_channel *)i2c_get_adapdata(adap);
switch (cmd) {
case IOCTL_MIC_TUN_RDY:
chan->tun_rdy = 1;
if (chan->dec_rdy == 1)
chan->tun_dec_rdy = 1;
break;
case IOCTL_MIC_DEC_RDY:
chan->dec_rdy = 1;
if (chan->tun_rdy == 1)
chan->tun_dec_rdy = 1;
break;
case IOCTL_MIC_TUN_DETECT:
{
int *palorbtsc = (int *)arg;
*palorbtsc = chan->dev->card_info->ntsc;
break;
}
default:
break;
}
return 0;
}
static u32 ngene_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_SMBUS_EMUL;
}
struct i2c_algorithm ngene_i2c_algo = {
.master_xfer = ngene_i2c_master_xfer,
.functionality = ngene_i2c_functionality,
};
static int ngene_i2c_attach(struct i2c_client *client)
{
return 0;
}
static int ngene_i2c_detach(struct i2c_client *client)
{
return 0;
}
static int ngene_i2c_init(struct ngene *dev, int dev_nr)
{
struct i2c_adapter *adap = &(dev->channel[dev_nr].i2c_adapter);
i2c_set_adapdata(adap, &(dev->channel[dev_nr]));
#ifdef I2C_ADAP_CLASS_TV_DIGITAL
adap->class = I2C_ADAP_CLASS_TV_DIGITAL | I2C_CLASS_TV_ANALOG;
#else
adap->class = I2C_CLASS_TV_ANALOG;
#endif
strcpy(adap->name, "nGene");
adap->id = I2C_HW_SAA7146;
adap->client_register = ngene_i2c_attach;
adap->client_unregister = ngene_i2c_detach;
adap->algo = &ngene_i2c_algo;
adap->algo_data = (void *)&(dev->channel[dev_nr]);
mutex_init(&adap->bus_lock);
return i2c_add_adapter(adap);
}
int i2c_write(struct i2c_adapter *adapter, u8 adr, u8 data)
{
u8 m[1] = {data};
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 1};
if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR DEVICE_NAME
": Failed to write to I2C adr %02x!\n", adr);
return -1;
}
return 0;
}
static int i2c_write_register(struct i2c_adapter *adapter,
u8 adr, u8 reg, u8 data)
{
u8 m[2] = {reg, data};
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR DEVICE_NAME
": Failed to write to I2C register %02x@%02x!\n",
reg, adr);
return -1;
}
return 0;
}
static int i2c_write_read(struct i2c_adapter *adapter,
u8 adr, u8 *w, u8 wlen, u8 *r, u8 rlen)
{
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = w, .len = wlen},
{.addr = adr, .flags = I2C_M_RD,
.buf = r, .len = rlen} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR DEVICE_NAME ": error in i2c_write_read\n");
return -1;
}
return 0;
}
static int test_dec_i2c(struct i2c_adapter *adapter, int reg)
{
u8 data[256] = { reg, 0x00, 0x93, 0x78, 0x43, 0x45 };
u8 data2[256];
int i;
memset(data2, 0, 256);
i2c_write_read(adapter, 0x66, data, 2, data2, 4);
for (i = 0; i < 4; i++)
printk("%02x ", data2[i]);
printk("\n");
return 0;
}
/****************************************************************************/
/* EEPROM TAGS **************************************************************/
/****************************************************************************/
#define MICNG_EE_START 0x0100
#define MICNG_EE_END 0x0FF0
#define MICNG_EETAG_END0 0x0000
#define MICNG_EETAG_END1 0xFFFF
/* 0x0001 - 0x000F reserved for housekeeping */
/* 0xFFFF - 0xFFFE reserved for housekeeping */
/* Micronas assigned tags
EEProm tags for hardware support */
#define MICNG_EETAG_DRXD1_OSCDEVIATION 0x1000 /* 2 Bytes data */
#define MICNG_EETAG_DRXD2_OSCDEVIATION 0x1001 /* 2 Bytes data */
#define MICNG_EETAG_MT2060_1_1STIF 0x1100 /* 2 Bytes data */
#define MICNG_EETAG_MT2060_2_1STIF 0x1101 /* 2 Bytes data */
/* Tag range for OEMs */
#define MICNG_EETAG_OEM_FIRST 0xC000
#define MICNG_EETAG_OEM_LAST 0xFFEF
static int i2c_write_eeprom(struct i2c_adapter *adapter,
u8 adr, u16 reg, u8 data)
{
u8 m[3] = {(reg >> 8), (reg & 0xff), data};
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m,
.len = sizeof(m)};
if (i2c_transfer(adapter, &msg, 1) != 1) {
dprintk(KERN_DEBUG DEVICE_NAME ": Error writing EEPROM!\n");
return -EIO;
}
return 0;
}
static int i2c_read_eeprom(struct i2c_adapter *adapter,
u8 adr, u16 reg, u8 *data, int len)
{
u8 msg[2] = {(reg >> 8), (reg & 0xff)};
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = msg, .len = 2 },
{.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = len} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
dprintk(KERN_DEBUG DEVICE_NAME ": Error reading EEPROM\n");
return -EIO;
}
return 0;
}
static int ReadEEProm(struct i2c_adapter *adapter,
u16 Tag, u32 MaxLen, u8 *data, u32 *pLength)
{
int status = 0;
u16 Addr = MICNG_EE_START, Length, tag = 0;
u8 EETag[3];
while (Addr + sizeof(u16) + 1 < MICNG_EE_END) {
if (i2c_read_eeprom(adapter, 0x50, Addr, EETag, sizeof(EETag)))
return -1;
tag = (EETag[0] << 8) | EETag[1];
if (tag == MICNG_EETAG_END0 || tag == MICNG_EETAG_END1)
return -1;
if (tag == Tag)
break;
Addr += sizeof(u16) + 1 + EETag[2];
}
if (Addr + sizeof(u16) + 1 + EETag[2] > MICNG_EE_END) {
printk(KERN_ERR DEVICE_NAME
": Reached EOEE @ Tag = %04x Length = %3d\n",
tag, EETag[2]);
return -1;
}
Length = EETag[2];
if (Length > MaxLen)
Length = (u16) MaxLen;
if (Length > 0) {
Addr += sizeof(u16) + 1;
status = i2c_read_eeprom(adapter, 0x50, Addr, data, Length);
if (!status) {
*pLength = EETag[2];
if (Length < EETag[2])
; /*status=STATUS_BUFFER_OVERFLOW; */
}
}
return status;
}
static int WriteEEProm(struct i2c_adapter *adapter,
u16 Tag, u32 Length, u8 *data)
{
int status = 0;
u16 Addr = MICNG_EE_START;
u8 EETag[3];
u16 tag = 0;
int retry, i;
while (Addr + sizeof(u16) + 1 < MICNG_EE_END) {
if (i2c_read_eeprom(adapter, 0x50, Addr, EETag, sizeof(EETag)))
return -1;
tag = (EETag[0] << 8) | EETag[1];
if (tag == MICNG_EETAG_END0 || tag == MICNG_EETAG_END1)
return -1;
if (tag == Tag)
break;
Addr += sizeof(u16) + 1 + EETag[2];
}
if (Addr + sizeof(u16) + 1 + EETag[2] > MICNG_EE_END) {
printk(KERN_ERR DEVICE_NAME
": Reached EOEE @ Tag = %04x Length = %3d\n",
tag, EETag[2]);
return -1;
}
if (Length > EETag[2])
return -EINVAL;
/* Note: We write the data one byte at a time to avoid
issues with page sizes. (which are different for
each manufacture and eeprom size)
*/
Addr += sizeof(u16) + 1;
for (i = 0; i < Length; i++, Addr++) {
status = i2c_write_eeprom(adapter, 0x50, Addr, data[i]);
if (status)
break;
/* Poll for finishing write cycle */
retry = 10;
while (retry) {
u8 Tmp;
msleep(50);
status = i2c_read_eeprom(adapter, 0x50, Addr, &Tmp, 1);
if (status)
break;
if (Tmp != data[i])
printk(KERN_ERR DEVICE_NAME
"eeprom write error\n");
retry -= 1;
}
if (status) {
printk(KERN_ERR DEVICE_NAME
": Timeout polling eeprom\n");
break;
}
}
return status;
}
static void i2c_init_eeprom(struct i2c_adapter *adapter)
{
u8 tags[] = {0x10, 0x00, 0x02, 0x00, 0x00,
0x10, 0x01, 0x02, 0x00, 0x00,
0x00, 0x00, 0x00};
int i;
for (i = 0; i < sizeof(tags); i++)
i2c_write_eeprom(adapter, 0x50, 0x0100 + i, tags[i]);
}
static int eeprom_read_ushort(struct i2c_adapter *adapter, u16 tag, u16 *data)
{
int stat;
u8 buf[2];
u32 len = 0;
stat = ReadEEProm(adapter, tag, 2, buf, &len);
if (stat)
return stat;
if (len != 2)
return -EINVAL;
*data = (buf[0] << 8) | buf[1];
return 0;
}
static int eeprom_write_ushort(struct i2c_adapter *adapter, u16 tag, u16 data)
{
int stat;
u8 buf[2];
buf[0] = data >> 8;
buf[1] = data & 0xff;
stat = WriteEEProm(adapter, tag, 2, buf);
if (stat)
return stat;
return 0;
}
static int i2c_dump_eeprom(struct i2c_adapter *adapter, u8 adr)
{
u8 buf[64];
int i;
if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
return -1;
}
for (i = 0; i < sizeof(buf); i++) {
if (!(i & 15))
printk("\n");
printk("%02x ", buf[i]);
}
printk("\n");
return 0;
}
static int i2c_copy_eeprom(struct i2c_adapter *adapter, u8 adr, u8 adr2)
{
u8 buf[64];
int i;
if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
return -1;
}
buf[36] = 0xc3;
buf[39] = 0xab;
for (i = 0; i < sizeof(buf); i++) {
i2c_write_eeprom(adapter, adr2, i, buf[i]);
msleep(10);
}
return 0;
}
/****************************************************************************/
/* COMMAND API interface ****************************************************/
/****************************************************************************/
#ifdef NGENE_COMMAND_API
static int command_do_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
int err = 0;
switch (cmd) {
case IOCTL_MIC_NO_OP:
err = ngene_command_nop(dev);
break;
case IOCTL_MIC_DOWNLOAD_FIRMWARE:
break;
case IOCTL_MIC_I2C_READ:
{
MIC_I2C_READ *msg = parg;
err = ngene_command_i2c_read(dev, msg->I2CAddress >> 1,
msg->OutData, msg->OutLength,
msg->OutData, msg->InLength, 1);
break;
}
case IOCTL_MIC_I2C_WRITE:
{
MIC_I2C_WRITE *msg = parg;
err = ngene_command_i2c_write(dev, msg->I2CAddress >> 1,
msg->Data, msg->Length);
break;
}
case IOCTL_MIC_TEST_GETMEM:
{
MIC_MEM *m = parg;
if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
return -EINVAL;
/* WARNING, only use this on x86,
other archs may not swallow this */
err = copy_to_user(m->Data, dev->iomem + m->Start, m->Length);
break;
}
case IOCTL_MIC_TEST_SETMEM:
{
MIC_MEM *m = parg;
