linux/drivers/staging/sxg/sxg.c

3625 lines
109 KiB
C
Raw Normal View History

/**************************************************************************
*
* Copyright (C) 2000-2008 Alacritech, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of Alacritech, Inc.
*
**************************************************************************/
/*
* FILENAME: sxg.c
*
* The SXG driver for Alacritech's 10Gbe products.
*
* NOTE: This is the standard, non-accelerated version of Alacritech's
* IS-NIC driver.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#define SLIC_DUMP_ENABLED 0
#define SLIC_GET_STATS_ENABLED 0
#define LINUX_FREES_ADAPTER_RESOURCES 1
#define SXG_OFFLOAD_IP_CHECKSUM 0
#define SXG_POWER_MANAGEMENT_ENABLED 0
#define VPCI 0
#define DBG 1
#define ATK_DEBUG 1
#include "sxg_os.h"
#include "sxghw.h"
#include "sxghif.h"
#include "sxg.h"
#include "sxgdbg.h"
#include "sxgphycode.h"
#include "saharadbgdownload.h"
static int sxg_allocate_buffer_memory(p_adapter_t adapter, u32 Size,
SXG_BUFFER_TYPE BufferType);
static void sxg_allocate_rcvblock_complete(p_adapter_t adapter, void *RcvBlock,
dma_addr_t PhysicalAddress,
u32 Length);
static void sxg_allocate_sgl_buffer_complete(p_adapter_t adapter,
PSXG_SCATTER_GATHER SxgSgl,
dma_addr_t PhysicalAddress,
u32 Length);
static void sxg_mcast_init_crc32(void);
static int sxg_entry_open(p_net_device dev);
static int sxg_entry_halt(p_net_device dev);
static int sxg_ioctl(p_net_device dev, struct ifreq *rq, int cmd);
static int sxg_send_packets(struct sk_buff *skb, p_net_device dev);
static int sxg_transmit_packet(p_adapter_t adapter, struct sk_buff *skb);
static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl, PSXG_SCATTER_GATHER SxgSgl);
static void sxg_handle_interrupt(p_adapter_t adapter);
static int sxg_process_isr(p_adapter_t adapter, u32 MessageId);
static u32 sxg_process_event_queue(p_adapter_t adapter, u32 RssId);
static void sxg_complete_slow_send(p_adapter_t adapter);
static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event);
static void sxg_process_rcv_error(p_adapter_t adapter, u32 ErrorStatus);
static bool sxg_mac_filter(p_adapter_t adapter,
p_ether_header EtherHdr, ushort length);
#if SLIC_GET_STATS_ENABLED
static struct net_device_stats *sxg_get_stats(p_net_device dev);
#endif
static int sxg_mac_set_address(p_net_device dev, void *ptr);
static void sxg_adapter_set_hwaddr(p_adapter_t adapter);
static void sxg_unmap_mmio_space(p_adapter_t adapter);
static void sxg_mcast_set_mask(p_adapter_t adapter);
static int sxg_initialize_adapter(p_adapter_t adapter);
static void sxg_stock_rcv_buffers(p_adapter_t adapter);
static void sxg_complete_descriptor_blocks(p_adapter_t adapter,
unsigned char Index);
static int sxg_initialize_link(p_adapter_t adapter);
static int sxg_phy_init(p_adapter_t adapter);
static void sxg_link_event(p_adapter_t adapter);
static SXG_LINK_STATE sxg_get_link_state(p_adapter_t adapter);
static void sxg_link_state(p_adapter_t adapter, SXG_LINK_STATE LinkState);
static int sxg_write_mdio_reg(p_adapter_t adapter,
u32 DevAddr, u32 RegAddr, u32 Value);
static int sxg_read_mdio_reg(p_adapter_t adapter,
u32 DevAddr, u32 RegAddr, u32 *pValue);
static void sxg_mcast_set_list(p_net_device dev);
#define XXXTODO 0
static unsigned int sxg_first_init = 1;
static char *sxg_banner =
"Alacritech SLIC Technology(tm) Server and Storage 10Gbe Accelerator (Non-Accelerated)\n";
static int sxg_debug = 1;
static int debug = -1;
static p_net_device head_netdevice = NULL;
static sxgbase_driver_t sxg_global = {
.dynamic_intagg = 1,
};
static int intagg_delay = 100;
static u32 dynamic_intagg = 0;
#define DRV_NAME "sxg"
#define DRV_VERSION "1.0.1"
#define DRV_AUTHOR "Alacritech, Inc. Engineering"
#define DRV_DESCRIPTION "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
#define DRV_COPYRIGHT "Copyright 2000-2008 Alacritech, Inc. All rights reserved."
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_LICENSE("GPL");
module_param(dynamic_intagg, int, 0);
MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
module_param(intagg_delay, int, 0);
MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
{PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
{0,}
};
MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
/***********************************************************************
************************************************************************
************************************************************************
************************************************************************
************************************************************************/
static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
{
writel(value, reg);
if (flush)
mb();
}
static inline void sxg_reg64_write(p_adapter_t adapter, void __iomem *reg,
u64 value, u32 cpu)
{
u32 value_high = (u32) (value >> 32);
u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
unsigned long flags;
spin_lock_irqsave(&adapter->Bit64RegLock, flags);
writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
writel(value_low, reg);
spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
}
static void sxg_init_driver(void)
{
if (sxg_first_init) {
DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
__FUNCTION__, jiffies);
sxg_first_init = 0;
spin_lock_init(&sxg_global.driver_lock);
}
}
static void sxg_dbg_macaddrs(p_adapter_t adapter)
{
DBG_ERROR(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
adapter->netdev->name, adapter->currmacaddr[0],
adapter->currmacaddr[1], adapter->currmacaddr[2],
adapter->currmacaddr[3], adapter->currmacaddr[4],
adapter->currmacaddr[5]);
DBG_ERROR(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
adapter->netdev->name, adapter->macaddr[0],
adapter->macaddr[1], adapter->macaddr[2],
adapter->macaddr[3], adapter->macaddr[4],
adapter->macaddr[5]);
return;
}
// SXG Globals
static SXG_DRIVER SxgDriver;
#ifdef ATKDBG
static sxg_trace_buffer_t LSxgTraceBuffer;
#endif /* ATKDBG */
static sxg_trace_buffer_t *SxgTraceBuffer = NULL;
/*
* sxg_download_microcode
*
* Download Microcode to Sahara adapter
*
* Arguments -
* adapter - A pointer to our adapter structure
* UcodeSel - microcode file selection
*
* Return
* int
*/
static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
u32 Section;
u32 ThisSectionSize;
u32 *Instruction = NULL;
u32 BaseAddress, AddressOffset, Address;
// u32 Failure;
u32 ValueRead;
u32 i;
u32 numSections = 0;
u32 sectionSize[16];
u32 sectionStart[16];
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
adapter, 0, 0, 0);
DBG_ERROR("sxg: %s ENTER\n", __FUNCTION__);
switch (UcodeSel) {
case SXG_UCODE_SAHARA: // Sahara operational ucode
numSections = SNumSections;
for (i = 0; i < numSections; i++) {
sectionSize[i] = SSectionSize[i];
sectionStart[i] = SSectionStart[i];
}
break;
default:
printk(KERN_ERR KBUILD_MODNAME
": Woah, big error with the microcode!\n");
break;
}
DBG_ERROR("sxg: RESET THE CARD\n");
// First, reset the card
WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
// Download each section of the microcode as specified in
// its download file. The *download.c file is generated using
// the saharaobjtoc facility which converts the metastep .obj
// file to a .c file which contains a two dimentional array.
for (Section = 0; Section < numSections; Section++) {
DBG_ERROR("sxg: SECTION # %d\n", Section);
switch (UcodeSel) {
case SXG_UCODE_SAHARA:
Instruction = (u32 *) & SaharaUCode[Section][0];
break;
default:
ASSERT(0);
break;
}
BaseAddress = sectionStart[Section];
ThisSectionSize = sectionSize[Section] / 12; // Size in instructions
for (AddressOffset = 0; AddressOffset < ThisSectionSize;
AddressOffset++) {
Address = BaseAddress + AddressOffset;
ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
// Write instruction bits 31 - 0
WRITE_REG(HwRegs->UcodeDataLow, *Instruction, FLUSH);
// Write instruction bits 63-32
WRITE_REG(HwRegs->UcodeDataMiddle, *(Instruction + 1),
FLUSH);
// Write instruction bits 95-64
WRITE_REG(HwRegs->UcodeDataHigh, *(Instruction + 2),
FLUSH);
// Write instruction address with the WRITE bit set
WRITE_REG(HwRegs->UcodeAddr,
(Address | MICROCODE_ADDRESS_WRITE), FLUSH);
// Sahara bug in the ucode download logic - the write to DataLow
// for the next instruction could get corrupted. To avoid this,
// write to DataLow again for this instruction (which may get
// corrupted, but it doesn't matter), then increment the address
// and write the data for the next instruction to DataLow. That
// write should succeed.
WRITE_REG(HwRegs->UcodeDataLow, *Instruction, TRUE);
// Advance 3 u32S to start of next instruction
Instruction += 3;
}
}
// Now repeat the entire operation reading the instruction back and
// checking for parity errors
for (Section = 0; Section < numSections; Section++) {
DBG_ERROR("sxg: check SECTION # %d\n", Section);
switch (UcodeSel) {
case SXG_UCODE_SAHARA:
Instruction = (u32 *) & SaharaUCode[Section][0];
break;
default:
ASSERT(0);
break;
}
BaseAddress = sectionStart[Section];
ThisSectionSize = sectionSize[Section] / 12; // Size in instructions
for (AddressOffset = 0; AddressOffset < ThisSectionSize;
AddressOffset++) {
Address = BaseAddress + AddressOffset;
// Write the address with the READ bit set
WRITE_REG(HwRegs->UcodeAddr,
(Address | MICROCODE_ADDRESS_READ), FLUSH);
// Read it back and check parity bit.
READ_REG(HwRegs->UcodeAddr, ValueRead);
if (ValueRead & MICROCODE_ADDRESS_PARITY) {
DBG_ERROR("sxg: %s PARITY ERROR\n",
__FUNCTION__);
return (FALSE); // Parity error
}
ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
// Read the instruction back and compare
READ_REG(HwRegs->UcodeDataLow, ValueRead);
if (ValueRead != *Instruction) {
DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
__FUNCTION__);
return (FALSE); // Miscompare
}
READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
if (ValueRead != *(Instruction + 1)) {
DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
__FUNCTION__);
return (FALSE); // Miscompare
}
READ_REG(HwRegs->UcodeDataHigh, ValueRead);
if (ValueRead != *(Instruction + 2)) {
DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
__FUNCTION__);
return (FALSE); // Miscompare
}
// Advance 3 u32S to start of next instruction
Instruction += 3;
}
}
// Everything OK, Go.
WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
// Poll the CardUp register to wait for microcode to initialize
// Give up after 10,000 attemps (500ms).
for (i = 0; i < 10000; i++) {
udelay(50);
READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
if (ValueRead == 0xCAFE) {
DBG_ERROR("sxg: %s BOO YA 0xCAFE\n", __FUNCTION__);
break;
}
}
if (i == 10000) {
DBG_ERROR("sxg: %s TIMEOUT\n", __FUNCTION__);
return (FALSE); // Timeout
}
// Now write the LoadSync register. This is used to
// synchronize with the card so it can scribble on the memory
// that contained 0xCAFE from the "CardUp" step above
if (UcodeSel == SXG_UCODE_SAHARA) {
WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
adapter, 0, 0, 0);
DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__);
return (TRUE);
}
/*
* sxg_allocate_resources - Allocate memory and locks
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* int
*/
static int sxg_allocate_resources(p_adapter_t adapter)
{
int status;
u32 i;
u32 RssIds, IsrCount;
// PSXG_XMT_RING XmtRing;
// PSXG_RCV_RING RcvRing;
DBG_ERROR("%s ENTER\n", __FUNCTION__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
adapter, 0, 0, 0);
// Windows tells us how many CPUs it plans to use for
// RSS
RssIds = SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->MsiEnabled ? RssIds : 1;
DBG_ERROR("%s Setup the spinlocks\n", __FUNCTION__);
// Allocate spinlocks and initialize listheads first.
spin_lock_init(&adapter->RcvQLock);
spin_lock_init(&adapter->SglQLock);
spin_lock_init(&adapter->XmtZeroLock);
spin_lock_init(&adapter->Bit64RegLock);
spin_lock_init(&adapter->AdapterLock);
DBG_ERROR("%s Setup the lists\n", __FUNCTION__);
InitializeListHead(&adapter->FreeRcvBuffers);
InitializeListHead(&adapter->FreeRcvBlocks);
InitializeListHead(&adapter->AllRcvBlocks);
InitializeListHead(&adapter->FreeSglBuffers);
InitializeListHead(&adapter->AllSglBuffers);
// Mark these basic allocations done. This flags essentially
// tells the SxgFreeResources routine that it can grab spinlocks
// and reference listheads.
adapter->BasicAllocations = TRUE;
// Main allocation loop. Start with the maximum supported by
// the microcode and back off if memory allocation
// fails. If we hit a minimum, fail.
for (;;) {
DBG_ERROR("%s Allocate XmtRings size[%lx]\n", __FUNCTION__,
(sizeof(SXG_XMT_RING) * 1));
// Start with big items first - receive and transmit rings. At the moment
// I'm going to keep the ring size fixed and adjust the number of
// TCBs if we fail. Later we might consider reducing the ring size as well..
adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
sizeof(SXG_XMT_RING) *
1,
&adapter->PXmtRings);
DBG_ERROR("%s XmtRings[%p]\n", __FUNCTION__, adapter->XmtRings);
if (!adapter->XmtRings) {
goto per_tcb_allocation_failed;
}
memset(adapter->XmtRings, 0, sizeof(SXG_XMT_RING) * 1);
DBG_ERROR("%s Allocate RcvRings size[%lx]\n", __FUNCTION__,
(sizeof(SXG_RCV_RING) * 1));
adapter->RcvRings =
pci_alloc_consistent(adapter->pcidev,
sizeof(SXG_RCV_RING) * 1,
&adapter->PRcvRings);
DBG_ERROR("%s RcvRings[%p]\n", __FUNCTION__, adapter->RcvRings);
if (!adapter->RcvRings) {
goto per_tcb_allocation_failed;
}
memset(adapter->RcvRings, 0, sizeof(SXG_RCV_RING) * 1);
break;
per_tcb_allocation_failed:
// an allocation failed. Free any successful allocations.
if (adapter->XmtRings) {
pci_free_consistent(adapter->pcidev,
sizeof(SXG_XMT_RING) * 4096,
adapter->XmtRings,
adapter->PXmtRings);
adapter->XmtRings = NULL;
}
if (adapter->RcvRings) {
pci_free_consistent(adapter->pcidev,
sizeof(SXG_RCV_RING) * 4096,
adapter->RcvRings,
adapter->PRcvRings);
adapter->RcvRings = NULL;
}
// Loop around and try again....
}
DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __FUNCTION__);
// Initialize rcv zero and xmt zero rings
SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
// Sanity check receive data structure format
ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
(adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
ASSERT(sizeof(SXG_RCV_DESCRIPTOR_BLOCK) ==
SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
// Allocate receive data buffers. We allocate a block of buffers and
// a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
for (i = 0; i < SXG_INITIAL_RCV_DATA_BUFFERS;
i += SXG_RCV_DESCRIPTORS_PER_BLOCK) {
sxg_allocate_buffer_memory(adapter,
SXG_RCV_BLOCK_SIZE(adapter->
ReceiveBufferSize),
SXG_BUFFER_TYPE_RCV);
}
// NBL resource allocation can fail in the 'AllocateComplete' routine, which
// doesn't return status. Make sure we got the number of buffers we requested
if (adapter->FreeRcvBufferCount < SXG_INITIAL_RCV_DATA_BUFFERS) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
0);
return (STATUS_RESOURCES);
}
DBG_ERROR("%s Allocate EventRings size[%lx]\n", __FUNCTION__,
(sizeof(SXG_EVENT_RING) * RssIds));
// Allocate event queues.
adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
sizeof(SXG_EVENT_RING) *
RssIds,
&adapter->PEventRings);
if (!adapter->EventRings) {
// Caller will call SxgFreeAdapter to clean up above allocations
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
goto per_tcb_allocation_failed;
}
memset(adapter->EventRings, 0, sizeof(SXG_EVENT_RING) * RssIds);
DBG_ERROR("%s Allocate ISR size[%x]\n", __FUNCTION__, IsrCount);
// Allocate ISR
adapter->Isr = pci_alloc_consistent(adapter->pcidev,
IsrCount, &adapter->PIsr);
if (!adapter->Isr) {
// Caller will call SxgFreeAdapter to clean up above allocations
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
goto per_tcb_allocation_failed;
}
memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
DBG_ERROR("%s Allocate shared XMT ring zero index location size[%lx]\n",
__FUNCTION__, sizeof(u32));
// Allocate shared XMT ring zero index location
adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
sizeof(u32),
&adapter->
PXmtRingZeroIndex);
if (!adapter->XmtRingZeroIndex) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
goto per_tcb_allocation_failed;
}
memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
adapter, SXG_MAX_ENTRIES, 0, 0);
DBG_ERROR("%s EXIT\n", __FUNCTION__);
return (STATUS_SUCCESS);
}
/*
* sxg_config_pci -
*
* Set up PCI Configuration space
*
* Arguments -
* pcidev - A pointer to our adapter structure
*
*/
static void sxg_config_pci(struct pci_dev *pcidev)
{
u16 pci_command;
u16 new_command;
pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __FUNCTION__, pci_command);
// Set the command register
new_command = pci_command | (PCI_COMMAND_MEMORY | // Memory Space Enable
PCI_COMMAND_MASTER | // Bus master enable
PCI_COMMAND_INVALIDATE | // Memory write and invalidate
PCI_COMMAND_PARITY | // Parity error response
PCI_COMMAND_SERR | // System ERR
PCI_COMMAND_FAST_BACK); // Fast back-to-back
if (pci_command != new_command) {
DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
__FUNCTION__, pci_command, new_command);
pci_write_config_word(pcidev, PCI_COMMAND, new_command);
}
}
static int sxg_entry_probe(struct pci_dev *pcidev,
const struct pci_device_id *pci_tbl_entry)
{
static int did_version = 0;
int err;
struct net_device *netdev;
p_adapter_t adapter;
void __iomem *memmapped_ioaddr;
u32 status = 0;
ulong mmio_start = 0;
ulong mmio_len = 0;
DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
__FUNCTION__, jiffies, smp_processor_id());
// Initialize trace buffer
#ifdef ATKDBG
SxgTraceBuffer = &LSxgTraceBuffer;
SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
#endif
sxg_global.dynamic_intagg = dynamic_intagg;
err = pci_enable_device(pcidev);
DBG_ERROR("Call pci_enable_device(%p) status[%x]\n", pcidev, err);
if (err) {
return err;
}
if (sxg_debug > 0 && did_version++ == 0) {
printk(KERN_INFO "%s\n", sxg_banner);
printk(KERN_INFO "%s\n", DRV_VERSION);
}
if (!(err = pci_set_dma_mask(pcidev, DMA_64BIT_MASK))) {
DBG_ERROR("pci_set_dma_mask(DMA_64BIT_MASK) successful\n");
} else {
if ((err = pci_set_dma_mask(pcidev, DMA_32BIT_MASK))) {
DBG_ERROR
("No usable DMA configuration, aborting err[%x]\n",
err);
return err;
}
DBG_ERROR("pci_set_dma_mask(DMA_32BIT_MASK) successful\n");
}
DBG_ERROR("Call pci_request_regions\n");
err = pci_request_regions(pcidev, DRV_NAME);
if (err) {
DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
return err;
}
DBG_ERROR("call pci_set_master\n");
pci_set_master(pcidev);
DBG_ERROR("call alloc_etherdev\n");
netdev = alloc_etherdev(sizeof(adapter_t));
if (!netdev) {
err = -ENOMEM;
goto err_out_exit_sxg_probe;
}
DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
SET_NETDEV_DEV(netdev, &pcidev->dev);
pci_set_drvdata(pcidev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pcidev = pcidev;
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
mmio_start, mmio_len);
memmapped_ioaddr = ioremap(mmio_start, mmio_len);
DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __FUNCTION__,
memmapped_ioaddr);
if (!memmapped_ioaddr) {
DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
__FUNCTION__, mmio_len, mmio_start);
goto err_out_free_mmio_region;
}
DBG_ERROR
("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] len[%lx], IRQ %d.\n",
__func__, memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
adapter->HwRegs = (void *)memmapped_ioaddr;
adapter->base_addr = memmapped_ioaddr;
mmio_start = pci_resource_start(pcidev, 2);
mmio_len = pci_resource_len(pcidev, 2);
DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
mmio_start, mmio_len);
memmapped_ioaddr = ioremap(mmio_start, mmio_len);
DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
memmapped_ioaddr);
if (!memmapped_ioaddr) {
DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
__FUNCTION__, mmio_len, mmio_start);
goto err_out_free_mmio_region;
}
DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
"start[%lx] len[%lx], IRQ %d.\n", __func__,
memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
adapter->UcodeRegs = (void *)memmapped_ioaddr;
adapter->State = SXG_STATE_INITIALIZING;
// Maintain a list of all adapters anchored by
// the global SxgDriver structure.
adapter->Next = SxgDriver.Adapters;
SxgDriver.Adapters = adapter;
adapter->AdapterID = ++SxgDriver.AdapterID;
// Initialize CRC table used to determine multicast hash
sxg_mcast_init_crc32();
adapter->JumboEnabled = FALSE;
adapter->RssEnabled = FALSE;
if (adapter->JumboEnabled) {
adapter->FrameSize = JUMBOMAXFRAME;
adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
} else {
adapter->FrameSize = ETHERMAXFRAME;
adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
}
// status = SXG_READ_EEPROM(adapter);
// if (!status) {
// goto sxg_init_bad;
// }
DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __FUNCTION__);
sxg_config_pci(pcidev);
DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __FUNCTION__);
DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __FUNCTION__);
sxg_init_driver();
DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __FUNCTION__);
adapter->vendid = pci_tbl_entry->vendor;
adapter->devid = pci_tbl_entry->device;
adapter->subsysid = pci_tbl_entry->subdevice;
adapter->busnumber = pcidev->bus->number;
adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
adapter->functionnumber = (pcidev->devfn & 0x7);
adapter->memorylength = pci_resource_len(pcidev, 0);
adapter->irq = pcidev->irq;
adapter->next_netdevice = head_netdevice;
head_netdevice = netdev;
// adapter->chipid = chip_idx;
adapter->port = 0; //adapter->functionnumber;
adapter->cardindex = adapter->port;
// Allocate memory and other resources
DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __FUNCTION__);
status = sxg_allocate_resources(adapter);
DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
__FUNCTION__, status);
if (status != STATUS_SUCCESS) {
goto err_out_unmap;
}
DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __FUNCTION__);
if (sxg_download_microcode(adapter, SXG_UCODE_SAHARA)) {
DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
__FUNCTION__);
sxg_adapter_set_hwaddr(adapter);
} else {
adapter->state = ADAPT_FAIL;
adapter->linkstate = LINK_DOWN;
DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
}
netdev->base_addr = (unsigned long)adapter->base_addr;
netdev->irq = adapter->irq;
netdev->open = sxg_entry_open;
netdev->stop = sxg_entry_halt;
netdev->hard_start_xmit = sxg_send_packets;
netdev->do_ioctl = sxg_ioctl;
#if XXXTODO
netdev->set_mac_address = sxg_mac_set_address;
#if SLIC_GET_STATS_ENABLED
netdev->get_stats = sxg_get_stats;
#endif
netdev->set_multicast_list = sxg_mcast_set_list;
#endif
strcpy(netdev->name, "eth%d");
// strcpy(netdev->name, pci_name(pcidev));
if ((err = register_netdev(netdev))) {
DBG_ERROR("Cannot register net device, aborting. %s\n",
netdev->name);
goto err_out_unmap;
}
DBG_ERROR
("sxg: %s addr 0x%lx, irq %d, MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
netdev->dev_addr[4], netdev->dev_addr[5]);
//sxg_init_bad:
ASSERT(status == FALSE);
// sxg_free_adapter(adapter);
DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __FUNCTION__,
status, jiffies, smp_processor_id());
return status;
err_out_unmap:
iounmap((void *)memmapped_ioaddr);
err_out_free_mmio_region:
release_mem_region(mmio_start, mmio_len);
err_out_exit_sxg_probe:
DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __FUNCTION__, jiffies,
smp_processor_id());
return -ENODEV;
}
/***********************************************************************
* LINE BASE Interrupt routines..