if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
return -EINVAL;
err = copy_from_user(dev->iomem + m->Start, m->Data, m->Length);
break;
}
case IOCTL_MIC_SFR_READ:
{
MIC_IMEM *m = parg;
err = ngene_command_imem_read(dev, m->Address, &m->Data, 1);
break;
}
case IOCTL_MIC_SFR_WRITE:
{
MIC_IMEM *m = parg;
err = ngene_command_imem_write(dev, m->Address, m->Data, 1);
break;
}
case IOCTL_MIC_IRAM_READ:
{
MIC_IMEM *m = parg;
err = ngene_command_imem_read(dev, m->Address, &m->Data, 0);
break;
}
case IOCTL_MIC_IRAM_WRITE:
{
MIC_IMEM *m = parg;
err = ngene_command_imem_write(dev, m->Address, m->Data, 0);
break;
}
case IOCTL_MIC_STREAM_CONTROL:
{
MIC_STREAM_CONTROL *m = parg;
err = ngene_stream_control(dev, m->Stream, m->Control, m->Mode,
m->nLines, m->nBytesPerLine,
m->nVBILines, m->nBytesPerVBILine);
break;
}
default:
err = -EINVAL;
break;
}
return err;
}
static int command_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
void *parg = (void *)arg, *pbuf = NULL;
char buf[64];
int res = -EFAULT;
if (_IOC_DIR(cmd) & _IOC_WRITE) {
parg = buf;
if (_IOC_SIZE(cmd) > sizeof(buf)) {
pbuf = kmalloc(_IOC_SIZE(cmd), GFP_KERNEL);
if (!pbuf)
return -ENOMEM;
parg = pbuf;
}
if (copy_from_user(parg, (void __user *)arg, _IOC_SIZE(cmd)))
goto error;
}
res = command_do_ioctl(inode, file, cmd, parg);
if (res < 0)
goto error;
if (_IOC_DIR(cmd) & _IOC_READ)
if (copy_to_user((void __user *)arg, parg, _IOC_SIZE(cmd)))
res = -EFAULT;
error:
kfree(pbuf);
return res;
}
struct page *ngene_nopage(struct vm_area_struct *vma,
unsigned long address, int *type)
{
return 0;
}
static int ngene_mmap(struct file *file, struct vm_area_struct *vma)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
unsigned long size = vma->vm_end - vma->vm_start;
unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
unsigned long padr = pci_resource_start(dev->pci_dev, 0) + off;
unsigned long psize = pci_resource_len(dev->pci_dev, 0) - off;
if (size > psize)
return -EINVAL;
if (io_remap_pfn_range(vma, vma->vm_start, padr >> PAGE_SHIFT, size,
vma->vm_page_prot))
return -EAGAIN;
return 0;
}
static int write_uart(struct ngene *dev, u8 *data, int len)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_WRITE_UART;
com.cmd.hdr.Length = len;
memcpy(com.cmd.WriteUart.Data, data, len);
com.cmd.WriteUart.Data[len] = 0;
com.cmd.WriteUart.Data[len + 1] = 0;
com.in_len = len;
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
static int send_cli(struct ngene *dev, char *cmd)
{
/* printk(KERN_INFO DEVICE_NAME ": %s", cmd); */
return write_uart(dev, cmd, strlen(cmd));
}
static int send_cli_val(struct ngene *dev, char *cmd, u32 val)
{
char s[32];
snprintf(s, 32, "%s %d\n", cmd, val);
/* printk(KERN_INFO DEVICE_NAME ": %s", s); */
return write_uart(dev, s, strlen(s));
}
static int ngene_command_write_uart_user(struct ngene *dev,
const u8 *data, int len)
{
struct ngene_command com;
dev->tx_busy = 1;
com.cmd.hdr.Opcode = CMD_WRITE_UART;
com.cmd.hdr.Length = len;
if (copy_from_user(com.cmd.WriteUart.Data, data, len))
return -EFAULT;
com.in_len = len;
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
static ssize_t uart_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
int len, ret = 0;
size_t left = count;
while (left) {
len = left;
if (len > 250)
len = 250;
ret = wait_event_interruptible(dev->tx_wq, dev->tx_busy == 0);
if (ret < 0)
return ret;
ngene_command_write_uart_user(dev, buf, len);
left -= len;
buf += len;
}
return count;
}
static ssize_t ts_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
if (wait_event_interruptible(dev->tsout_rbuf.queue,
dvb_ringbuffer_free
(&dev->tsout_rbuf) >= count) < 0)
return 0;
dvb_ringbuffer_write(&dev->tsout_rbuf, buf, count);
return count;
}
static ssize_t uart_read(struct file *file, char *buf,
size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
int left;
int wp, rp, avail, len;
if (!dev->uart_rbuf)
return -EINVAL;
if (count > 128)
count = 128;
left = count;
while (left) {
if (wait_event_interruptible(dev->rx_wq,
dev->uart_wp != dev->uart_rp) < 0)
return -EAGAIN;
wp = dev->uart_wp;
rp = dev->uart_rp;
avail = (wp - rp);
if (avail < 0)
avail += UART_RBUF_LEN;
if (avail > left)
avail = left;
if (wp < rp) {
len = UART_RBUF_LEN - rp;
if (len > avail)
len = avail;
if (copy_to_user(buf, dev->uart_rbuf + rp, len))
return -EFAULT;
if (len < avail)
if (copy_to_user(buf + len, dev->uart_rbuf,
avail - len))
return -EFAULT;
} else {
if (copy_to_user(buf, dev->uart_rbuf + rp, avail))
return -EFAULT;
}
dev->uart_rp = (rp + avail) % UART_RBUF_LEN;
left -= avail;
buf += avail;
}
return count;
}
static const struct file_operations command_fops = {
.owner = THIS_MODULE,
.read = uart_read,
.write = ts_write,
.ioctl = command_ioctl,
.open = dvb_generic_open,
.release = dvb_generic_release,
.poll = 0,
.mmap = ngene_mmap,
};
static struct dvb_device dvbdev_command = {
.priv = 0,
.readers = -1,
.writers = -1,
.users = -1,
.fops = &command_fops,
};
#endif
/****************************************************************************/
/* DVB functions and API interface ******************************************/
/****************************************************************************/
static void swap_buffer(u32 *p, u32 len)
{
while (len) {
*p = swab32(*p);
p++;
len -= 4;
}
}
static void *ain_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
{
struct ngene_channel *chan = priv;
struct ngene *dev = chan->dev;
if (dvb_ringbuffer_free(&dev->ain_rbuf) >= len) {
dvb_ringbuffer_write(&dev->ain_rbuf, buf, len);
wake_up_interruptible(&dev->ain_rbuf.queue);
} else
printk(KERN_INFO DEVICE_NAME ": Dropped ain packet.\n");
return 0;
}
static void *vcap_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
{
struct ngene_channel *chan = priv;
struct ngene *dev = chan->dev;
if (len >= 1920 * 1080)
len = 1920 * 1080;
if (dvb_ringbuffer_free(&dev->vin_rbuf) >= len) {
dvb_ringbuffer_write(&dev->vin_rbuf, buf, len);
wake_up_interruptible(&dev->vin_rbuf.queue);
} else {
;/*printk(KERN_INFO DEVICE_NAME ": Dropped vcap packet.\n"); */
}
return 0;
}
static void *tsin_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
{
struct ngene_channel *chan = priv;
dvb_dmx_swfilter(&chan->demux, buf, len);
return 0;
}
u8 fill_ts[188] = { 0x47, 0x1f, 0xff, 0x10 };
static void *tsout_exchange(void *priv, void *buf, u32 len,
u32 clock, u32 flags)
{
struct ngene_channel *chan = priv;
struct ngene *dev = chan->dev;
u32 alen;
alen = dvb_ringbuffer_avail(&dev->tsout_rbuf);
alen -= alen % 188;
if (alen < len)
FillTSBuffer(buf + alen, len - alen, flags);
else
alen = len;
dvb_ringbuffer_read(&dev->tsout_rbuf, buf, alen);
if (flags & DF_SWAP32)
swap_buffer((u32 *)buf, alen);
wake_up_interruptible(&dev->tsout_rbuf.queue);
return buf;
}
static void set_dto(struct ngene_channel *chan, u32 rate)
{
u64 val = rate * 0x89705f41ULL; /* times val for 2^26 Hz */
val = ((val >> 25) + 1) >> 1;
chan->AudioDTOValue = (u32) val;
/* chan->AudioDTOUpdated=1; */
/* printk(KERN_INFO DEVICE_NAME ": Setting DTO to %08x\n", val); */
}
static void set_transfer(struct ngene_channel *chan, int state)
{
u8 control = 0, mode = 0, flags = 0;
struct ngene *dev = chan->dev;
int ret;
/*
if (chan->running)
return;
*/
/*
printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
msleep(100);
*/
if (state) {
if (chan->running) {
printk(KERN_INFO DEVICE_NAME ": already running\n");
return;
}
} else {
if (!chan->running) {
printk(KERN_INFO DEVICE_NAME ": already stopped\n");
return;
}
}
if (dev->card_info->switch_ctrl)
dev->card_info->switch_ctrl(chan, 1, state ^ 1);
if (state) {
spin_lock_irq(&chan->state_lock);
/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
ngreadl(0x9310)); */
my_dvb_ringbuffer_flush(&dev->tsout_rbuf);
control = 0x80;
if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
chan->Capture1Length = 512 * 188;
mode = SMODE_TRANSPORT_STREAM;
}
if (chan->mode & NGENE_IO_TSOUT) {
chan->pBufferExchange = tsout_exchange;
/* 0x66666666 = 50MHz *2^33 /250MHz */
chan->AudioDTOValue = 0x66666666;
/* set_dto(chan, 38810700+1000); */
/* set_dto(chan, 19392658); */
}
if (chan->mode & NGENE_IO_TSIN)
chan->pBufferExchange = tsin_exchange;
/* ngwritel(0, 0x9310); */
spin_unlock_irq(&chan->state_lock);
} else
;/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
ngreadl(0x9310)); */
ret = ngene_command_stream_control(dev, chan->number,
control, mode, flags);
if (!ret)
chan->running = state;
else
printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
state);
if (!state) {
spin_lock_irq(&chan->state_lock);
chan->pBufferExchange = 0;
my_dvb_ringbuffer_flush(&dev->tsout_rbuf);
spin_unlock_irq(&chan->state_lock);
}
}
static int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct ngene_channel *chan = dvbdmx->priv;
struct ngene *dev = chan->dev;
if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
switch (dvbdmxfeed->pes_type) {
case DMX_TS_PES_VIDEO:
send_cli_val(dev, "vpid", dvbdmxfeed->pid);
send_cli(dev, "res 1080i50\n");
/* send_cli(dev, "vdec mpeg2\n"); */
break;
case DMX_TS_PES_AUDIO:
send_cli_val(dev, "apid", dvbdmxfeed->pid);
send_cli(dev, "start\n");
break;
case DMX_TS_PES_PCR:
send_cli_val(dev, "pcrpid", dvbdmxfeed->pid);
break;
default:
break;
}
}
if (chan->users == 0) {
set_transfer(chan, 1);
/* msleep(10); */
}
return ++chan->users;
}
static int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct ngene_channel *chan = dvbdmx->priv;
struct ngene *dev = chan->dev;
if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
switch (dvbdmxfeed->pes_type) {
case DMX_TS_PES_VIDEO:
send_cli(dev, "stop\n");
break;
case DMX_TS_PES_AUDIO:
break;
case DMX_TS_PES_PCR:
break;
default:
break;
}
}
if (--chan->users)
return chan->users;
set_transfer(chan, 0);
return 0;
}
static int write_demod(struct i2c_adapter *adapter, u8 adr, u16 reg, u16 data)
{
u8 mm[5] = { 0x10, (reg >> 8) & 0xff, reg & 0xff,
(data >> 8) & 0xff, data & 0xff};
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = mm, .len = 5 };
if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR DEVICE_NAME ": error in write_demod\n");
return -1;
}
return 0;
}
static int ngene_drxd_pll_set(struct ngene_channel *chan,
u8 *pll, u8 *aux, u8 plladr)
{
struct i2c_adapter *adap = &chan->i2c_adapter;
struct i2c_msg msg_pll = {.addr = plladr, .flags = 0, .buf = pll,
.len = 4};
struct i2c_msg msg_aux = {.addr = plladr, .flags = 0, .buf = aux,
.len = 2};
int err = 0;
if (chan->dev->card_info->i2c_access & 1)
down(&chan->dev->pll_mutex);
chan->fe->ops.i2c_gate_ctrl(chan->fe, 1);
err = i2c_transfer(adap, &msg_pll, 1);
if (err != 1)
goto error;
if (aux)
err = i2c_transfer(adap, &msg_aux, 1);
error:
chan->fe->ops.i2c_gate_ctrl(chan->fe, 0);
if (chan->dev->card_info->i2c_access & 1)
up(&chan->dev->pll_mutex);
return err;
}
static int ngene_pll_set_th_dtt7520x(void *priv, void *priv_params,
u8 plladr, u8 dadr, s32 *off)
{
struct dvb_frontend_parameters *params = priv_params;
struct ngene_channel *chan = priv;
u32 freq = params->frequency;
u8 pll[4], aux[2];
u8 c1, c2;
u32 div;
if (freq < 185000000 || freq > 900000000)
return -EINVAL;
if (freq < 465000000)
c2 = 0x12;
else
c2 = 0x18;
if (freq < 305000000)
c1 = 0xb4;
else if (freq < 405000000)
c1 = 0xbc;
else if (freq < 445000000)
c1 = 0xf4;
else if (freq < 465000000)
c1 = 0xfc;
else if (freq < 735000000)
c1 = 0xbc;
else if (freq < 835000000)
c1 = 0xf4;
else
c1 = 0xfc;
if (params->u.ofdm.bandwidth == BANDWIDTH_8_MHZ)
c2 ^= 0x10;
div = (freq + 36000000 + 166667 / 2) / 166667;
*off = ((s32) div) * 166667 - (s32) freq - 36000000;
pll[0] = (div >> 8) & 0x7f;
pll[1] = div & 0xff;
pll[2] = c1;
pll[3] = c2;
aux[0] = (c1 & 0xc7) | 0x98;
aux[1] = 0x30;
return ngene_drxd_pll_set(chan, pll, aux, plladr);
}
static int ngene_pll_set_mt_3x0823(void *priv,
void *priv_params,
u8 plladr, u8 dadr, s32 *off)
{
struct dvb_frontend_parameters *params = priv_params;
struct ngene_channel *chan = priv;
struct i2c_adapter *adap = &chan->i2c_adapter;
u32 freq = params->frequency;
u8 pll[4];
u8 aux[2];
u8 c1, c2;
u32 div;
if (freq < 47125000 || freq > 855250000)
return -EINVAL;
else if (freq < 120000000) {
c1 = 0xcc;
c2 = 0x01;
} else if (freq < 155500000) {
c1 = 0xfc;
c2 = 0x01;
} else if (freq < 300000000) {
c1 = 0xbc;
c2 = 0x02;
} else if (freq < 467000000) {
c1 = 0xcc;
c2 = 0x02;
} else {
c1 = 0xcc;
c2 = 0x04;
}
if (params->u.ofdm.bandwidth == BANDWIDTH_8_MHZ)
c2 |= 0x08;
#define INTERFREQ (36000000)
div = (freq + INTERFREQ + 166667 / 2) / 166667;
*off = ((s32) div) * 166667 - (s32) freq - INTERFREQ;
pll[0] = (div >> 8) & 0x7f;
pll[1] = div & 0xff;
pll[2] = c1;
pll[3] = c2;
aux[0] = (c1 & 0xc7) | 0x98;
aux[1] = 0x20;
write_demod(adap, dadr, 0x1007, 0xc27);
switch (params->u.ofdm.bandwidth) {
case BANDWIDTH_7_MHZ:
write_demod(adap, dadr, 0x0020, 0x103);
break;
case BANDWIDTH_AUTO:
case BANDWIDTH_8_MHZ:
write_demod(adap, dadr, 0x0020, 0x003);
break;
case BANDWIDTH_6_MHZ:
write_demod(adap, dadr, 0x0020, 0x002);
/*write_demod(adap, dadr, 0x1022, 397);*/
break;
}
return ngene_drxd_pll_set(chan, pll, aux, plladr);
}
static s16 osc_deviation(void *priv, s16 deviation, int flag)
{
struct ngene_channel *chan = priv;
struct i2c_adapter *adap = &chan->i2c_adapter;
u16 data = 0;
if (flag) {
data = (u16) deviation;
printk(KERN_INFO DEVICE_NAME ": write deviation %d\n",
deviation);
eeprom_write_ushort(adap, 0x1000 + chan->number, data);
} else {
if (eeprom_read_ushort(adap, 0x1000 + chan->number, &data))
data = 0;
printk(KERN_INFO DEVICE_NAME ": read deviation %d\n",
(s16) data);
}
return (s16) data;
}
static int write_to_decoder(struct dvb_demux_feed *feed,
const u8 *buf, size_t len)
{
struct dvb_demux *dvbdmx = feed->demux;
struct ngene_channel *chan = dvbdmx->priv;
struct ngene *dev = chan->dev;
if (wait_event_interruptible(dev->tsout_rbuf.queue,
dvb_ringbuffer_free
(&dev->tsout_rbuf) >= len) < 0)
return 0;
dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
return len;
}
static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id,
int (*start_feed)(struct dvb_demux_feed *),
int (*stop_feed)(struct dvb_demux_feed *),
void *priv)
{
dvbdemux->priv = priv;
dvbdemux->filternum = 256;
dvbdemux->feednum = 256;
dvbdemux->start_feed = start_feed;
dvbdemux->stop_feed = stop_feed;
dvbdemux->write_to_decoder = 0;
dvbdemux->dmx.capabilities = (DMX_TS_FILTERING |
DMX_SECTION_FILTERING |
DMX_MEMORY_BASED_FILTERING);
return dvb_dmx_init(dvbdemux);
}
static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev,
struct dvb_demux *dvbdemux,
struct dmx_frontend *hw_frontend,
struct dmx_frontend *mem_frontend,
struct dvb_adapter *dvb_adapter)
{
int ret;
dmxdev->filternum = 256;
dmxdev->demux = &dvbdemux->dmx;
dmxdev->capabilities = 0;
ret = dvb_dmxdev_init(dmxdev, dvb_adapter);
if (ret < 0)
return ret;
hw_frontend->source = DMX_FRONTEND_0;
dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend);
mem_frontend->source = DMX_MEMORY_FE;
dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend);
return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend);
}
/****************************************************************************/
/* Decypher firmware loading ************************************************/
/****************************************************************************/
#define DECYPHER_FW "decypher.fw"
static int dec_ts_send(struct ngene *dev, u8 *buf, u32 len)
{
while (dvb_ringbuffer_free(&dev->tsout_rbuf) < len)
msleep(1);
dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
return len;
}
u8 dec_fw_fill_ts[188] = { 0x47, 0x09, 0x0e, 0x10, 0xff, 0xff, 0x00, 0x00 };
int dec_fw_send(struct ngene *dev, u8 *fw, u32 size)
{
struct ngene_channel *chan = &dev->channel[4];
u32 len = 180, cc = 0;
u8 buf[8] = { 0x47, 0x09, 0x0e, 0x10, 0x00, 0x00, 0x00, 0x00 };
set_transfer(chan, 1);
msleep(100);
while (size) {
len = 180;
if (len > size)
len = size;
buf[3] = 0x10 | (cc & 0x0f);
buf[4] = (cc >> 8);
buf[5] = cc & 0xff;
buf[6] = len;
dec_ts_send(dev, buf, 8);
dec_ts_send(dev, fw, len);
if (len < 180)
dec_ts_send(dev, dec_fw_fill_ts + len + 8, 180 - len);
cc++;
size -= len;
fw += len;
}
for (len = 0; len < 512; len++)
dec_ts_send(dev, dec_fw_fill_ts, 188);
while (dvb_ringbuffer_avail(&dev->tsout_rbuf))
msleep(10);
msleep(100);
set_transfer(chan, 0);
return 0;
}
int dec_fw_boot(struct ngene *dev)
{
u32 size;
const struct firmware *fw = NULL;
u8 *dec_fw;
char *fw_name;
int err, version;
if (request_firmware(&fw, DECYPHER_FW, &dev->pci_dev->dev) < 0) {
printk(KERN_ERR DEVICE_NAME
": %s not found. Check hotplug directory.\n",
DECYPHER_FW);
return -1;
}
printk(KERN_INFO DEVICE_NAME ": Booting decypher firmware file %s\n",
DECYPHER_FW);
size = fw->size;
dec_fw = fw->data;
dec_fw_send(dev, dec_fw, size);
release_firmware(fw);
return 0;
}
/****************************************************************************/
/* nGene hardware init and release functions ********************************/
/****************************************************************************/
void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
{
struct SBufferHeader *Cur = rb->Head;
u32 j;
if (!Cur)
return;
for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
if (Cur->Buffer1)
pci_free_consistent(dev->pci_dev,
rb->Buffer1Length,
Cur->Buffer1,
Cur->scList1->Address);
if (Cur->Buffer2)
pci_free_consistent(dev->pci_dev,
rb->Buffer2Length,
Cur->Buffer2,
Cur->scList2->Address);
}
if (rb->SCListMem)
pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
rb->SCListMem, rb->PASCListMem);
pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
}