***********************************************************************/
/*
*
* sxg_disable_interrupt
*
* DisableInterrupt Handler
*
* Arguments:
*
* adapter: Our adapter structure
*
* Return Value:
* None.
*/
static void sxg_disable_interrupt(p_adapter_t adapter)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
// For now, RSS is disabled with line based interrupts
ASSERT(adapter->RssEnabled == FALSE);
ASSERT(adapter->MsiEnabled == FALSE);
//
// Turn off interrupts by writing to the icr register.
//
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
adapter->InterruptsEnabled = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
}
/*
*
* sxg_enable_interrupt
*
* EnableInterrupt Handler
*
* Arguments:
*
* adapter: Our adapter structure
*
* Return Value:
* None.
*/
static void sxg_enable_interrupt(p_adapter_t adapter)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
// For now, RSS is disabled with line based interrupts
ASSERT(adapter->RssEnabled == FALSE);
ASSERT(adapter->MsiEnabled == FALSE);
//
// Turn on interrupts by writing to the icr register.
//
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
adapter->InterruptsEnabled = 1;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
adapter, 0, 0, 0);
}
/*
*
* sxg_isr - Process an line-based interrupt
*
* Arguments:
* Context - Our adapter structure
* QueueDefault - Output parameter to queue to default CPU
* TargetCpus - Output bitmap to schedule DPC's
*
* Return Value:
* TRUE if our interrupt
*/
static irqreturn_t sxg_isr(int irq, void *dev_id)
{
p_net_device dev = (p_net_device) dev_id;
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
// u32 CpuMask = 0, i;
adapter->Stats.NumInts++;
if (adapter->Isr[0] == 0) {
// The SLIC driver used to experience a number of spurious interrupts
// due to the delay associated with the masking of the interrupt
// (we'd bounce back in here). If we see that again with Sahara,
// add a READ_REG of the Icr register after the WRITE_REG below.
adapter->Stats.FalseInts++;
return IRQ_NONE;
}
//
// Move the Isr contents and clear the value in
// shared memory, and mask interrupts
//
adapter->IsrCopy[0] = adapter->Isr[0];
adapter->Isr[0] = 0;
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
// ASSERT(adapter->IsrDpcsPending == 0);
#if XXXTODO // RSS Stuff
// If RSS is enabled and the ISR specifies
// SXG_ISR_EVENT, then schedule DPC's
// based on event queues.
if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
for (i = 0;
i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
i++) {
PSXG_EVENT_RING EventRing = &adapter->EventRings[i];
PSXG_EVENT Event =
&EventRing->Ring[adapter->NextEvent[i]];
unsigned char Cpu =
adapter->RssSystemInfo->RssIdToCpu[i];
if (Event->Status & EVENT_STATUS_VALID) {
adapter->IsrDpcsPending++;
CpuMask |= (1 << Cpu);
}
}
}
// Now, either schedule the CPUs specified by the CpuMask,
// or queue default
if (CpuMask) {
*QueueDefault = FALSE;
} else {
adapter->IsrDpcsPending = 1;
*QueueDefault = TRUE;
}
*TargetCpus = CpuMask;
#endif
//
// There are no DPCs in Linux, so call the handler now
//
sxg_handle_interrupt(adapter);
return IRQ_HANDLED;
}
static void sxg_handle_interrupt(p_adapter_t adapter)
{
// unsigned char RssId = 0;
u32 NewIsr;
if (adapter->Stats.RcvNoBuffer < 5) {
DBG_ERROR("Enter sxg_handle_interrupt ISR[%x]\n",
adapter->IsrCopy[0]);
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
adapter, adapter->IsrCopy[0], 0, 0);
// For now, RSS is disabled with line based interrupts
ASSERT(adapter->RssEnabled == FALSE);
ASSERT(adapter->MsiEnabled == FALSE);
ASSERT(adapter->IsrCopy[0]);
/////////////////////////////
// Always process the event queue.
sxg_process_event_queue(adapter,
(adapter->RssEnabled ? /*RssId */ 0 : 0));
#if XXXTODO // RSS stuff
if (--adapter->IsrDpcsPending) {
// We're done.
ASSERT(adapter->RssEnabled);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
adapter, 0, 0, 0);
return;
}
#endif
//
// Last (or only) DPC processes the ISR and clears the interrupt.
//
NewIsr = sxg_process_isr(adapter, 0);
//
// Reenable interrupts
//
adapter->IsrCopy[0] = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
adapter, NewIsr, 0, 0);
if (adapter->Stats.RcvNoBuffer < 5) {
DBG_ERROR
("Exit sxg_handle_interrupt2 after enabling interrupt\n");
}
WRITE_REG(adapter->UcodeRegs[0].Isr, NewIsr, TRUE);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
adapter, 0, 0, 0);
}
/*
*
* sxg_process_isr - Process an interrupt. Called from the line-based and
* message based interrupt DPC routines
*
* Arguments:
* adapter - Our adapter structure
* Queue - The ISR that needs processing
*
* Return Value:
* None
*/
static int sxg_process_isr(p_adapter_t adapter, u32 MessageId)
{
u32 Isr = adapter->IsrCopy[MessageId];
u32 NewIsr = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
adapter, Isr, 0, 0);
// Error
if (Isr & SXG_ISR_ERR) {
if (Isr & SXG_ISR_PDQF) {
adapter->Stats.PdqFull++;
DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __FUNCTION__);
}
// No host buffer
if (Isr & SXG_ISR_RMISS) {
// There is a bunch of code in the SLIC driver which
// attempts to process more receive events per DPC
// if we start to fall behind. We'll probably
// need to do something similar here, but hold
// off for now. I don't want to make the code more
// complicated than strictly needed.
adapter->Stats.RcvNoBuffer++;
if (adapter->Stats.RcvNoBuffer < 5) {
DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
__FUNCTION__);
}
}
// Card crash
if (Isr & SXG_ISR_DEAD) {
// Set aside the crash info and set the adapter state to RESET
adapter->CrashCpu =
(unsigned char)((Isr & SXG_ISR_CPU) >>
SXG_ISR_CPU_SHIFT);
adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
adapter->Dead = TRUE;
DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __FUNCTION__,
adapter->CrashLocation, adapter->CrashCpu);
}
// Event ring full
if (Isr & SXG_ISR_ERFULL) {
// Same issue as RMISS, really. This means the
// host is falling behind the card. Need to increase
// event ring size, process more events per interrupt,
// and/or reduce/remove interrupt aggregation.
adapter->Stats.EventRingFull++;
DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
__FUNCTION__);
}
// Transmit drop - no DRAM buffers or XMT error
if (Isr & SXG_ISR_XDROP) {
adapter->Stats.XmtDrops++;
adapter->Stats.XmtErrors++;
DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __FUNCTION__);
}
}
// Slowpath send completions
if (Isr & SXG_ISR_SPSEND) {
sxg_complete_slow_send(adapter);
}
// Dump
if (Isr & SXG_ISR_UPC) {
ASSERT(adapter->DumpCmdRunning); // Maybe change when debug is added..
adapter->DumpCmdRunning = FALSE;
}
// Link event
if (Isr & SXG_ISR_LINK) {
sxg_link_event(adapter);
}
// Debug - breakpoint hit
if (Isr & SXG_ISR_BREAK) {
// At the moment AGDB isn't written to support interactive
// debug sessions. When it is, this interrupt will be used
// to signal AGDB that it has hit a breakpoint. For now, ASSERT.
ASSERT(0);
}
// Heartbeat response
if (Isr & SXG_ISR_PING) {
adapter->PingOutstanding = FALSE;
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
adapter, Isr, NewIsr, 0);
return (NewIsr);
}
/*
*
* sxg_process_event_queue - Process our event queue
*
* Arguments:
* - adapter - Adapter structure
* - RssId - The event queue requiring processing
*
* Return Value:
* None.
*/
static u32 sxg_process_event_queue(p_adapter_t adapter, u32 RssId)
{
PSXG_EVENT_RING EventRing = &adapter->EventRings[RssId];
PSXG_EVENT Event = &EventRing->Ring[adapter->NextEvent[RssId]];
u32 EventsProcessed = 0, Batches = 0;
u32 num_skbs = 0;
struct sk_buff *skb;
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
struct sk_buff *prev_skb = NULL;
struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
u32 Index;
PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr;
#endif
u32 ReturnStatus = 0;
ASSERT((adapter->State == SXG_STATE_RUNNING) ||
(adapter->State == SXG_STATE_PAUSING) ||
(adapter->State == SXG_STATE_PAUSED) ||
(adapter->State == SXG_STATE_HALTING));
// We may still have unprocessed events on the queue if
// the card crashed. Don't process them.
if (adapter->Dead) {
return (0);
}
// In theory there should only be a single processor that
// accesses this queue, and only at interrupt-DPC time. So
// we shouldn't need a lock for any of this.
while (Event->Status & EVENT_STATUS_VALID) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
Event, Event->Code, Event->Status,
adapter->NextEvent);
switch (Event->Code) {
case EVENT_CODE_BUFFERS:
ASSERT(!(Event->CommandIndex & 0xFF00)); // SXG_RING_INFO Head & Tail == unsigned char
//
sxg_complete_descriptor_blocks(adapter,
Event->CommandIndex);
//
break;
case EVENT_CODE_SLOWRCV:
--adapter->RcvBuffersOnCard;
if ((skb = sxg_slow_receive(adapter, Event))) {
u32 rx_bytes;
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
// Add it to our indication list
SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
IndicationList, num_skbs);
// In Linux, we just pass up each skb to the protocol above at this point,
// there is no capability of an indication list.
#else
// CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE);
rx_bytes = Event->Length; // (rcvbuf->length & IRHDDR_FLEN_MSK);
skb_put(skb, rx_bytes);
adapter->stats.rx_packets++;
adapter->stats.rx_bytes += rx_bytes;
#if SXG_OFFLOAD_IP_CHECKSUM
skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
skb->dev = adapter->netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
netif_rx(skb);
#endif
}
break;
default:
DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
__FUNCTION__, Event->Code);
// ASSERT(0);
}
// See if we need to restock card receive buffers.
// There are two things to note here:
// First - This test is not SMP safe. The
// adapter->BuffersOnCard field is protected via atomic interlocked calls, but
// we do not protect it with respect to these tests. The only way to do that
// is with a lock, and I don't want to grab a lock every time we adjust the
// BuffersOnCard count. Instead, we allow the buffer replenishment to be off
// once in a while. The worst that can happen is the card is given one
// more-or-less descriptor block than the arbitrary value we've chosen.
// No big deal
// In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard is adjusted.
// Second - We expect this test to rarely evaluate to true. We attempt to
// refill descriptor blocks as they are returned to us
// (sxg_complete_descriptor_blocks), so The only time this should evaluate
// to true is when sxg_complete_descriptor_blocks failed to allocate
// receive buffers.
if (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
sxg_stock_rcv_buffers(adapter);
}
// It's more efficient to just set this to zero.
// But clearing the top bit saves potential debug info...