void free_idlebuffer(struct ngene *dev,
struct SRingBufferDescriptor *rb,
struct SRingBufferDescriptor *tb)
{
int j;
struct SBufferHeader *Cur = tb->Head;
if (!rb->Head)
return;
free_ringbuffer(dev, rb);
for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
Cur->Buffer2 = 0;
Cur->scList2 = 0;
Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
Cur->ngeneBuffer.Number_of_entries_2 = 0;
}
}
void free_common_buffers(struct ngene *dev)
{
u32 i;
struct ngene_channel *chan;
for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
chan = &dev->channel[i];
free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
free_ringbuffer(dev, &chan->RingBuffer);
free_ringbuffer(dev, &chan->TSRingBuffer);
}
if (dev->OverflowBuffer)
pci_free_consistent(dev->pci_dev,
OVERFLOW_BUFFER_SIZE,
dev->OverflowBuffer, dev->PAOverflowBuffer);
if (dev->FWInterfaceBuffer)
pci_free_consistent(dev->pci_dev,
4096,
dev->FWInterfaceBuffer,
dev->PAFWInterfaceBuffer);
}
/****************************************************************************/
/* Ring buffer handling *****************************************************/
/****************************************************************************/
int create_ring_buffer(struct pci_dev *pci_dev,
struct SRingBufferDescriptor *descr, u32 NumBuffers)
{
dma_addr_t tmp;
struct SBufferHeader *Head;
u32 i;
u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
u64 PARingBufferHead;
u64 PARingBufferCur;
u64 PARingBufferNext;
struct SBufferHeader *Cur, *Next;
descr->Head = 0;
descr->MemSize = 0;
descr->PAHead = 0;
descr->NumBuffers = 0;
if (MemSize < 4096)
MemSize = 4096;
Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
PARingBufferHead = tmp;
if (!Head)
return -ENOMEM;
memset(Head, 0, MemSize);
PARingBufferCur = PARingBufferHead;
Cur = Head;
for (i = 0; i < NumBuffers - 1; i++) {
Next = (struct SBufferHeader *)
(((u8 *) Cur) + SIZEOF_SBufferHeader);
PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
Cur->Next = Next;
Cur->ngeneBuffer.Next = PARingBufferNext;
Cur = Next;
PARingBufferCur = PARingBufferNext;
}
/* Last Buffer points back to first one */
Cur->Next = Head;
Cur->ngeneBuffer.Next = PARingBufferHead;
descr->Head = Head;
descr->MemSize = MemSize;
descr->PAHead = PARingBufferHead;
descr->NumBuffers = NumBuffers;
return 0;
}
static int AllocateRingBuffers(struct pci_dev *pci_dev,
dma_addr_t of,
struct SRingBufferDescriptor *pRingBuffer,
u32 Buffer1Length, u32 Buffer2Length)
{
dma_addr_t tmp;
u32 i, j;
int status = 0;
u32 SCListMemSize = pRingBuffer->NumBuffers
* ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
NUM_SCATTER_GATHER_ENTRIES)
* sizeof(struct HW_SCATTER_GATHER_ELEMENT);
u64 PASCListMem;
PHW_SCATTER_GATHER_ELEMENT SCListEntry;
u64 PASCListEntry;
struct SBufferHeader *Cur;
void *SCListMem;
if (SCListMemSize < 4096)
SCListMemSize = 4096;
SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
PASCListMem = tmp;
if (SCListMem == NULL)
return -ENOMEM;
memset(SCListMem, 0, SCListMemSize);
pRingBuffer->SCListMem = SCListMem;
pRingBuffer->PASCListMem = PASCListMem;
pRingBuffer->SCListMemSize = SCListMemSize;
pRingBuffer->Buffer1Length = Buffer1Length;
pRingBuffer->Buffer2Length = Buffer2Length;
SCListEntry = (PHW_SCATTER_GATHER_ELEMENT) SCListMem;
PASCListEntry = PASCListMem;
Cur = pRingBuffer->Head;
for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
u64 PABuffer;
void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
&tmp);
PABuffer = tmp;
if (Buffer == NULL)
return -ENOMEM;
Cur->Buffer1 = Buffer;
SCListEntry->Address = PABuffer;
SCListEntry->Length = Buffer1Length;
Cur->scList1 = SCListEntry;
Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
Cur->ngeneBuffer.Number_of_entries_1 =
NUM_SCATTER_GATHER_ENTRIES;
SCListEntry += 1;
PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
#if NUM_SCATTER_GATHER_ENTRIES > 1
for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
SCListEntry->Address = of;
SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
SCListEntry += 1;
PASCListEntry +=
sizeof(struct HW_SCATTER_GATHER_ELEMENT);
}
#endif
if (!Buffer2Length)
continue;
Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
PABuffer = tmp;
if (Buffer == NULL)
return -ENOMEM;
Cur->Buffer2 = Buffer;
SCListEntry->Address = PABuffer;
SCListEntry->Length = Buffer2Length;
Cur->scList2 = SCListEntry;
Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
Cur->ngeneBuffer.Number_of_entries_2 =
NUM_SCATTER_GATHER_ENTRIES;
SCListEntry += 1;
PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
#if NUM_SCATTER_GATHER_ENTRIES > 1
for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
SCListEntry->Address = of;
SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
SCListEntry += 1;
PASCListEntry +=
sizeof(struct HW_SCATTER_GATHER_ELEMENT);
}
#endif
}
return status;
}
static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
struct SRingBufferDescriptor *pRingBuffer)
{
int status = 0;
/* Copy pointer to scatter gather list in TSRingbuffer
structure for buffer 2
Load number of buffer
*/
u32 n = pRingBuffer->NumBuffers;
/* Point to first buffer entry */
struct SBufferHeader *Cur = pRingBuffer->Head;
int i;
/* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
for (i = 0; i < n; i++) {
Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
Cur->scList2 = pIdleBuffer->Head->scList1;
Cur->ngeneBuffer.Address_of_first_entry_2 =
pIdleBuffer->Head->ngeneBuffer.
Address_of_first_entry_1;
Cur->ngeneBuffer.Number_of_entries_2 =
pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
Cur = Cur->Next;
}
return status;
}
static u32 RingBufferSizes[MAX_STREAM] = {
RING_SIZE_VIDEO,
RING_SIZE_VIDEO,
RING_SIZE_AUDIO,
RING_SIZE_AUDIO,
RING_SIZE_AUDIO,
};
static u32 Buffer1Sizes[MAX_STREAM] = {
MAX_VIDEO_BUFFER_SIZE,
MAX_VIDEO_BUFFER_SIZE,
MAX_AUDIO_BUFFER_SIZE,
MAX_AUDIO_BUFFER_SIZE,
MAX_AUDIO_BUFFER_SIZE
};
static u32 Buffer2Sizes[MAX_STREAM] = {
MAX_VBI_BUFFER_SIZE,
MAX_VBI_BUFFER_SIZE,
0,
0,
0
};
static int allocate_buffer(struct pci_dev *pci_dev, dma_addr_t of,
struct SRingBufferDescriptor *rbuf,
u32 entries, u32 size1, u32 size2)
{
if (create_ring_buffer(pci_dev, rbuf, entries) < 0)
return -ENOMEM;
if (AllocateRingBuffers(pci_dev, of, rbuf, size1, size2) < 0)
return -ENOMEM;
return 0;
}
static int channel_allocate_buffers(struct ngene_channel *chan)
{
struct ngene *dev = chan->dev;
int type = dev->card_info->io_type[chan->number];
int status;
chan->State = KSSTATE_STOP;
if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
status = create_ring_buffer(dev->pci_dev,
&chan->RingBuffer,
RingBufferSizes[chan->number]);
if (status < 0)
return -ENOMEM;
if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&chan->RingBuffer,
Buffer1Sizes[chan->number],
Buffer2Sizes[chan->
number]);
if (status < 0)
return -ENOMEM;
} else if (type & NGENE_IO_HDTV) {
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&chan->RingBuffer,
MAX_HDTV_BUFFER_SIZE, 0);
if (status < 0)
return -ENOMEM;
}
}
if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
status = create_ring_buffer(dev->pci_dev,
&chan->TSRingBuffer, RING_SIZE_TS);
if (status < 0)
return -ENOMEM;
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&chan->TSRingBuffer,
MAX_TS_BUFFER_SIZE, 0);
if (status)
return -ENOMEM;
}
if (type & NGENE_IO_TSOUT) {
status = create_ring_buffer(dev->pci_dev,
&chan->TSIdleBuffer, 1);
if (status < 0)
return -ENOMEM;
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&chan->TSIdleBuffer,
MAX_TS_BUFFER_SIZE, 0);
if (status)
return -ENOMEM;
FillTSIdleBuffer(&chan->TSIdleBuffer, &chan->TSRingBuffer);
}
return 0;
}
static int AllocCommonBuffers(struct ngene *dev)
{
int status = 0, i;
dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
&dev->PAFWInterfaceBuffer);
if (!dev->FWInterfaceBuffer)
return -ENOMEM;
dev->hosttongene = dev->FWInterfaceBuffer;
dev->ngenetohost = dev->FWInterfaceBuffer + 256;
dev->EventBuffer = dev->FWInterfaceBuffer + 512;
dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev,
OVERFLOW_BUFFER_SIZE,
&dev->PAOverflowBuffer);
if (!dev->OverflowBuffer)
return -ENOMEM;
memset(dev->OverflowBuffer, 0, OVERFLOW_BUFFER_SIZE);
for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
int type = dev->card_info->io_type[i];
dev->channel[i].State = KSSTATE_STOP;
if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
status = create_ring_buffer(dev->pci_dev,
&dev->channel[i].RingBuffer,
RingBufferSizes[i]);
if (status < 0)
break;
if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
status = AllocateRingBuffers(dev->pci_dev,
dev->
PAOverflowBuffer,
&dev->channel[i].
RingBuffer,
Buffer1Sizes[i],
Buffer2Sizes[i]);
if (status < 0)
break;
} else if (type & NGENE_IO_HDTV) {
status = AllocateRingBuffers(dev->pci_dev,
dev->
PAOverflowBuffer,
&dev->channel[i].
RingBuffer,
MAX_HDTV_BUFFER_SIZE,
0);
if (status < 0)
break;
}
}
if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
status = create_ring_buffer(dev->pci_dev,
&dev->channel[i].
TSRingBuffer, RING_SIZE_TS);
if (status < 0)
break;
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&dev->channel[i].
TSRingBuffer,
MAX_TS_BUFFER_SIZE, 0);
if (status)
break;
}
if (type & NGENE_IO_TSOUT) {
status = create_ring_buffer(dev->pci_dev,
&dev->channel[i].
TSIdleBuffer, 1);
if (status < 0)
break;
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&dev->channel[i].
TSIdleBuffer,
MAX_TS_BUFFER_SIZE, 0);
if (status)
break;
FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
&dev->channel[i].TSRingBuffer);
}
}
return status;
}
static void ngene_release_buffers(struct ngene *dev)
{
if (dev->iomem)
iounmap(dev->iomem);
free_common_buffers(dev);
vfree(dev->tsout_buf);
vfree(dev->ain_buf);
vfree(dev->vin_buf);
vfree(dev);
}
static int ngene_get_buffers(struct ngene *dev)
{
if (AllocCommonBuffers(dev))
return -ENOMEM;
if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
if (!dev->tsout_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->tsout_rbuf,
dev->tsout_buf, TSOUT_BUF_SIZE);
}
if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
dev->ain_buf = vmalloc(AIN_BUF_SIZE);
if (!dev->ain_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
}
if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
dev->vin_buf = vmalloc(VIN_BUF_SIZE);
if (!dev->vin_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
}
dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
pci_resource_len(dev->pci_dev, 0));
if (!dev->iomem)
return -ENOMEM;
return 0;
}
static void ngene_init(struct ngene *dev)
{
int i;
tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
memset_io(dev->iomem + 0xc000, 0x00, 0x220);
memset_io(dev->iomem + 0xc400, 0x00, 0x100);
for (i = 0; i < MAX_STREAM; i++) {
dev->channel[i].dev = dev;
dev->channel[i].number = i;
}
dev->fw_interface_version = 0;
ngwritel(0, NGENE_INT_ENABLE);
dev->icounts = ngreadl(NGENE_INT_COUNTS);
dev->device_version = ngreadl(DEV_VER) & 0x0f;
printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
dev->device_version);
}
static int ngene_load_firm(struct ngene *dev)
{
u32 size;
const struct firmware *fw = NULL;
u8 *ngene_fw;
char *fw_name;
int err, version;
version = dev->card_info->fw_version;
switch (version) {
default:
case 15:
version = 15;
ngene_fw = FW15;
size = sizeof(FW15);
fw_name = "ngene_15.fw";
break;
case 16:
ngene_fw = FW16;
size = sizeof(FW16);
fw_name = "ngene_16.fw";
break;
case 17:
ngene_fw = FW17;
size = sizeof(FW17);
fw_name = "ngene_17.fw";
break;
}
#ifdef FW_INC
if (load_firmware &&
request_firmware(&fw, fw_name, &dev->pci_dev->dev) >= 0) {
printk(KERN_INFO DEVICE_NAME
": Loading firmware file %s.\n", fw_name);
size = fw->size;
ngene_fw = fw->data;
} else
printk(KERN_INFO DEVICE_NAME
": Loading built-in firmware version %d.\n", version);
err = ngene_command_load_firmware(dev, ngene_fw, size);
if (fw)
release_firmware(fw);
#else
if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
printk(KERN_ERR DEVICE_NAME
": Could not load firmware file %s. \n", fw_name);
printk(KERN_INFO DEVICE_NAME
": Copy %s to your hotplug directory!\n", fw_name);
return -1;
}
printk(KERN_INFO DEVICE_NAME ": Loading firmware file %s.\n", fw_name);
size = fw->size;
ngene_fw = fw->data;
err = ngene_command_load_firmware(dev, ngene_fw, size);
release_firmware(fw);
#endif
return err;
}
static void ngene_stop(struct ngene *dev)
{
down(&dev->cmd_mutex);
i2c_del_adapter(&(dev->channel[0].i2c_adapter));
i2c_del_adapter(&(dev->channel[1].i2c_adapter));
ngwritel(0, NGENE_INT_ENABLE);
ngwritel(0, NGENE_COMMAND);
ngwritel(0, NGENE_COMMAND_HI);
ngwritel(0, NGENE_STATUS);
ngwritel(0, NGENE_STATUS_HI);
ngwritel(0, NGENE_EVENT);
ngwritel(0, NGENE_EVENT_HI);
free_irq(dev->pci_dev->irq, dev);
}
static int ngene_start(struct ngene *dev)
{
int stat;
int i;
pci_set_master(dev->pci_dev);
ngene_init(dev);
stat = request_irq(dev->pci_dev->irq, irq_handler,
IRQF_SHARED, "nGene",
(void *)dev);
if (stat < 0)
return stat;
init_waitqueue_head(&dev->cmd_wq);
init_waitqueue_head(&dev->tx_wq);
init_waitqueue_head(&dev->rx_wq);
sema_init(&dev->cmd_mutex, 1);
sema_init(&dev->stream_mutex, 1);
sema_init(&dev->pll_mutex, 1);
sema_init(&dev->i2c_switch_mutex, 1);
spin_lock_init(&dev->cmd_lock);
for (i = 0; i < MAX_STREAM; i++)
spin_lock_init(&dev->channel[i].state_lock);
ngwritel(1, TIMESTAMPS);
ngwritel(1, NGENE_INT_ENABLE);
stat = ngene_load_firm(dev);
if (stat < 0)
goto fail;
stat = ngene_i2c_init(dev, 0);
if (stat < 0)
goto fail;
stat = ngene_i2c_init(dev, 1);
if (stat < 0)
goto fail;
if (dev->card_info->fw_version == 17) {
u8 hdtv_config[6] =
{6144 / 64, 0, 0, 2048 / 64, 2048 / 64, 2048 / 64};
u8 tsin4_config[6] =
{3072 / 64, 3072 / 64, 0, 3072 / 64, 3072 / 64, 0};
u8 ts5_config[6] =
{2048 / 64, 2048 / 64, 0, 2048 / 64, 2048 / 64,
2048 / 64};
u8 default_config[6] =
{4096 / 64, 4096 / 64, 0, 2048 / 64, 2048 / 64, 0};
u8 *bconf = default_config;
if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
bconf = tsin4_config;
if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
bconf = hdtv_config;
ngene_reset_decypher(dev);
}
printk(KERN_INFO DEVICE_NAME ": FW 17 buffer config\n");
stat = ngene_command_config_free_buf(dev, bconf);
} else {
int bconf = BUFFER_CONFIG_4422;
if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
bconf = BUFFER_CONFIG_8022;
ngene_reset_decypher(dev);
}
if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
bconf = BUFFER_CONFIG_3333;
stat = ngene_command_config_buf(dev, bconf);
}
if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
ngene_command_config_uart(dev, 0xc1, tx_cb, rx_cb);
test_dec_i2c(&dev->channel[0].i2c_adapter, 0);
test_dec_i2c(&dev->channel[0].i2c_adapter, 1);
}
return stat;
fail:
ngwritel(0, NGENE_INT_ENABLE);
free_irq(dev->pci_dev->irq, dev);
return stat;
}
/****************************************************************************/
/* DVB audio/video device functions *****************************************/
/****************************************************************************/
static ssize_t audio_write(struct file *file,
const char *buf, size_t count, loff_t *ppos)
{
return -EINVAL;
}
ssize_t audio_read(struct file *file, char *buf, size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
int left;
int avail;
left = count;
while (left) {
if (wait_event_interruptible(
dev->ain_rbuf.queue,
dvb_ringbuffer_avail(&dev->ain_rbuf) > 0) < 0)
return -EAGAIN;
avail = dvb_ringbuffer_avail(&dev->ain_rbuf);
if (avail > left)
avail = left;
dvb_ringbuffer_read_user(&dev->ain_rbuf, buf, avail);
left -= avail;
buf += avail;
}
return count;
}
static int audio_open(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
struct ngene_channel *chan2 = &chan->dev->channel[2];
int ret;
ret = dvb_generic_open(inode, file);
if (ret < 0)
return ret;
my_dvb_ringbuffer_flush(&dev->ain_rbuf);
chan2->Capture1Length = MAX_AUDIO_BUFFER_SIZE;
chan2->pBufferExchange = ain_exchange;
ngene_command_stream_control(chan2->dev, chan2->number, 0x80,
SMODE_AUDIO_CAPTURE, 0);
return ret;
}
static int audio_release(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
struct ngene_channel *chan2 = &chan->dev->channel[2];
ngene_command_stream_control(dev, 2, 0, 0, 0);
chan2->pBufferExchange = 0;
return dvb_generic_release(inode, file);
}
static const struct file_operations audio_fops = {
.owner = THIS_MODULE,
.read = audio_read,
.write = audio_write,
.open = audio_open,
.release = audio_release,
};
static struct dvb_device dvbdev_audio = {
.priv = 0,
.readers = -1,
.writers = 1,
.users = 1,
.fops = &audio_fops,
};
static int video_open(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
struct ngene_channel *chan0 = &chan->dev->channel[0];
int ret;
ret = dvb_generic_open(inode, file);
if (ret < 0)
return ret;
if ((file->f_flags & O_ACCMODE) != O_RDONLY)
return ret;
my_dvb_ringbuffer_flush(&dev->vin_rbuf);
chan0->nBytesPerLine = 1920 * 2;
chan0->nLines = 540;
chan0->Capture1Length = 1920 * 2 * 540;
chan0->pBufferExchange = vcap_exchange;
chan0->itumode = 2;
ngene_command_stream_control(chan0->dev, chan0->number,
0x80, SMODE_VIDEO_CAPTURE, 0);
return ret;
}
static int video_release(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
struct ngene_channel *chan0 = &chan->dev->channel[0];
ngene_command_stream_control(dev, 0, 0, 0, 0);
chan0->pBufferExchange = 0;
return dvb_generic_release(inode, file);
}
static ssize_t video_write(struct file *file,
const char *buf, size_t count, loff_t *ppos)
{
return -EINVAL;
}
ssize_t video_read(struct file *file, char *buf, size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
int left, avail;
left = count;
while (left) {
if (wait_event_interruptible(
dev->vin_rbuf.queue,
dvb_ringbuffer_avail(&dev->vin_rbuf) > 0) < 0)
return -EAGAIN;
avail = dvb_ringbuffer_avail(&dev->vin_rbuf);
if (avail > left)
avail = left;
dvb_ringbuffer_read_user(&dev->vin_rbuf, buf, avail);
left -= avail;
buf += avail;
}
return count;
}
/* Why is this not exported from dvb_core ?!?! */
static int dvb_usercopy2(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg,
int (*func)(struct inode *inode, struct file *file,
unsigned int cmd, void *arg))
{
char sbuf[128];
void *mbuf = NULL;
void *parg = NULL;
int err = -EINVAL;
/* Copy arguments into temp kernel buffer */
switch (_IOC_DIR(cmd)) {
case _IOC_NONE:
/*
* For this command, the pointer is actually an integer
* argument.