Event->Status &= ~EVENT_STATUS_VALID;
// Advanct to the next event
SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
Event = &EventRing->Ring[adapter->NextEvent[RssId]];
EventsProcessed++;
if (EventsProcessed == EVENT_RING_BATCH) {
// Release a batch of events back to the card
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EVENT_RING_BATCH, FALSE);
EventsProcessed = 0;
// If we've processed our batch limit, break out of the
// loop and return SXG_ISR_EVENT to arrange for us to
// be called again
if (Batches++ == EVENT_BATCH_LIMIT) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
TRACE_NOISY, "EvtLimit", Batches,
adapter->NextEvent, 0, 0);
ReturnStatus = SXG_ISR_EVENT;
break;
}
}
}
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
//
// Indicate any received dumb-nic frames
//
SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
#endif
//
// Release events back to the card.
//
if (EventsProcessed) {
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EventsProcessed, FALSE);
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
Batches, EventsProcessed, adapter->NextEvent, num_skbs);
return (ReturnStatus);
}
/*
* sxg_complete_slow_send - Complete slowpath or dumb-nic sends
*
* Arguments -
* adapter - A pointer to our adapter structure
* Return
* None
*/
static void sxg_complete_slow_send(p_adapter_t adapter)
{
PSXG_XMT_RING XmtRing = &adapter->XmtRings[0];
PSXG_RING_INFO XmtRingInfo = &adapter->XmtRingZeroInfo;
u32 *ContextType;
PSXG_CMD XmtCmd;
// NOTE - This lock is dropped and regrabbed in this loop.
// This means two different processors can both be running
// through this loop. Be *very* careful.
spin_lock(&adapter->XmtZeroLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
while (XmtRingInfo->Tail != *adapter->XmtRingZeroIndex) {
// Locate the current Cmd (ring descriptor entry), and
// associated SGL, and advance the tail
SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
ASSERT(ContextType);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
// Clear the SGL field.
XmtCmd->Sgl = 0;
switch (*ContextType) {
case SXG_SGL_DUMB:
{
struct sk_buff *skb;
// Dumb-nic send. Command context is the dumb-nic SGL
skb = (struct sk_buff *)ContextType;
// Complete the send
SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
TRACE_IMPORTANT, "DmSndCmp", skb, 0,
0, 0);
ASSERT(adapter->Stats.XmtQLen);
adapter->Stats.XmtQLen--; // within XmtZeroLock
adapter->Stats.XmtOk++;
// Now drop the lock and complete the send back to
// Microsoft. We need to drop the lock because
// Microsoft can come back with a chimney send, which
// results in a double trip in SxgTcpOuput
spin_unlock(&adapter->XmtZeroLock);
SXG_COMPLETE_DUMB_SEND(adapter, skb);
// and reacquire..
spin_lock(&adapter->XmtZeroLock);
}
break;
default:
ASSERT(0);
}
}
spin_unlock(&adapter->XmtZeroLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
}
/*
* sxg_slow_receive
*
* Arguments -
* adapter - A pointer to our adapter structure
* Event - Receive event
*
* Return
* skb
*/
static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event)
{
PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr;
struct sk_buff *Packet;
RcvDataBufferHdr = (PSXG_RCV_DATA_BUFFER_HDR) Event->HostHandle;
ASSERT(RcvDataBufferHdr);
ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
ASSERT(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr) ==
RcvDataBufferHdr->VirtualAddress);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
RcvDataBufferHdr, RcvDataBufferHdr->State,
RcvDataBufferHdr->VirtualAddress);
// Drop rcv frames in non-running state
switch (adapter->State) {
case SXG_STATE_RUNNING:
break;
case SXG_STATE_PAUSING:
case SXG_STATE_PAUSED:
case SXG_STATE_HALTING:
goto drop;
default:
ASSERT(0);
goto drop;
}
// Change buffer state to UPSTREAM
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
if (Event->Status & EVENT_STATUS_RCVERR) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
Event, Event->Status, Event->HostHandle, 0);
// XXXTODO - Remove this print later
DBG_ERROR("SXG: Receive error %x\n", *(u32 *)
SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr));
sxg_process_rcv_error(adapter, *(u32 *)
SXG_RECEIVE_DATA_LOCATION
(RcvDataBufferHdr));
goto drop;
}
#if XXXTODO // VLAN stuff
// If there's a VLAN tag, extract it and validate it
if (((p_ether_header) (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->
EtherType == ETHERTYPE_VLAN) {
if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
STATUS_SUCCESS) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
"BadVlan", Event,
SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
Event->Length, 0);
goto drop;
}
}
#endif
//
// Dumb-nic frame. See if it passes our mac filter and update stats
//
if (!sxg_mac_filter(adapter, (p_ether_header)
SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
Event->Length)) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
Event->Length, 0);
goto drop;
}
Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
RcvDataBufferHdr, Packet, Event->Length, 0);
//
// Lastly adjust the receive packet length.
//
SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
return (Packet);
drop:
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
RcvDataBufferHdr, Event->Length, 0, 0);
adapter->Stats.RcvDiscards++;
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
spin_unlock(&adapter->RcvQLock);
return (NULL);
}
/*
* sxg_process_rcv_error - process receive error and update
* stats
*
* Arguments:
* adapter - Adapter structure
* ErrorStatus - 4-byte receive error status
*
* Return Value:
* None
*/
static void sxg_process_rcv_error(p_adapter_t adapter, u32 ErrorStatus)
{
u32 Error;
adapter->Stats.RcvErrors++;
if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
switch (Error) {
case SXG_RCV_STATUS_TRANSPORT_CSUM:
adapter->Stats.TransportCsum++;
break;
case SXG_RCV_STATUS_TRANSPORT_UFLOW:
adapter->Stats.TransportUflow++;
break;
case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
adapter->Stats.TransportHdrLen++;
break;
}
}
if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
switch (Error) {
case SXG_RCV_STATUS_NETWORK_CSUM:
adapter->Stats.NetworkCsum++;
break;
case SXG_RCV_STATUS_NETWORK_UFLOW:
adapter->Stats.NetworkUflow++;
break;
case SXG_RCV_STATUS_NETWORK_HDRLEN:
adapter->Stats.NetworkHdrLen++;
break;
}
}
if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
adapter->Stats.Parity++;
}
if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
switch (Error) {
case SXG_RCV_STATUS_LINK_PARITY:
adapter->Stats.LinkParity++;
break;
case SXG_RCV_STATUS_LINK_EARLY:
adapter->Stats.LinkEarly++;
break;
case SXG_RCV_STATUS_LINK_BUFOFLOW:
adapter->Stats.LinkBufOflow++;
break;
case SXG_RCV_STATUS_LINK_CODE:
adapter->Stats.LinkCode++;
break;
case SXG_RCV_STATUS_LINK_DRIBBLE:
adapter->Stats.LinkDribble++;
break;
case SXG_RCV_STATUS_LINK_CRC:
adapter->Stats.LinkCrc++;
break;
case SXG_RCV_STATUS_LINK_OFLOW:
adapter->Stats.LinkOflow++;
break;
case SXG_RCV_STATUS_LINK_UFLOW:
adapter->Stats.LinkUflow++;
break;
}
}
}
/*
* sxg_mac_filter
*
* Arguments:
* adapter - Adapter structure
* pether - Ethernet header
* length - Frame length
*
* Return Value:
* TRUE if the frame is to be allowed
*/
static bool sxg_mac_filter(p_adapter_t adapter, p_ether_header EtherHdr,
ushort length)
{
bool EqualAddr;
if (SXG_MULTICAST_PACKET(EtherHdr)) {
if (SXG_BROADCAST_PACKET(EtherHdr)) {
// broadcast
if (adapter->MacFilter & MAC_BCAST) {
adapter->Stats.DumbRcvBcastPkts++;
adapter->Stats.DumbRcvBcastBytes += length;
adapter->Stats.DumbRcvPkts++;
adapter->Stats.DumbRcvBytes += length;
return (TRUE);
}
} else {
// multicast
if (adapter->MacFilter & MAC_ALLMCAST) {
adapter->Stats.DumbRcvMcastPkts++;
adapter->Stats.DumbRcvMcastBytes += length;
adapter->Stats.DumbRcvPkts++;
adapter->Stats.DumbRcvBytes += length;
return (TRUE);
}
if (adapter->MacFilter & MAC_MCAST) {
PSXG_MULTICAST_ADDRESS MulticastAddrs =
adapter->MulticastAddrs;
while (MulticastAddrs) {
ETHER_EQ_ADDR(MulticastAddrs->Address,
EtherHdr->ether_dhost,
EqualAddr);
if (EqualAddr) {
adapter->Stats.
DumbRcvMcastPkts++;
adapter->Stats.
DumbRcvMcastBytes += length;
adapter->Stats.DumbRcvPkts++;
adapter->Stats.DumbRcvBytes +=
length;
return (TRUE);
}
MulticastAddrs = MulticastAddrs->Next;
}
}
}
} else if (adapter->MacFilter & MAC_DIRECTED) {
// Not broadcast or multicast. Must be directed at us or
// the card is in promiscuous mode. Either way, consider it
// ours if MAC_DIRECTED is set
adapter->Stats.DumbRcvUcastPkts++;
adapter->Stats.DumbRcvUcastBytes += length;
adapter->Stats.DumbRcvPkts++;
adapter->Stats.DumbRcvBytes += length;
return (TRUE);
}
if (adapter->MacFilter & MAC_PROMISC) {
// Whatever it is, keep it.
adapter->Stats.DumbRcvPkts++;
adapter->Stats.DumbRcvBytes += length;
return (TRUE);
}
adapter->Stats.RcvDiscards++;
return (FALSE);
}
static int sxg_register_interrupt(p_adapter_t adapter)
{
if (!adapter->intrregistered) {
int retval;
DBG_ERROR
("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
__FUNCTION__, adapter, adapter->netdev->irq, NR_IRQS);
spin_unlock_irqrestore(&sxg_global.driver_lock,
sxg_global.flags);
retval = request_irq(adapter->netdev->irq,
&sxg_isr,
IRQF_SHARED,
adapter->netdev->name, adapter->netdev);
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
if (retval) {
DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
adapter->netdev->name, retval);
return (retval);
}
adapter->intrregistered = 1;
adapter->IntRegistered = TRUE;
// Disable RSS with line-based interrupts
adapter->MsiEnabled = FALSE;
adapter->RssEnabled = FALSE;
DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
__FUNCTION__, adapter, adapter->netdev->irq);
}
return (STATUS_SUCCESS);
}
static void sxg_deregister_interrupt(p_adapter_t adapter)
{
DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __FUNCTION__, adapter);
#if XXXTODO
slic_init_cleanup(adapter);
#endif
memset(&adapter->stats, 0, sizeof(struct net_device_stats));
adapter->error_interrupts = 0;
adapter->rcv_interrupts = 0;
adapter->xmit_interrupts = 0;
adapter->linkevent_interrupts = 0;
adapter->upr_interrupts = 0;
adapter->num_isrs = 0;
adapter->xmit_completes = 0;
adapter->rcv_broadcasts = 0;
adapter->rcv_multicasts = 0;
adapter->rcv_unicasts = 0;
DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__);
}
/*
* sxg_if_init
*
* Perform initialization of our slic interface.