*/
parg = (void *)arg;
break;
case _IOC_READ: /* some v4l ioctls are marked wrong ... */
case _IOC_WRITE:
case (_IOC_WRITE | _IOC_READ):
if (_IOC_SIZE(cmd) <= sizeof(sbuf)) {
parg = sbuf;
} else {
/* too big to allocate from stack */
mbuf = kmalloc(_IOC_SIZE(cmd), GFP_KERNEL);
if (NULL == mbuf)
return -ENOMEM;
parg = mbuf;
}
err = -EFAULT;
if (copy_from_user(parg, (void __user *)arg, _IOC_SIZE(cmd)))
goto out;
break;
}
/* call driver */
err = func(inode, file, cmd, parg);
if (err == -ENOIOCTLCMD)
err = -EINVAL;
if (err < 0)
goto out;
/* Copy results into user buffer */
switch (_IOC_DIR(cmd)) {
case _IOC_READ:
case (_IOC_WRITE | _IOC_READ):
if (copy_to_user((void __user *)arg, parg, _IOC_SIZE(cmd)))
err = -EFAULT;
break;
}
out:
kfree(mbuf);
return err;
}
static int video_do_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct ngene_channel *chan = dvbdev->priv;
struct ngene *dev = chan->dev;
int ret = 0;
unsigned long arg = (unsigned long)parg;
switch (cmd) {
case VIDEO_SET_STREAMTYPE:
switch (arg) {
case VIDEO_CAP_MPEG2:
/* printk(KERN_INFO DEVICE_NAME ": setting MPEG2\n"); */
send_cli(dev, "vdec mpeg2\n");
break;
case VIDEO_CAP_AVC:
/* printk(KERN_INFO DEVICE_NAME ": setting H264\n"); */
send_cli(dev, "vdec h264\n");
break;
case VIDEO_CAP_VC1:
/* printk(KERN_INFO DEVICE_NAME ": setting VC1\n"); */
send_cli(dev, "vdec vc1\n");
break;
default:
ret = -EINVAL;
break;
}
break;
default:
ret = -ENOIOCTLCMD;
return -EINVAL;
}
return ret;
}
static int video_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return dvb_usercopy2(inode, file, cmd, arg, video_do_ioctl);
}
static const struct file_operations video_fops = {
.owner = THIS_MODULE,
.read = video_read,
.write = video_write,
.open = video_open,
.release = video_release,
.ioctl = video_ioctl,
};
static struct dvb_device dvbdev_video = {
.priv = 0,
.readers = -1,
.writers = 1,
.users = -1,
.fops = &video_fops,
};
/****************************************************************************/
/* LNBH21 *******************************************************************/
/****************************************************************************/
static int lnbh21_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage)
{
struct ngene_channel *chan =
*(struct ngene_channel **) fe->demodulator_priv;
switch (voltage) {
case SEC_VOLTAGE_OFF:
chan->lnbh &= 0xf3;
break;
case SEC_VOLTAGE_13:
chan->lnbh |= 0x04;
chan->lnbh &= ~0x08;
break;
case SEC_VOLTAGE_18:
chan->lnbh |= 0x0c;
break;
default:
return -EINVAL;
};
chan->lnbh |= 0x10;
return i2c_write(&chan->i2c_adapter,
chan->dev->card_info->lnb[chan->number], chan->lnbh);
}
static int lnbh21_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
{
struct ngene_channel *chan =
*(struct ngene_channel **)fe->demodulator_priv;
switch (tone) {
case SEC_TONE_ON:
chan->lnbh |= 0x20;
break;
case SEC_TONE_OFF:
chan->lnbh &= 0xdf;
break;
default:
return -EINVAL;
}
return i2c_write(&chan->i2c_adapter,
chan->dev->card_info->lnb[chan->number], chan->lnbh);
}
/****************************************************************************/
/* Switch control (I2C gates, etc.) *****************************************/
/****************************************************************************/
static int avf_output(struct ngene_channel *chan, int state)
{
if (chan->dev->card_info->avf[chan->number])
i2c_write_register(&chan->i2c_adapter,
chan->dev->card_info->avf[chan->number],
0xf2, state ? 0x89 : 0x80);
return 0;
}
/* Viper expander: sw11,sw12,sw21,sw22,i2csw1,i2csw2,tsen1,tsen2 */
static int exp_set(struct ngene *dev)
{
return i2c_write(&dev->channel[0].i2c_adapter,
dev->card_info->exp, dev->exp_val);
}
static int exp_init(struct ngene *dev)
{
if (!dev->card_info->exp)
return 0;
dev->exp_val = dev->card_info->exp_init;
return exp_set(dev);
}
static int exp_set_bit(struct ngene *dev, int bit, int val)
{
if (val)
set_bit(bit, &dev->exp_val);
else
clear_bit(bit, &dev->exp_val);
return exp_set(dev);
}
static int viper_switch_ctrl(struct ngene_channel *chan, int type, int val)
{
switch (type) {
case 0: /* I2C tuner gate on/off */
return exp_set_bit(chan->dev, 4 + chan->number, val);
case 1: /* Stream: 0=TS 1=ITU */
avf_output(chan, val);
return exp_set_bit(chan->dev, 6 + chan->number, val);
case 2: /* Input: 0=digital 1=analog antenna input */
exp_set_bit(chan->dev, 0 + chan->number * 2, val ? 0 : 1);
exp_set_bit(chan->dev, 1 + chan->number * 2, val ? 1 : 0);
break;
}
return 0;
}
static int viper_switch_ctrl2(struct ngene_channel *chan, int type, int val)
{
switch (type) {
case 0: /* I2C tuner gate on/off */
return exp_set_bit(chan->dev, 4 + chan->number, val);
case 1: /* Stream: 0=TS 1=ITU */
avf_output(chan, val);
return exp_set_bit(chan->dev, 6 + chan->number, val);
case 2: /* Input: 0=digital 1=analog antenna input */
exp_set_bit(chan->dev, 0 + chan->number * 2, val ? 0 : 1);
exp_set_bit(chan->dev, 1 + chan->number * 2, 0);
break;
}
return 0;
}
static int viper_gate_ctrl(struct dvb_frontend *fe, int enable)
{
/* Well, just abuse sec :-) */
struct ngene_channel *chan = fe->sec_priv;
struct ngene *dev = chan->dev;
return dev->card_info->switch_ctrl(chan, 0, enable);
}
static int python_switch_ctrl(struct ngene_channel *chan, int type, int val)
{
switch (type) {
case 0: /* I2C tuner gate on/off */
if (chan->number > 1)
return -EINVAL;
return ngene_command_gpio_set(chan->dev, 3 + chan->number, val);
case 1: /* Stream: 0=TS 1=ITU */
avf_output(chan, val);
return 0;
}
return 0;
}
static int viper_reset_xc(struct dvb_frontend *fe)
{
struct ngene_channel *chan = fe->sec_priv;
struct ngene *dev = chan->dev;
printk(KERN_INFO DEVICE_NAME ": Reset XC3028\n");
if (chan->number > 1)
return -EINVAL;
ngene_command_gpio_set(dev, 3 + chan->number, 0);
msleep(150);
ngene_command_gpio_set(dev, 3 + chan->number, 1);
return 0;
}
static int python_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct ngene_channel *chan = fe->sec_priv;
struct ngene *dev = chan->dev;
if (chan->number == 0)
return ngene_command_gpio_set(dev, 3, enable);
if (chan->number == 1)
return ngene_command_gpio_set(dev, 4, enable);
return -EINVAL;
}
/****************************************************************************/
/* Demod/tuner attachment ***************************************************/
/****************************************************************************/
static int tuner_attach_mt2060(struct ngene_channel *chan)
{
struct ngene *dev = chan->dev;
void *tconf = dev->card_info->tuner_config[chan->number];
u8 drxa = dev->card_info->demoda[chan->number];
struct dvb_frontend *fe = chan->fe, *fe2;
fe->sec_priv = chan;
fe->ops.i2c_gate_ctrl = dev->card_info->gate_ctrl;
dev->card_info->gate_ctrl(fe, 1);
fe2 = mt2060_attach(fe, &chan->i2c_adapter, tconf, 1220);
dev->card_info->gate_ctrl(fe, 0);
i2c_write_register(&chan->i2c_adapter, drxa, 3, 4);
write_demod(&chan->i2c_adapter, drxa, 0x1012, 15);
write_demod(&chan->i2c_adapter, drxa, 0x1007, 0xc27);
write_demod(&chan->i2c_adapter, drxa, 0x0020, 0x003);
return fe2 ? 0 : -ENODEV;
}
static int tuner_attach_xc3028(struct ngene_channel *chan)
{
struct ngene *dev = chan->dev;
void *tconf = dev->card_info->tuner_config[chan->number];
struct dvb_frontend *fe = chan->fe, *fe2;
fe->sec_priv = chan;
fe->ops.i2c_gate_ctrl = dev->card_info->gate_ctrl;
dev->card_info->gate_ctrl(fe, 1);
fe2 = xc3028_attach(fe, &chan->i2c_adapter, tconf);
dev->card_info->gate_ctrl(fe, 0);
/*chan->fe->ops.tuner_ops.set_frequency(chan->fe,231250000);*/
return fe2 ? 0 : -ENODEV;
}
static int demod_attach_drxd(struct ngene_channel *chan)
{
void *feconf = chan->dev->card_info->fe_config[chan->number];
chan->fe = drxd_attach(feconf,
chan, &chan->i2c_adapter,
&chan->dev->pci_dev->dev);
return (chan->fe) ? 0 : -ENODEV;
}
static int demod_attach_drxh(struct ngene_channel *chan)
{
void *feconf = chan->dev->card_info->fe_config[chan->number];
chan->fe = drxh_attach(feconf, chan,
&chan->i2c_adapter, &chan->dev->pci_dev->dev);
return (chan->fe) ? 0 : -ENODEV;
}
static int demod_attach_stb0899(struct ngene_channel *chan)
{
void *feconf = chan->dev->card_info->fe_config[chan->number];
chan->fe = stb0899_attach(feconf,
chan, &chan->i2c_adapter,
&chan->dev->pci_dev->dev);
if (chan->fe) {
chan->set_tone = chan->fe->ops.set_tone;
chan->fe->ops.set_tone = lnbh21_set_tone;
chan->fe->ops.set_voltage = lnbh21_set_voltage;
}
return (chan->fe) ? 0 : -ENODEV;
}
static int demod_attach_stv0900(struct ngene_channel *chan)
{
void *feconf = chan->dev->card_info->fe_config[chan->number];