*
*/
static int sxg_if_init(p_adapter_t adapter)
{
p_net_device dev = adapter->netdev;
int status = 0;
DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d:%d] flags[%x]\n",
__FUNCTION__, adapter->netdev->name,
adapter->queues_initialized, adapter->state,
adapter->linkstate, dev->flags);
/* adapter should be down at this point */
if (adapter->state != ADAPT_DOWN) {
DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
return (-EIO);
}
ASSERT(adapter->linkstate == LINK_DOWN);
adapter->devflags_prev = dev->flags;
adapter->macopts = MAC_DIRECTED;
if (dev->flags) {
DBG_ERROR("sxg: %s (%s) Set MAC options: ", __FUNCTION__,
adapter->netdev->name);
if (dev->flags & IFF_BROADCAST) {
adapter->macopts |= MAC_BCAST;
DBG_ERROR("BCAST ");
}
if (dev->flags & IFF_PROMISC) {
adapter->macopts |= MAC_PROMISC;
DBG_ERROR("PROMISC ");
}
if (dev->flags & IFF_ALLMULTI) {
adapter->macopts |= MAC_ALLMCAST;
DBG_ERROR("ALL_MCAST ");
}
if (dev->flags & IFF_MULTICAST) {
adapter->macopts |= MAC_MCAST;
DBG_ERROR("MCAST ");
}
DBG_ERROR("\n");
}
status = sxg_register_interrupt(adapter);
if (status != STATUS_SUCCESS) {
DBG_ERROR("sxg_if_init: sxg_register_interrupt FAILED %x\n",
status);
sxg_deregister_interrupt(adapter);
return (status);
}
adapter->state = ADAPT_UP;
/*
* clear any pending events, then enable interrupts
*/
DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __FUNCTION__);
return (STATUS_SUCCESS);
}
static int sxg_entry_open(p_net_device dev)
{
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
int status;
ASSERT(adapter);
DBG_ERROR("sxg: %s adapter->activated[%d]\n", __FUNCTION__,
adapter->activated);
DBG_ERROR
("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
__FUNCTION__, adapter->netdev->name, jiffies, smp_processor_id(),
adapter->netdev, adapter, adapter->port);
netif_stop_queue(adapter->netdev);
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
if (!adapter->activated) {
sxg_global.num_sxg_ports_active++;
adapter->activated = 1;
}
// Initialize the adapter
DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __FUNCTION__);
status = sxg_initialize_adapter(adapter);
DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
__FUNCTION__, status);
if (status == STATUS_SUCCESS) {
DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __FUNCTION__);
status = sxg_if_init(adapter);
DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __FUNCTION__,
status);
}
if (status != STATUS_SUCCESS) {
if (adapter->activated) {
sxg_global.num_sxg_ports_active--;
adapter->activated = 0;
}
spin_unlock_irqrestore(&sxg_global.driver_lock,
sxg_global.flags);
return (status);
}
DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __FUNCTION__);
// Enable interrupts
SXG_ENABLE_ALL_INTERRUPTS(adapter);
DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__);
spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
return STATUS_SUCCESS;
}
static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
{
p_net_device dev = pci_get_drvdata(pcidev);
u32 mmio_start = 0;
unsigned int mmio_len = 0;
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
ASSERT(adapter);
DBG_ERROR("sxg: %s ENTER dev[%p] adapter[%p]\n", __FUNCTION__, dev,
adapter);
sxg_deregister_interrupt(adapter);
sxg_unmap_mmio_space(adapter);
DBG_ERROR("sxg: %s unregister_netdev\n", __FUNCTION__);
unregister_netdev(dev);
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __FUNCTION__,
mmio_start, mmio_len);
release_mem_region(mmio_start, mmio_len);
DBG_ERROR("sxg: %s iounmap dev->base_addr[%x]\n", __FUNCTION__,
(unsigned int)dev->base_addr);
iounmap((char *)dev->base_addr);
DBG_ERROR("sxg: %s deallocate device\n", __FUNCTION__);
kfree(dev);
DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__);
}
static int sxg_entry_halt(p_net_device dev)
{
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
DBG_ERROR("sxg: %s (%s) ENTER\n", __FUNCTION__, dev->name);
netif_stop_queue(adapter->netdev);
adapter->state = ADAPT_DOWN;
adapter->linkstate = LINK_DOWN;
adapter->devflags_prev = 0;
DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
__FUNCTION__, dev->name, adapter, adapter->state);
DBG_ERROR("sxg: %s (%s) EXIT\n", __FUNCTION__, dev->name);
DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__);
spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
return (STATUS_SUCCESS);
}
static int sxg_ioctl(p_net_device dev, struct ifreq *rq, int cmd)
{
ASSERT(rq);
// DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __FUNCTION__, cmd, rq, dev);
switch (cmd) {
case SIOCSLICSETINTAGG:
{
// p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
u32 data[7];
u32 intagg;
if (copy_from_user(data, rq->ifr_data, 28)) {
DBG_ERROR
("copy_from_user FAILED getting initial params\n");
return -EFAULT;
}
intagg = data[0];
printk(KERN_EMERG
"%s: set interrupt aggregation to %d\n",
__FUNCTION__, intagg);
return 0;
}
default:
// DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __FUNCTION__, cmd);
return -EOPNOTSUPP;
}
return 0;
}
#define NORMAL_ETHFRAME 0
/*
*
* sxg_send_packets - Send a skb packet
*
* Arguments:
* skb - The packet to send
* dev - Our linux net device that refs our adapter
*
* Return:
* 0 regardless of outcome XXXTODO refer to e1000 driver
*/
static int sxg_send_packets(struct sk_buff *skb, p_net_device dev)
{
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
u32 status = STATUS_SUCCESS;
DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __FUNCTION__,
skb);
// Check the adapter state
switch (adapter->State) {
case SXG_STATE_INITIALIZING:
case SXG_STATE_HALTED:
case SXG_STATE_SHUTDOWN:
ASSERT(0); // unexpected
// fall through
case SXG_STATE_RESETTING:
case SXG_STATE_SLEEP:
case SXG_STATE_BOOTDIAG:
case SXG_STATE_DIAG:
case SXG_STATE_HALTING:
status = STATUS_FAILURE;
break;
case SXG_STATE_RUNNING:
if (adapter->LinkState != SXG_LINK_UP) {
status = STATUS_FAILURE;
}
break;
default:
ASSERT(0);
status = STATUS_FAILURE;
}
if (status != STATUS_SUCCESS) {
goto xmit_fail;
}
// send a packet
status = sxg_transmit_packet(adapter, skb);
if (status == STATUS_SUCCESS) {
goto xmit_done;
}
xmit_fail:
// reject & complete all the packets if they cant be sent
if (status != STATUS_SUCCESS) {
#if XXXTODO
// sxg_send_packets_fail(adapter, skb, status);
#else
SXG_DROP_DUMB_SEND(adapter, skb);
adapter->stats.tx_dropped++;
#endif
}
DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __FUNCTION__,
status);
xmit_done:
return 0;
}
/*
* sxg_transmit_packet
*
* This function transmits a single packet.
*
* Arguments -
* adapter - Pointer to our adapter structure
* skb - The packet to be sent
*
* Return -
* STATUS of send
*/
static int sxg_transmit_packet(p_adapter_t adapter, struct sk_buff *skb)
{
PSCATTER_GATHER_LIST pSgl;
PSXG_SCATTER_GATHER SxgSgl;
void *SglBuffer;
u32 SglBufferLength;
// The vast majority of work is done in the shared
// sxg_dumb_sgl routine.
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
adapter, skb, 0, 0);
// Allocate a SGL buffer
SXG_GET_SGL_BUFFER(adapter, SxgSgl);
if (!SxgSgl) {
adapter->Stats.NoSglBuf++;
adapter->Stats.XmtErrors++;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
adapter, skb, 0, 0);
return (STATUS_RESOURCES);
}
ASSERT(SxgSgl->adapter == adapter);
SglBuffer = SXG_SGL_BUFFER(SxgSgl);
SglBufferLength = SXG_SGL_BUF_SIZE;
SxgSgl->VlanTag.VlanTci = 0;
SxgSgl->VlanTag.VlanTpid = 0;
SxgSgl->Type = SXG_SGL_DUMB;
SxgSgl->DumbPacket = skb;
pSgl = NULL;
// Call the common sxg_dumb_sgl routine to complete the send.
sxg_dumb_sgl(pSgl, SxgSgl);
// Return success sxg_dumb_sgl (or something later) will complete it.
return (STATUS_SUCCESS);
}
/*
* sxg_dumb_sgl
*
* Arguments:
* pSgl -
* SxgSgl - SXG_SCATTER_GATHER
*
* Return Value:
* None.
*/
static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl, PSXG_SCATTER_GATHER SxgSgl)
{
p_adapter_t adapter = SxgSgl->adapter;
struct sk_buff *skb = SxgSgl->DumbPacket;
// For now, all dumb-nic sends go on RSS queue zero
PSXG_XMT_RING XmtRing = &adapter->XmtRings[0];
PSXG_RING_INFO XmtRingInfo = &adapter->XmtRingZeroInfo;
PSXG_CMD XmtCmd = NULL;
// u32 Index = 0;
u32 DataLength = skb->len;
// unsigned int BufLen;
// u32 SglOffset;
u64 phys_addr;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
pSgl, SxgSgl, 0, 0);
// Set aside a pointer to the sgl
SxgSgl->pSgl = pSgl;
// Sanity check that our SGL format is as we expect.
ASSERT(sizeof(SXG_X64_SGE) == sizeof(SCATTER_GATHER_ELEMENT));
// Shouldn't be a vlan tag on this frame
ASSERT(SxgSgl->VlanTag.VlanTci == 0);
ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
// From here below we work with the SGL placed in our
// buffer.
SxgSgl->Sgl.NumberOfElements = 1;
// Grab the spinlock and acquire a command
spin_lock(&adapter->XmtZeroLock);
SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
if (XmtCmd == NULL) {
// Call sxg_complete_slow_send to see if we can
// free up any XmtRingZero entries and then try again
spin_unlock(&adapter->XmtZeroLock);
sxg_complete_slow_send(adapter);
spin_lock(&adapter->XmtZeroLock);
SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
if (XmtCmd == NULL) {
adapter->Stats.XmtZeroFull++;
goto abortcmd;
}
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
// Update stats
adapter->Stats.DumbXmtPkts++;
adapter->Stats.DumbXmtBytes += DataLength;
#if XXXTODO // Stats stuff
if (SXG_MULTICAST_PACKET(EtherHdr)) {
if (SXG_BROADCAST_PACKET(EtherHdr)) {
adapter->Stats.DumbXmtBcastPkts++;
adapter->Stats.DumbXmtBcastBytes += DataLength;
} else {
adapter->Stats.DumbXmtMcastPkts++;
adapter->Stats.DumbXmtMcastBytes += DataLength;
}
} else {
adapter->Stats.DumbXmtUcastPkts++;
adapter->Stats.DumbXmtUcastBytes += DataLength;
}
#endif
// Fill in the command
// Copy out the first SGE to the command and adjust for offset
phys_addr =
pci_map_single(adapter->pcidev, skb->data, skb->len,
PCI_DMA_TODEVICE);
XmtCmd->Buffer.FirstSgeAddress = SXG_GET_ADDR_HIGH(phys_addr);
XmtCmd->Buffer.FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress << 32;
XmtCmd->Buffer.FirstSgeAddress =
XmtCmd->Buffer.FirstSgeAddress | SXG_GET_ADDR_LOW(phys_addr);
// XmtCmd->Buffer.FirstSgeAddress = SxgSgl->Sgl.Elements[Index].Address;
// XmtCmd->Buffer.FirstSgeAddress.LowPart += MdlOffset;
XmtCmd->Buffer.FirstSgeLength = DataLength;
// Set a pointer to the remaining SGL entries
// XmtCmd->Sgl = SxgSgl->PhysicalAddress;
// Advance the physical address of the SxgSgl structure to
// the second SGE
// SglOffset = (u32)((u32 *)(&SxgSgl->Sgl.Elements[Index+1]) -
// (u32 *)SxgSgl);
// XmtCmd->Sgl.LowPart += SglOffset;
XmtCmd->Buffer.SgeOffset = 0;
// Note - TotalLength might be overwritten with MSS below..
XmtCmd->Buffer.TotalLength = DataLength;
XmtCmd->SgEntries = 1; //(ushort)(SxgSgl->Sgl.NumberOfElements - Index);
XmtCmd->Flags = 0;
//
// Advance transmit cmd descripter by 1.
// NOTE - See comments in SxgTcpOutput where we write
// to the XmtCmd register regarding CPU ID values and/or
// multiple commands.
//
//
WRITE_REG(adapter->UcodeRegs[0].XmtCmd, 1, TRUE);
//
//
adapter->Stats.XmtQLen++; // Stats within lock
spin_unlock(&adapter->XmtZeroLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
XmtCmd, pSgl, SxgSgl, 0);
return;
abortcmd:
// NOTE - Only jump to this label AFTER grabbing the
// XmtZeroLock, and DO NOT DROP IT between the
// command allocation and the following abort.
if (XmtCmd) {
SXG_ABORT_CMD(XmtRingInfo);
}
spin_unlock(&adapter->XmtZeroLock);
// failsgl:
// Jump to this label if failure occurs before the
// XmtZeroLock is grabbed
adapter->Stats.XmtErrors++;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket); // SxgSgl->DumbPacket is the skb
}
/***************************************************************
* Link management functions
***************************************************************/
/*
* sxg_initialize_link - Initialize the link stuff
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* status
*/
static int sxg_initialize_link(p_adapter_t adapter)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
u32 Value;
u32 ConfigData;
u32 MaxFrame;
int status;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
adapter, 0, 0, 0);
// Reset PHY and XGXS module
WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
// Reset transmit configuration register
WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
// Reset receive configuration register
WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
// Reset all MAC modules
WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
// Link address 0
// XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
// is stored with the first nibble (0a) in the byte 0
// of the Mac address. Possibly reverse?
Value = *(u32 *) adapter->MacAddr;
WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
// also write the MAC address to the MAC. Endian is reversed.
WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
Value = (*(u16 *) & adapter->MacAddr[4] & 0x0000FFFF);
WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
// endian swap for the MAC (put high bytes in bits [31:16], swapped)
Value = ntohl(Value);
WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
// Link address 1
WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
// Link address 2
WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
// Link address 3
WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
// Enable MAC modules
WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
// Configure MAC
WRITE_REG(HwRegs->MacConfig1, (AXGMAC_CFG1_XMT_PAUSE | // Allow sending of pause
AXGMAC_CFG1_XMT_EN | // Enable XMT
AXGMAC_CFG1_RCV_PAUSE | // Enable detection of pause
AXGMAC_CFG1_RCV_EN | // Enable receive
AXGMAC_CFG1_SHORT_ASSERT | // short frame detection
AXGMAC_CFG1_CHECK_LEN | // Verify frame length
AXGMAC_CFG1_GEN_FCS | // Generate FCS
AXGMAC_CFG1_PAD_64), // Pad frames to 64 bytes
TRUE);
// Set AXGMAC max frame length if jumbo. Not needed for standard MTU
if (adapter->JumboEnabled) {
WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
}
// AMIIM Configuration Register -
// The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
// (bottom bits) of this register is used to determine the
// MDC frequency as specified in the A-XGMAC Design Document.
// This value must not be zero. The following value (62 or 0x3E)
// is based on our MAC transmit clock frequency (MTCLK) of 312.5 MHz.
// Given a maximum MDIO clock frequency of 2.5 MHz (see the PHY spec),
// we get: 312.5/(2*(X+1)) < 2.5 ==> X = 62.
// This value happens to be the default value for this register,
// so we really don't have to do this.
WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
// Power up and enable PHY and XAUI/XGXS/Serdes logic
WRITE_REG(HwRegs->LinkStatus,
(LS_PHY_CLR_RESET |
LS_XGXS_ENABLE |
LS_XGXS_CTL | LS_PHY_CLK_EN | LS_ATTN_ALARM), TRUE);
DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
// Per information given by Aeluros, wait 100 ms after removing reset.
// It's not enough to wait for the self-clearing reset bit in reg 0 to clear.
mdelay(100);
// Verify the PHY has come up by checking that the Reset bit has cleared.
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
PHY_PMA_CONTROL1, // PMA/PMD control register
&Value);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (Value & PMA_CONTROL1_RESET) // reset complete if bit is 0
return (STATUS_FAILURE);
// The SERDES should be initialized by now - confirm
READ_REG(HwRegs->LinkStatus, Value);
if (Value & LS_SERDES_DOWN) // verify SERDES is initialized
return (STATUS_FAILURE);
// The XAUI link should also be up - confirm
if (!(Value & LS_XAUI_LINK_UP)) // verify XAUI link is up
return (STATUS_FAILURE);
// Initialize the PHY
status = sxg_phy_init(adapter);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
// Enable the Link Alarm
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
LASI_CONTROL, // LASI control register
LASI_CTL_LS_ALARM_ENABLE); // enable link alarm bit
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
// XXXTODO - temporary - verify bit is set
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
LASI_CONTROL, // LASI control register
&Value);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
}
// Enable receive
MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
ConfigData = (RCV_CONFIG_ENABLE |
RCV_CONFIG_ENPARSE |
RCV_CONFIG_RCVBAD |
RCV_CONFIG_RCVPAUSE |
RCV_CONFIG_TZIPV6 |
RCV_CONFIG_TZIPV4 |
RCV_CONFIG_HASH_16 |
RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
// Mark the link as down. We'll get a link event when it comes up.
sxg_link_state(adapter, SXG_LINK_DOWN);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
adapter, 0, 0, 0);
return (STATUS_SUCCESS);
}
/*
* sxg_phy_init - Initialize the PHY
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* status
*/
static int sxg_phy_init(p_adapter_t adapter)
{
u32 Value;
PPHY_UCODE p;
int status;
DBG_ERROR("ENTER %s\n", __FUNCTION__);
// Read a register to identify the PHY type
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
0xC205, // PHY ID register (?)
&Value); // XXXTODO - add def
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (Value == 0x0012) { // 0x0012 == AEL2005C PHY(?) - XXXTODO - add def
DBG_ERROR
("AEL2005C PHY detected. Downloading PHY microcode.\n");
// Initialize AEL2005C PHY and download PHY microcode
for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
if (p->Addr == 0) {
// if address == 0, data == sleep time in ms
mdelay(p->Data);
} else {
// write the given data to the specified address
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
p->Addr, // PHY address
p->Data); // PHY data
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
}
}
}
DBG_ERROR("EXIT %s\n", __FUNCTION__);
return (STATUS_SUCCESS);
}
/*
* sxg_link_event - Process a link event notification from the card
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* None
*/
static void sxg_link_event(p_adapter_t adapter)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
SXG_LINK_STATE LinkState;
int status;
u32 Value;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
adapter, 0, 0, 0);
DBG_ERROR("ENTER %s\n", __FUNCTION__);
// Check the Link Status register. We should have a Link Alarm.
READ_REG(HwRegs->LinkStatus, Value);
if (Value & LS_LINK_ALARM) {
// We got a Link Status alarm. First, pause to let the
// link state settle (it can bounce a number of times)
mdelay(10);
// Now clear the alarm by reading the LASI status register.
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
LASI_STATUS, // LASI status register
&Value);
if (status != STATUS_SUCCESS) {
DBG_ERROR("Error reading LASI Status MDIO register!\n");
sxg_link_state(adapter, SXG_LINK_DOWN);
// ASSERT(0);
}
ASSERT(Value & LASI_STATUS_LS_ALARM);
// Now get and set the link state
LinkState = sxg_get_link_state(adapter);
sxg_link_state(adapter, LinkState);
DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
} else {
// XXXTODO - Assuming Link Attention is only being generated for the
// Link Alarm pin (and not for a XAUI Link Status change), then it's
// impossible to get here. Yet we've gotten here twice (under extreme
// conditions - bouncing the link up and down many times a second).
// Needs further investigation.
DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
// ASSERT(0);
}
DBG_ERROR("EXIT %s\n", __FUNCTION__);
}
/*
* sxg_get_link_state - Determine if the link is up or down
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* Link State
*/
static SXG_LINK_STATE sxg_get_link_state(p_adapter_t adapter)
{
int status;
u32 Value;
DBG_ERROR("ENTER %s\n", __FUNCTION__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
adapter, 0, 0, 0);
// Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
// the following 3 bits (from 3 different MDIO registers) are all true.
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
PHY_PMA_RCV_DET, // PMA/PMD Receive Signal Detect register
&Value);
if (status != STATUS_SUCCESS)
goto bad;
// If PMA/PMD receive signal detect is 0, then the link is down
if (!(Value & PMA_RCV_DETECT))
return (SXG_LINK_DOWN);
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS, // PHY PCS module
PHY_PCS_10G_STATUS1, // PCS 10GBASE-R Status 1 register
&Value);
if (status != STATUS_SUCCESS)
goto bad;
// If PCS is not locked to receive blocks, then the link is down
if (!(Value & PCS_10B_BLOCK_LOCK))
return (SXG_LINK_DOWN);
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS, // PHY XS module
PHY_XS_LANE_STATUS, // XS Lane Status register
&Value);
if (status != STATUS_SUCCESS)
goto bad;
// If XS transmit lanes are not aligned, then the link is down
if (!(Value & XS_LANE_ALIGN))
return (SXG_LINK_DOWN);
// All 3 bits are true, so the link is up
DBG_ERROR("EXIT %s\n", __FUNCTION__);
return (SXG_LINK_UP);
bad:
// An error occurred reading an MDIO register. This shouldn't happen.
DBG_ERROR("Error reading an MDIO register!\n");
ASSERT(0);
return (SXG_LINK_DOWN);
}
static void sxg_indicate_link_state(p_adapter_t adapter,
SXG_LINK_STATE LinkState)
{
if (adapter->LinkState == SXG_LINK_UP) {
DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
__FUNCTION__);
netif_start_queue(adapter->netdev);
} else {
DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
__FUNCTION__);
netif_stop_queue(adapter->netdev);
}
}
/*
* sxg_link_state - Set the link state and if necessary, indicate.
* This routine the central point of processing for all link state changes.
* Nothing else in the driver should alter the link state or perform
* link state indications
*
* Arguments -
* adapter - A pointer to our adapter structure
* LinkState - The link state
*
* Return
* None
*/
static void sxg_link_state(p_adapter_t adapter, SXG_LINK_STATE LinkState)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
adapter, LinkState, adapter->LinkState, adapter->State);
DBG_ERROR("ENTER %s\n", __FUNCTION__);
// Hold the adapter lock during this routine. Maybe move
// the lock to the caller.
spin_lock(&adapter->AdapterLock);
if (LinkState == adapter->LinkState) {
// Nothing changed..