chan->fe = stv0900_attach(feconf,
chan, &chan->i2c_adapter,
&chan->dev->pci_dev->dev);
if (chan->fe) {
chan->set_tone = chan->fe->ops.set_tone;
chan->fe->ops.set_tone = lnbh21_set_tone;
chan->fe->ops.set_voltage = lnbh21_set_voltage;
}
return (chan->fe) ? 0 : -ENODEV;
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static void release_channel(struct ngene_channel *chan)
{
struct dvb_demux *dvbdemux = &chan->demux;
struct ngene *dev = chan->dev;
struct ngene_info *ni = dev->card_info;
int io = ni->io_type[chan->number];
tasklet_kill(&chan->demux_tasklet);
if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
#ifdef NGENE_COMMAND_API
if (chan->command_dev)
dvb_unregister_device(chan->command_dev);
#endif
if (chan->audio_dev)
dvb_unregister_device(chan->audio_dev);
if (chan->video_dev)
dvb_unregister_device(chan->video_dev);
if (chan->fe) {
dvb_unregister_frontend(chan->fe);
/*dvb_frontend_detach(chan->fe); */
chan->fe = 0;
}
dvbdemux->dmx.close(&dvbdemux->dmx);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
&chan->hw_frontend);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
&chan->mem_frontend);
dvb_dmxdev_release(&chan->dmxdev);
dvb_dmx_release(&chan->demux);
#ifndef ONE_ADAPTER
dvb_unregister_adapter(&chan->dvb_adapter);
#endif
}
if (io & (NGENE_IO_AIN)) {
ngene_snd_exit(chan);
kfree(chan->soundbuffer);
}
}
static int init_channel(struct ngene_channel *chan)
{
int ret = 0, nr = chan->number;
struct dvb_adapter *adapter = 0;
struct dvb_demux *dvbdemux = &chan->demux;
struct ngene *dev = chan->dev;
struct ngene_info *ni = dev->card_info;
int io = ni->io_type[nr];
tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
chan->users = 0;
chan->type = io;
chan->mode = chan->type; /* for now only one mode */
if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
if (nr >= STREAM_AUDIOIN1)
chan->DataFormatFlags = DF_SWAP32;
if (io & NGENE_IO_TSOUT)
dec_fw_boot(dev);
#ifdef ONE_ADAPTER
adapter = &chan->dev->dvb_adapter;
#else
ret = dvb_register_adapter(&chan->dvb_adapter, "nGene",
THIS_MODULE,
&chan->dev->pci_dev->dev);
if (ret < 0)
return ret;
adapter = &chan->dvb_adapter;
#endif
ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
ngene_start_feed,
ngene_stop_feed, chan);
ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
&chan->hw_frontend,
&chan->mem_frontend, adapter);
if (io & NGENE_IO_TSOUT) {
dvbdemux->write_to_decoder = write_to_decoder;
dvb_register_device(adapter, &chan->audio_dev,
&dvbdev_audio, (void *)chan,
DVB_DEVICE_AUDIO);
dvb_register_device(adapter, &chan->video_dev,
&dvbdev_video, (void *)chan,
DVB_DEVICE_VIDEO);
}
#ifdef NGENE_COMMAND_API
dvb_register_device(adapter, &chan->command_dev,
&dvbdev_command, (void *)chan,
DVB_DEVICE_SEC);
#endif
}
if (io & NGENE_IO_TSIN) {
chan->fe = NULL;
if (ni->demod_attach[nr])
ni->demod_attach[nr](chan);
if (chan->fe) {
if (dvb_register_frontend(adapter, chan->fe) < 0) {
if (chan->fe->ops.release)
chan->fe->ops.release(chan->fe);
chan->fe = NULL;
}
}
if (chan->fe && ni->tuner_attach[nr])
if (ni->tuner_attach[nr] (chan) < 0) {
printk(KERN_ERR DEVICE_NAME
": Tuner attach failed on channel %d!\n",
nr);
}
}
if (io & (NGENE_IO_AIN)) {
ngene_snd_init(chan);
#ifdef NGENE_V4L
spin_lock_init(&chan->s_lock);
init_MUTEX(&chan->reslock);
INIT_LIST_HEAD(&chan->capture);
#endif
chan->soundbuffer = kmalloc(MAX_AUDIO_BUFFER_SIZE, GFP_KERNEL);
if (!chan->soundbuffer)
return -ENOMEM;
memset(chan->soundbuffer, 0, MAX_AUDIO_BUFFER_SIZE);
}
return ret;
}
static int init_channels(struct ngene *dev)
{
int i, j;
for (i = 0; i < MAX_STREAM; i++) {
if (init_channel(&dev->channel[i]) < 0) {
for (j = 0; j < i; j++)
release_channel(&dev->channel[j]);
return -1;
}
}
return 0;
}
/****************************************************************************/
/* device probe/remove calls ************************************************/
/****************************************************************************/
static void __devexit ngene_remove(struct pci_dev *pdev)
{
struct ngene *dev = (struct ngene *)pci_get_drvdata(pdev);
int i;
tasklet_kill(&dev->event_tasklet);
for (i = 0; i < MAX_STREAM; i++)
release_channel(&dev->channel[i]);
#ifdef ONE_ADAPTER
dvb_unregister_adapter(&dev->dvb_adapter);
#endif
ngene_stop(dev);
ngene_release_buffers(dev);
pci_set_drvdata(pdev, 0);
pci_disable_device(pdev);
}
static int __devinit ngene_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
struct ngene *dev;
int stat = 0;
if (pci_enable_device(pci_dev) < 0)
return -ENODEV;
dev = vmalloc(sizeof(struct ngene));
if (dev == NULL)
return -ENOMEM;
memset(dev, 0, sizeof(struct ngene));
dev->pci_dev = pci_dev;
dev->card_info = (struct ngene_info *)id->driver_data;
printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
pci_set_drvdata(pci_dev, dev);
/* Alloc buffers and start nGene */
stat = ngene_get_buffers(dev);
if (stat < 0)
goto fail1;
stat = ngene_start(dev);
if (stat < 0)
goto fail1;
dev->i2c_current_bus = -1;
exp_init(dev);
/* Disable analog TV decoder chips if present */
if (copy_eeprom) {
i2c_copy_eeprom(&dev->channel[0].i2c_adapter, 0x50, 0x52);
i2c_dump_eeprom(&dev->channel[0].i2c_adapter, 0x52);
}
/*i2c_check_eeprom(&dev->i2c_adapter);*/
/* Register DVB adapters and devices for both channels */
#ifdef ONE_ADAPTER
if (dvb_register_adapter(&dev->dvb_adapter, "nGene", THIS_MODULE,
&dev->pci_dev->dev, adapter_nr) < 0)
goto fail2;
#endif
if (init_channels(dev) < 0)
goto fail2;
return 0;
fail2:
ngene_stop(dev);
fail1:
ngene_release_buffers(dev);
pci_set_drvdata(pci_dev, 0);
return stat;
}
/****************************************************************************/
/* Card configs *************************************************************/
/****************************************************************************/
static struct drxd_config fe_terratec_dvbt_0 = {
.index = 0,
.demod_address = 0x70,
.demod_revision = 0xa2,
.demoda_address = 0x00,
.pll_address = 0x60,
.pll_type = DRXD_PLL_DTT7520X,
.clock = 20000,
.pll_set = ngene_pll_set_th_dtt7520x,
.osc_deviation = osc_deviation,
};
static struct drxd_config fe_terratec_dvbt_1 = {
.index = 1,
.demod_address = 0x71,
.demod_revision = 0xa2,
.demoda_address = 0x00,
.pll_address = 0x60,
.pll_type = DRXD_PLL_DTT7520X,
.clock = 20000,
.pll_set = ngene_pll_set_th_dtt7520x,
.osc_deviation = osc_deviation,
};
static struct ngene_info ngene_info_terratec = {
.type = NGENE_TERRATEC,
.name = "Terratec Integra/Cinergy2400i Dual DVB-T",
.io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN},
.demod_attach = {demod_attach_drxd, demod_attach_drxd},
.fe_config = {&fe_terratec_dvbt_0, &fe_terratec_dvbt_1},
.i2c_access = 1,
};
/****************************************************************************/
static struct mt2060_config tuner_python_0 = {
.i2c_address = 0x60,
.clock_out = 3,
.input = 0
};
static struct mt2060_config tuner_python_1 = {
.i2c_address = 0x61,
.clock_out = 3,
.input = 1
};
static struct drxd_config fe_python_0 = {
.index = 0,
.demod_address = 0x71,
.demod_revision = 0xb1,
.demoda_address = 0x41,
.clock = 16000,
.osc_deviation = osc_deviation,
};
static struct drxd_config fe_python_1 = {
.index = 1,
.demod_address = 0x70,
.demod_revision = 0xb1,
.demoda_address = 0x45,
.clock = 16000,
.osc_deviation = osc_deviation,
};
static struct ngene_info ngene_info_python = {
.type = NGENE_PYTHON,
.name = "Micronas MicPython/Hedgehog Dual DVB-T",
.io_type = {NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_AIN, NGENE_IO_AIN},
.demod_attach = {demod_attach_drxd, demod_attach_drxd},
.tuner_attach = {tuner_attach_mt2060, tuner_attach_mt2060},
.fe_config = {&fe_python_0, &fe_python_1},
.tuner_config = {&tuner_python_0, &tuner_python_1},
.avf = {0x43, 0x47},
.msp = {0x40, 0x42},
.demoda = {0x41, 0x45},
.gate_ctrl = python_gate_ctrl,
.switch_ctrl = python_switch_ctrl,
};
/****************************************************************************/
static struct drxd_config fe_appb_dvbt_0 = {
.index = 0,
.demod_address = 0x71,
.demod_revision = 0xa2,
.demoda_address = 0x41,
.pll_address = 0x63,
.pll_type = DRXD_PLL_MT3X0823,
.clock = 20000,
.pll_set = ngene_pll_set_mt_3x0823,
.osc_deviation = osc_deviation,
};
static struct drxd_config fe_appb_dvbt_1 = {
.index = 1,
.demod_address = 0x70,
.demod_revision = 0xa2,
.demoda_address = 0x45,
.pll_address = 0x60,
.pll_type = DRXD_PLL_MT3X0823,
.clock = 20000,
.pll_set = ngene_pll_set_mt_3x0823,
.osc_deviation = osc_deviation,
};
static struct ngene_info ngene_info_appboard = {