spin_unlock(&adapter->AdapterLock);
DBG_ERROR("EXIT #0 %s\n", __FUNCTION__);
return;
}
// Save the adapter state
adapter->LinkState = LinkState;
// Drop the lock and indicate link state
spin_unlock(&adapter->AdapterLock);
DBG_ERROR("EXIT #1 %s\n", __FUNCTION__);
sxg_indicate_link_state(adapter, LinkState);
}
/*
* sxg_write_mdio_reg - Write to a register on the MDIO bus
*
* Arguments -
* adapter - A pointer to our adapter structure
* DevAddr - MDIO device number being addressed
* RegAddr - register address for the specified MDIO device
* Value - value to write to the MDIO register
*
* Return
* status
*/
static int sxg_write_mdio_reg(p_adapter_t adapter,
u32 DevAddr, u32 RegAddr, u32 Value)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
u32 AddrOp; // Address operation (written to MIIM field reg)
u32 WriteOp; // Write operation (written to MIIM field reg)
u32 Cmd; // Command (written to MIIM command reg)
u32 ValueRead;
u32 Timeout;
// DBG_ERROR("ENTER %s\n", __FUNCTION__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
adapter, 0, 0, 0);
// Ensure values don't exceed field width
DevAddr &= 0x001F; // 5-bit field
RegAddr &= 0xFFFF; // 16-bit field
Value &= 0xFFFF; // 16-bit field
// Set MIIM field register bits for an MIIM address operation
AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
// Set MIIM field register bits for an MIIM write operation
WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
// Set MIIM command register bits to execute an MIIM command
Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
// Reset the command register command bit (in case it's not 0)
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set the address of the specified MDIO register
WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
// Write to MIIM Command Register to execute to address operation
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// Reset the command register command bit
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set up an MDIO write operation
WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
// Write to MIIM Command Register to execute the write operation
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// DBG_ERROR("EXIT %s\n", __FUNCTION__);
return (STATUS_SUCCESS);
}
/*
* sxg_read_mdio_reg - Read a register on the MDIO bus
*
* Arguments -
* adapter - A pointer to our adapter structure
* DevAddr - MDIO device number being addressed
* RegAddr - register address for the specified MDIO device
* pValue - pointer to where to put data read from the MDIO register
*
* Return
* status
*/
static int sxg_read_mdio_reg(p_adapter_t adapter,
u32 DevAddr, u32 RegAddr, u32 *pValue)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
u32 AddrOp; // Address operation (written to MIIM field reg)
u32 ReadOp; // Read operation (written to MIIM field reg)
u32 Cmd; // Command (written to MIIM command reg)
u32 ValueRead;
u32 Timeout;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
adapter, 0, 0, 0);
// DBG_ERROR("ENTER %s\n", __FUNCTION__);
// Ensure values don't exceed field width
DevAddr &= 0x001F; // 5-bit field
RegAddr &= 0xFFFF; // 16-bit field
// Set MIIM field register bits for an MIIM address operation
AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
// Set MIIM field register bits for an MIIM read operation
ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
// Set MIIM command register bits to execute an MIIM command
Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
// Reset the command register command bit (in case it's not 0)
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set the address of the specified MDIO register
WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
// Write to MIIM Command Register to execute to address operation
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// Reset the command register command bit
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set up an MDIO register read operation
WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
// Write to MIIM Command Register to execute the read operation
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// Read the MDIO register data back from the field register
READ_REG(HwRegs->MacAmiimField, *pValue);
*pValue &= 0xFFFF; // data is in the lower 16 bits
// DBG_ERROR("EXIT %s\n", __FUNCTION__);
return (STATUS_SUCCESS);
}
/*
* Allocate a mcast_address structure to hold the multicast address.
* Link it in.
*/
static int sxg_mcast_add_list(p_adapter_t adapter, char *address)
{
p_mcast_address_t mcaddr, mlist;
bool equaladdr;
/* Check to see if it already exists */
mlist = adapter->mcastaddrs;
while (mlist) {
ETHER_EQ_ADDR(mlist->address, address, equaladdr);
if (equaladdr) {
return (STATUS_SUCCESS);
}
mlist = mlist->next;
}
/* Doesn't already exist. Allocate a structure to hold it */
mcaddr = kmalloc(sizeof(mcast_address_t), GFP_ATOMIC);
if (mcaddr == NULL)
return 1;
memcpy(mcaddr->address, address, 6);
mcaddr->next = adapter->mcastaddrs;
adapter->mcastaddrs = mcaddr;
return (STATUS_SUCCESS);
}
/*
* Functions to obtain the CRC corresponding to the destination mac address.
* This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
* the polynomial:
* x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1.
*
* After the CRC for the 6 bytes is generated (but before the value is complemented),
* we must then transpose the value and return bits 30-23.
*
*/
static u32 sxg_crc_table[256]; /* Table of CRC's for all possible byte values */
static u32 sxg_crc_init; /* Is table initialized */
/*
* Contruct the CRC32 table
*/
static void sxg_mcast_init_crc32(void)
{
u32 c; /* CRC shit reg */
u32 e = 0; /* Poly X-or pattern */
int i; /* counter */
int k; /* byte being shifted into crc */
static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
for (i = 0; i < sizeof(p) / sizeof(int); i++) {
e |= 1L << (31 - p[i]);
}
for (i = 1; i < 256; i++) {
c = i;
for (k = 8; k; k--) {
c = c & 1 ? (c >> 1) ^ e : c >> 1;
}
sxg_crc_table[i] = c;
}
}
/*
* Return the MAC hast as described above.
*/
static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
{
u32 crc;
char *p;
int i;
unsigned char machash = 0;
if (!sxg_crc_init) {
sxg_mcast_init_crc32();
sxg_crc_init = 1;
}
crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
for (i = 0, p = macaddr; i < 6; ++p, ++i) {
crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
}
/* Return bits 1-8, transposed */
for (i = 1; i < 9; i++) {
machash |= (((crc >> i) & 1) << (8 - i));
}
return (machash);
}
static void sxg_mcast_set_bit(p_adapter_t adapter, char *address)
{
unsigned char crcpoly;
/* Get the CRC polynomial for the mac address */
crcpoly = sxg_mcast_get_mac_hash(address);
/* We only have space on the SLIC for 64 entries. Lop
* off the top two bits. (2^6 = 64)
*/
crcpoly &= 0x3F;
/* OR in the new bit into our 64 bit mask. */
adapter->MulticastMask |= (u64) 1 << crcpoly;
}
static void sxg_mcast_set_list(p_net_device dev)
{
#if XXXTODO
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
int status = STATUS_SUCCESS;
int i;
char *addresses;
struct dev_mc_list *mc_list = dev->mc_list;
int mc_count = dev->mc_count;
ASSERT(adapter);
for (i = 1; i <= mc_count; i++) {
addresses = (char *)&mc_list->dmi_addr;
if (mc_list->dmi_addrlen == 6) {
status = sxg_mcast_add_list(adapter, addresses);
if (status != STATUS_SUCCESS) {
break;
}
} else {
status = -EINVAL;
break;
}
sxg_mcast_set_bit(adapter, addresses);
mc_list = mc_list->next;
}
DBG_ERROR("%s a->devflags_prev[%x] dev->flags[%x] status[%x]\n",
__FUNCTION__, adapter->devflags_prev, dev->flags, status);
if (adapter->devflags_prev != dev->flags) {
adapter->macopts = MAC_DIRECTED;
if (dev->flags) {
if (dev->flags & IFF_BROADCAST) {
adapter->macopts |= MAC_BCAST;
}
if (dev->flags & IFF_PROMISC) {
adapter->macopts |= MAC_PROMISC;
}
if (dev->flags & IFF_ALLMULTI) {
adapter->macopts |= MAC_ALLMCAST;
}
if (dev->flags & IFF_MULTICAST) {
adapter->macopts |= MAC_MCAST;
}
}
adapter->devflags_prev = dev->flags;
DBG_ERROR("%s call sxg_config_set adapter->macopts[%x]\n",
__FUNCTION__, adapter->macopts);
sxg_config_set(adapter, TRUE);
} else {
if (status == STATUS_SUCCESS) {
sxg_mcast_set_mask(adapter);
}
}
#endif
return;
}
static void sxg_mcast_set_mask(p_adapter_t adapter)
{
PSXG_UCODE_REGS sxg_regs = adapter->UcodeRegs;
DBG_ERROR("%s ENTER (%s) macopts[%x] mask[%llx]\n", __FUNCTION__,
adapter->netdev->name, (unsigned int)adapter->MacFilter,
adapter->MulticastMask);
if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
/* Turn on all multicast addresses. We have to do this for promiscuous
* mode as well as ALLMCAST mode. It saves the Microcode from having
* to keep state about the MAC configuration.
*/
// DBG_ERROR("sxg: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n SLUT MODE!!!\n",__FUNCTION__);
WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
// DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high 0xFFFFFFFF\n",__FUNCTION__, adapter->netdev->name);
} else {
/* Commit our multicast mast to the SLIC by writing to the multicast
* address mask registers
*/
DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
__FUNCTION__, adapter->netdev->name,
((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
((ulong)
((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
WRITE_REG(sxg_regs->McastLow,
(u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
WRITE_REG(sxg_regs->McastHigh,
(u32) ((adapter->
MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
}
}
static void sxg_unmap_mmio_space(p_adapter_t adapter)
{
#if LINUX_FREES_ADAPTER_RESOURCES
// if (adapter->Regs) {
// iounmap(adapter->Regs);
// }
// adapter->slic_regs = NULL;
#endif
}
#if XXXTODO
/*
* SxgFreeResources - Free everything allocated in SxgAllocateResources
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* none
*/
void SxgFreeResources(p_adapter_t adapter)
{
u32 RssIds, IsrCount;
PTCP_OBJECT TcpObject;
u32 i;
BOOLEAN TimerCancelled;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FreeRes",
adapter, adapter->MaxTcbs, 0, 0);
RssIds = SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->MsiEnabled ? RssIds : 1;
if (adapter->BasicAllocations == FALSE) {
// No allocations have been made, including spinlocks,
// or listhead initializations. Return.
return;
}
if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
SxgFreeRcvBlocks(adapter);
}
if (!(IsListEmpty(&adapter->AllSglBuffers))) {
SxgFreeSglBuffers(adapter);
}
// Free event queues.
if (adapter->EventRings) {
pci_free_consistent(adapter->pcidev,
sizeof(SXG_EVENT_RING) * RssIds,
adapter->EventRings, adapter->PEventRings);
}
if (adapter->Isr) {
pci_free_consistent(adapter->pcidev,
sizeof(u32) * IsrCount,
adapter->Isr, adapter->PIsr);
}
if (adapter->XmtRingZeroIndex) {
pci_free_consistent(adapter->pcidev,
sizeof(u32),
adapter->XmtRingZeroIndex,
adapter->PXmtRingZeroIndex);
}
if (adapter->IndirectionTable) {
pci_free_consistent(adapter->pcidev,
SXG_MAX_RSS_TABLE_SIZE,
adapter->IndirectionTable,
adapter->PIndirectionTable);
}
SXG_FREE_PACKET_POOL(adapter->PacketPoolHandle);
SXG_FREE_BUFFER_POOL(adapter->BufferPoolHandle);
// Unmap register spaces
SxgUnmapResources(adapter);
// Deregister DMA
if (adapter->DmaHandle) {
SXG_DEREGISTER_DMA(adapter->DmaHandle);
}
// Deregister interrupt
SxgDeregisterInterrupt(adapter);
// Possibly free system info (5.2 only)
SXG_RELEASE_SYSTEM_INFO(adapter);
SxgDiagFreeResources(adapter);
SxgFreeMCastAddrs(adapter);
if (SXG_TIMER_ALLOCATED(adapter->ResetTimer)) {
SXG_CANCEL_TIMER(adapter->ResetTimer, TimerCancelled);
SXG_FREE_TIMER(adapter->ResetTimer);
}
if (SXG_TIMER_ALLOCATED(adapter->RssTimer)) {
SXG_CANCEL_TIMER(adapter->RssTimer, TimerCancelled);
SXG_FREE_TIMER(adapter->RssTimer);
}
if (SXG_TIMER_ALLOCATED(adapter->OffloadTimer)) {
SXG_CANCEL_TIMER(adapter->OffloadTimer, TimerCancelled);
SXG_FREE_TIMER(adapter->OffloadTimer);
}
adapter->BasicAllocations = FALSE;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFreeRes",
adapter, adapter->MaxTcbs, 0, 0);
}
#endif
/*
* sxg_allocate_complete -
*
* This routine is called when a memory allocation has completed.
*
* Arguments -
* p_adapter_t - Our adapter structure
* VirtualAddress - Memory virtual address
* PhysicalAddress - Memory physical address
* Length - Length of memory allocated (or 0)
* Context - The type of buffer allocated
*
* Return
* None.
*/
static void sxg_allocate_complete(p_adapter_t adapter,
void *VirtualAddress,
dma_addr_t PhysicalAddress,
u32 Length, SXG_BUFFER_TYPE Context)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
adapter, VirtualAddress, Length, Context);
ASSERT(adapter->AllocationsPending);
--adapter->AllocationsPending;
switch (Context) {
case SXG_BUFFER_TYPE_RCV:
sxg_allocate_rcvblock_complete(adapter,
VirtualAddress,
PhysicalAddress, Length);
break;
case SXG_BUFFER_TYPE_SGL:
sxg_allocate_sgl_buffer_complete(adapter, (PSXG_SCATTER_GATHER)
VirtualAddress,
PhysicalAddress, Length);
break;
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
adapter, VirtualAddress, Length, Context);
}
/*
* sxg_allocate_buffer_memory - Shared memory allocation routine used for
* synchronous and asynchronous buffer allocations
*
* Arguments -
* adapter - A pointer to our adapter structure
* Size - block size to allocate
* BufferType - Type of buffer to allocate
*
* Return
* int
*/
static int sxg_allocate_buffer_memory(p_adapter_t adapter,
u32 Size, SXG_BUFFER_TYPE BufferType)
{
int status;
void *Buffer;
dma_addr_t pBuffer;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
adapter, Size, BufferType, 0);
// Grab the adapter lock and check the state.