.type = NGENE_APP,
.name = "Micronas Application Board Dual DVB-T",
.io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN},
.demod_attach = {demod_attach_drxd, demod_attach_drxd},
.fe_config = {&fe_appb_dvbt_0, &fe_appb_dvbt_1},
.avf = {0x43, 0x47},
};
static struct ngene_info ngene_info_appboard_ntsc = {
.type = NGENE_APP,
.name = "Micronas Application Board Dual DVB-T",
.io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN},
.demod_attach = {demod_attach_drxd, demod_attach_drxd},
.fe_config = {&fe_appb_dvbt_0, &fe_appb_dvbt_1},
.avf = {0x43, 0x47},
.ntsc = 1,
};
/****************************************************************************/
static struct stb0899_config fe_sidewinder_0 = {
.demod_address = 0x68,
.pll_address = 0x63,
};
static struct stb0899_config fe_sidewinder_1 = {
.demod_address = 0x6b,
.pll_address = 0x60,
};
static struct ngene_info ngene_info_sidewinder = {
.type = NGENE_SIDEWINDER,
.name = "Micronas MicSquirrel/Sidewinder Dual DVB-S2",
.io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN},
.demod_attach = {demod_attach_stb0899, demod_attach_stb0899},
.fe_config = {&fe_sidewinder_0, &fe_sidewinder_1},
.lnb = {0x0b, 0x08},
};
/****************************************************************************/
/* Yet unnamed S2 card with dual DVB-S2 demod */
/****************************************************************************/
static struct stv0900_config fe_s2_0 = {
.addr = 0x68,
.pll = 0x63,
.pll_type = 0,
.nr = 0,
};
static struct stv0900_config fe_s2_1 = {
.addr = 0x68,
.pll = 0x60,
.pll_type = 0,
.nr = 1,
};
static struct ngene_info ngene_info_s2 = {
.type = NGENE_SIDEWINDER,
.name = "S2",
.io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN,
NGENE_IO_TSIN, NGENE_IO_TSIN},
.demod_attach = {demod_attach_stv0900, demod_attach_stv0900},
.fe_config = {&fe_s2_0, &fe_s2_1},
.lnb = {0x0b, 0x08},
.tsf = {3, 3},
.fw_version = 15,
};
static struct stv0900_config fe_s2b_0 = {
.addr = 0x68,
.pll = 0x60,
.pll_type = 0x10,
.nr = 0,
};
static struct stv0900_config fe_s2b_1 = {
.addr = 0x68,
.pll = 0x63,
.pll_type = 0x10,
.nr = 1,
};
static struct ngene_info ngene_info_s2_b = {
.type = NGENE_SIDEWINDER,
.name = "S2 V2",
.io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN,
NGENE_IO_TSIN, NGENE_IO_TSIN},
.demod_attach = {demod_attach_stv0900, demod_attach_stv0900},
.fe_config = {&fe_s2b_0, &fe_s2b_1},
.lnb = {0x0b, 0x08},
.tsf = {3, 3},
.fw_version = 17,
};
/****************************************************************************/
static struct xc3028_config tuner_viper_0 = {
.adr = 0x61,
.reset = viper_reset_xc
};
static struct xc3028_config tuner_viper_1 = {
.adr = 0x64,
.reset = viper_reset_xc
};
static struct drxh_config fe_viper_h_0 = {.adr = 0x2b};
static struct drxh_config fe_viper_h_1 = {.adr = 0x29};
static struct drxh_config fe_viper_l_0 = {.adr = 0x2b, .type = 3931};
static struct drxh_config fe_viper_l_1 = {.adr = 0x29, .type = 3931};
static struct ngene_info ngene_info_viper_v1 = {
.type = NGENE_VIPER,
.name = "Micronas MicViper Dual ATSC DRXH",
.io_type = {NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_AIN, NGENE_IO_AIN},
.demod_attach = {demod_attach_drxh, demod_attach_drxh},
.fe_config = {&fe_viper_h_0, &fe_viper_h_1},
.tuner_config = {&tuner_viper_0, &tuner_viper_1},
.tuner_attach = {tuner_attach_xc3028, tuner_attach_xc3028},
.avf = {0x43, 0x47},
.msp = {0x40, 0x42},
.exp = 0x20,
.exp_init = 0xf5,
.gate_ctrl = viper_gate_ctrl,
.switch_ctrl = viper_switch_ctrl,
.tsf = {2, 2},
};
static struct ngene_info ngene_info_viper_v2 = {
.type = NGENE_VIPER,
.name = "Micronas MicViper Dual ATSC DRXL",
.io_type = {NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_AIN, NGENE_IO_AIN},
.demod_attach = {demod_attach_drxh, demod_attach_drxh},
.fe_config = {&fe_viper_l_0, &fe_viper_l_1},
.tuner_config = {&tuner_viper_0, &tuner_viper_1},
.tuner_attach = {tuner_attach_xc3028, tuner_attach_xc3028},
.avf = {0x43, 0x47},
.msp = {0x40, 0x42},
.exp = 0x38,
.exp_init = 0xf5,
.gate_ctrl = viper_gate_ctrl,
.switch_ctrl = viper_switch_ctrl,
.tsf = {2, 2},
};
/****************************************************************************/
static struct ngene_info ngene_info_vbox_v1 = {
.type = NGENE_VBOX_V1,
.name = "VBox Cat's Eye 164E",
.io_type = {NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_AIN, NGENE_IO_AIN},
.demod_attach = {demod_attach_drxh, demod_attach_drxh},
.fe_config = {&fe_viper_h_0, &fe_viper_h_1},
.tuner_config = {&tuner_viper_0, &tuner_viper_1},
.tuner_attach = {tuner_attach_xc3028, tuner_attach_xc3028},
.avf = {0x43, 0x47},
.msp = {0x40, 0x42},
.exp = 0x20,
.exp_init = 0xf5,
.gate_ctrl = viper_gate_ctrl,
.switch_ctrl = viper_switch_ctrl,
.tsf = {2, 2},
};
/****************************************************************************/
static struct ngene_info ngene_info_vbox_v2 = {
.type = NGENE_VBOX_V2,
.name = "VBox Cat's Eye 164E",
.io_type = {NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_TSIN | NGENE_IO_TV,
NGENE_IO_AIN, NGENE_IO_AIN},
.demod_attach = {demod_attach_drxh, demod_attach_drxh},
.fe_config = {&fe_viper_h_0, &fe_viper_h_1},
.tuner_config = {&tuner_viper_0, &tuner_viper_1},
.tuner_attach = {tuner_attach_xc3028, tuner_attach_xc3028},
.avf = {0x43, 0x47},
.msp = {0x40, 0x42},
.exp = 0x20,
.exp_init = 0xf5,
.gate_ctrl = viper_gate_ctrl,
.switch_ctrl = viper_switch_ctrl2,
.tsf = {2, 2},
};
/****************************************************************************/
static struct ngene_info ngene_info_racer = {
.type = NGENE_RACER,
.name = "Micronas MicRacer HDTV Decoder Card",
.io_type = {NGENE_IO_HDTV, NGENE_IO_NONE,
NGENE_IO_AIN, NGENE_IO_NONE,
NGENE_IO_TSOUT},
.i2s = {0, 0, 1, 0},
.fw_version = 17,
};
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
#define NGENE_ID(_subvend, _subdev, _driverdata) { \
.vendor = NGENE_VID, .device = NGENE_PID, \
.subvendor = _subvend, .subdevice = _subdev, \
.driver_data = (unsigned long) &_driverdata }
/****************************************************************************/
static const struct pci_device_id ngene_id_tbl[] __devinitdata = {
NGENE_ID(0x18c3, 0x0000, ngene_info_appboard),
NGENE_ID(0x18c3, 0x0004, ngene_info_appboard),
NGENE_ID(0x18c3, 0x8011, ngene_info_appboard),
NGENE_ID(0x18c3, 0x8015, ngene_info_appboard_ntsc),
NGENE_ID(0x153b, 0x1167, ngene_info_terratec),
NGENE_ID(0x18c3, 0x0030, ngene_info_python),
NGENE_ID(0x18c3, 0x0052, ngene_info_sidewinder),
NGENE_ID(0x18c3, 0x8f00, ngene_info_racer),
NGENE_ID(0x18c3, 0x0041, ngene_info_viper_v1),
NGENE_ID(0x18c3, 0x0042, ngene_info_viper_v2),
NGENE_ID(0x14f3, 0x0041, ngene_info_vbox_v1),
NGENE_ID(0x14f3, 0x0043, ngene_info_vbox_v2),
NGENE_ID(0x18c3, 0xabcd, ngene_info_s2),
NGENE_ID(0x18c3, 0xabc2, ngene_info_s2_b),
NGENE_ID(0x18c3, 0xabc3, ngene_info_s2_b),
{0}
};
/****************************************************************************/
/* Init/Exit ****************************************************************/
/****************************************************************************/
static pci_ers_result_t ngene_error_detected(struct pci_dev *dev,
enum pci_channel_state state)
{
printk(KERN_ERR DEVICE_NAME ": PCI error\n");
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (state == pci_channel_io_frozen)
return PCI_ERS_RESULT_NEED_RESET;
return PCI_ERS_RESULT_CAN_RECOVER;
}
static pci_ers_result_t ngene_link_reset(struct pci_dev *dev)
{
printk(KERN_INFO DEVICE_NAME ": link reset\n");
return 0;
}
static pci_ers_result_t ngene_slot_reset(struct pci_dev *dev)
{
printk(KERN_INFO DEVICE_NAME ": slot reset\n");
return 0;
}
static void ngene_resume(struct pci_dev *dev)
{
printk(KERN_INFO DEVICE_NAME ": resume\n");
}
static struct pci_error_handlers ngene_errors = {
.error_detected = ngene_error_detected,
.link_reset = ngene_link_reset,
.slot_reset = ngene_slot_reset,
.resume = ngene_resume,
};
static struct pci_driver ngene_pci_driver = {
.name = "ngene",
.id_table = ngene_id_tbl,
.probe = ngene_probe,
.remove = ngene_remove,
.err_handler = &ngene_errors,
};
static __init int module_init_ngene(void)
{
printk(KERN_INFO
"nGene PCIE bridge driver, Copyright (C) 2005-2007 Micronas\n");
return pci_register_driver(&ngene_pci_driver);
}
static __exit void module_exit_ngene(void)
{
pci_unregister_driver(&ngene_pci_driver);
}
module_init(module_init_ngene);
module_exit(module_exit_ngene);
MODULE_DESCRIPTION("nGene");
MODULE_AUTHOR("Micronas, Ralph Metzler, Manfred Voelkel");
MODULE_LICENSE("GPL");