// If we're in anything other than INITIALIZING or
// RUNNING state, fail. This is to prevent
// allocations in an improper driver state
spin_lock(&adapter->AdapterLock);
// Increment the AllocationsPending count while holding
// the lock. Pause processing relies on this
++adapter->AllocationsPending;
spin_unlock(&adapter->AdapterLock);
// At initialization time allocate resources synchronously.
Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
if (Buffer == NULL) {
spin_lock(&adapter->AdapterLock);
// Decrement the AllocationsPending count while holding
// the lock. Pause processing relies on this
--adapter->AllocationsPending;
spin_unlock(&adapter->AdapterLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
adapter, Size, BufferType, 0);
return (STATUS_RESOURCES);
}
sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
status = STATUS_SUCCESS;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
adapter, Size, BufferType, status);
return (status);
}
/*
* sxg_allocate_rcvblock_complete - Complete a receive descriptor block allocation
*
* Arguments -
* adapter - A pointer to our adapter structure
* RcvBlock - receive block virtual address
* PhysicalAddress - Physical address
* Length - Memory length
*
* Return
*
*/
static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
void *RcvBlock,
dma_addr_t PhysicalAddress,
u32 Length)
{
u32 i;
u32 BufferSize = adapter->ReceiveBufferSize;
u64 Paddr;
PSXG_RCV_BLOCK_HDR RcvBlockHdr;
unsigned char *RcvDataBuffer;
PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr;
PSXG_RCV_DESCRIPTOR_BLOCK RcvDescriptorBlock;
PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
adapter, RcvBlock, Length, 0);
if (RcvBlock == NULL) {
goto fail;
}
memset(RcvBlock, 0, Length);
ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
(BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
ASSERT(Length == SXG_RCV_BLOCK_SIZE(BufferSize));
// First, initialize the contained pool of receive data
// buffers. This initialization requires NBL/NB/MDL allocations,
// If any of them fail, free the block and return without
// queueing the shared memory
RcvDataBuffer = RcvBlock;
#if 0
for (i = 0, Paddr = *PhysicalAddress;
i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, Paddr.LowPart += BufferSize, RcvDataBuffer += BufferSize)
#endif
for (i = 0, Paddr = PhysicalAddress;
i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, Paddr += BufferSize, RcvDataBuffer += BufferSize) {
//
RcvDataBufferHdr =
(PSXG_RCV_DATA_BUFFER_HDR) (RcvDataBuffer +
SXG_RCV_DATA_BUFFER_HDR_OFFSET
(BufferSize));
RcvDataBufferHdr->VirtualAddress = RcvDataBuffer;
RcvDataBufferHdr->PhysicalAddress = Paddr;
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM; // For FREE macro assertion
RcvDataBufferHdr->Size =
SXG_RCV_BUFFER_DATA_SIZE(BufferSize);
SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr);
if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
goto fail;
}
// Place this entire block of memory on the AllRcvBlocks queue so it can be
// free later
RcvBlockHdr =
(PSXG_RCV_BLOCK_HDR) ((unsigned char *)RcvBlock +
SXG_RCV_BLOCK_HDR_OFFSET(BufferSize));
RcvBlockHdr->VirtualAddress = RcvBlock;
RcvBlockHdr->PhysicalAddress = PhysicalAddress;
spin_lock(&adapter->RcvQLock);
adapter->AllRcvBlockCount++;
InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
spin_unlock(&adapter->RcvQLock);
// Now free the contained receive data buffers that we initialized above
RcvDataBuffer = RcvBlock;
for (i = 0, Paddr = PhysicalAddress;
i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, Paddr += BufferSize, RcvDataBuffer += BufferSize) {
RcvDataBufferHdr = (PSXG_RCV_DATA_BUFFER_HDR) (RcvDataBuffer +
SXG_RCV_DATA_BUFFER_HDR_OFFSET
(BufferSize));
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
spin_unlock(&adapter->RcvQLock);
}
// Locate the descriptor block and put it on a separate free queue
RcvDescriptorBlock =
(PSXG_RCV_DESCRIPTOR_BLOCK) ((unsigned char *)RcvBlock +
SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
(BufferSize));
RcvDescriptorBlockHdr =
(PSXG_RCV_DESCRIPTOR_BLOCK_HDR) ((unsigned char *)RcvBlock +
SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
(BufferSize));
RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
spin_unlock(&adapter->RcvQLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
adapter, RcvBlock, Length, 0);
return;
fail:
// Free any allocated resources
if (RcvBlock) {
RcvDataBuffer = RcvBlock;
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, RcvDataBuffer += BufferSize) {
RcvDataBufferHdr =
(PSXG_RCV_DATA_BUFFER_HDR) (RcvDataBuffer +
SXG_RCV_DATA_BUFFER_HDR_OFFSET
(BufferSize));
SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
}
pci_free_consistent(adapter->pcidev,
Length, RcvBlock, PhysicalAddress);
}
DBG_ERROR("%s: OUT OF RESOURCES\n", __FUNCTION__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
adapter, adapter->FreeRcvBufferCount,
adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
adapter->Stats.NoMem++;
}
/*
* sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
*
* Arguments -
* adapter - A pointer to our adapter structure
* SxgSgl - SXG_SCATTER_GATHER buffer
* PhysicalAddress - Physical address
* Length - Memory length
*
* Return
*
*/
static void sxg_allocate_sgl_buffer_complete(p_adapter_t adapter,
PSXG_SCATTER_GATHER SxgSgl,
dma_addr_t PhysicalAddress,
u32 Length)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
adapter, SxgSgl, Length, 0);
spin_lock(&adapter->SglQLock);
adapter->AllSglBufferCount++;
memset(SxgSgl, 0, sizeof(SXG_SCATTER_GATHER));
SxgSgl->PhysicalAddress = PhysicalAddress; /* *PhysicalAddress; */
SxgSgl->adapter = adapter; // Initialize backpointer once
InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
spin_unlock(&adapter->SglQLock);
SxgSgl->State = SXG_BUFFER_BUSY;
SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
adapter, SxgSgl, Length, 0);
}
static unsigned char temp_mac_address[6] =
{ 0x00, 0xab, 0xcd, 0xef, 0x12, 0x69 };
static void sxg_adapter_set_hwaddr(p_adapter_t adapter)
{
// DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] funct#[%d]\n", __FUNCTION__,
// card->config_set, adapter->port, adapter->physport, adapter->functionnumber);
//
// sxg_dbg_macaddrs(adapter);
memcpy(adapter->macaddr, temp_mac_address, sizeof(SXG_CONFIG_MAC));
// DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n", __FUNCTION__);
// sxg_dbg_macaddrs(adapter);
if (!(adapter->currmacaddr[0] ||
adapter->currmacaddr[1] ||
adapter->currmacaddr[2] ||
adapter->currmacaddr[3] ||
adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
memcpy(adapter->currmacaddr, adapter->macaddr, 6);
}
if (adapter->netdev) {
memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
}
// DBG_ERROR ("%s EXIT port %d\n", __FUNCTION__, adapter->port);
sxg_dbg_macaddrs(adapter);
}
static int sxg_mac_set_address(p_net_device dev, void *ptr)
{
#if XXXTODO
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
struct sockaddr *addr = ptr;
DBG_ERROR("%s ENTER (%s)\n", __FUNCTION__, adapter->netdev->name);
if (netif_running(dev)) {
return -EBUSY;
}
if (!adapter) {
return -EBUSY;
}
DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
__FUNCTION__, adapter->netdev->name, adapter->currmacaddr[0],
adapter->currmacaddr[1], adapter->currmacaddr[2],
adapter->currmacaddr[3], adapter->currmacaddr[4],
adapter->currmacaddr[5]);
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
__FUNCTION__, adapter->netdev->name, adapter->currmacaddr[0],
adapter->currmacaddr[1], adapter->currmacaddr[2],
adapter->currmacaddr[3], adapter->currmacaddr[4],
adapter->currmacaddr[5]);
sxg_config_set(adapter, TRUE);
#endif
return 0;
}
/*****************************************************************************/
/************* SXG DRIVER FUNCTIONS (below) ********************************/
/*****************************************************************************/
/*
* sxg_initialize_adapter - Initialize adapter
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* int
*/
static int sxg_initialize_adapter(p_adapter_t adapter)
{
u32 RssIds, IsrCount;
u32 i;
int status;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
adapter, 0, 0, 0);
RssIds = 1; // XXXTODO SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->MsiEnabled ? RssIds : 1;
// Sanity check SXG_UCODE_REGS structure definition to
// make sure the length is correct
ASSERT(sizeof(SXG_UCODE_REGS) == SXG_REGISTER_SIZE_PER_CPU);
// Disable interrupts
SXG_DISABLE_ALL_INTERRUPTS(adapter);
// Set MTU
ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
(adapter->FrameSize == JUMBOMAXFRAME));
WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
// Set event ring base address and size
WRITE_REG64(adapter,
adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
// Per-ISR initialization
for (i = 0; i < IsrCount; i++) {
u64 Addr;
// Set interrupt status pointer
Addr = adapter->PIsr + (i * sizeof(u32));
WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
}
// XMT ring zero index
WRITE_REG64(adapter,
adapter->UcodeRegs[0].SPSendIndex,
adapter->PXmtRingZeroIndex, 0);
// Per-RSS initialization
for (i = 0; i < RssIds; i++) {
// Release all event ring entries to the Microcode
WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
TRUE);
}
// Transmit ring base and size
WRITE_REG64(adapter,
adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
// Receive ring base and size
WRITE_REG64(adapter,
adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
WRITE_REG(adapter->UcodeRegs[0].RcvSize, SXG_RCV_RING_SIZE, TRUE);
// Populate the card with receive buffers
sxg_stock_rcv_buffers(adapter);
// Initialize checksum offload capabilities. At the moment
// we always enable IP and TCP receive checksums on the card.
// Depending on the checksum configuration specified by the
// user, we can choose to report or ignore the checksum
// information provided by the card.
WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
// Initialize the MAC, XAUI
DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __FUNCTION__);
status = sxg_initialize_link(adapter);
DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __FUNCTION__,
status);
if (status != STATUS_SUCCESS) {
return (status);
}
// Initialize Dead to FALSE.
// SlicCheckForHang or SlicDumpThread will take it from here.
adapter->Dead = FALSE;
adapter->PingOutstanding = FALSE;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
adapter, 0, 0, 0);
return (STATUS_SUCCESS);
}
/*
* sxg_fill_descriptor_block - Populate a descriptor block and give it to
* the card. The caller should hold the RcvQLock
*
* Arguments -
* adapter - A pointer to our adapter structure
* RcvDescriptorBlockHdr - Descriptor block to fill
*
* Return
* status
*/
static int sxg_fill_descriptor_block(p_adapter_t adapter,
PSXG_RCV_DESCRIPTOR_BLOCK_HDR
RcvDescriptorBlockHdr)
{
u32 i;
PSXG_RING_INFO RcvRingInfo = &adapter->RcvRingZeroInfo;
PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr;
PSXG_RCV_DESCRIPTOR_BLOCK RcvDescriptorBlock;
PSXG_CMD RingDescriptorCmd;
PSXG_RCV_RING RingZero = &adapter->RcvRings[0];
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
ASSERT(RcvDescriptorBlockHdr);
// If we don't have the resources to fill the descriptor block,
// return failure
if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
SXG_RING_FULL(RcvRingInfo)) {
adapter->Stats.NoMem++;
return (STATUS_FAILURE);
}
// Get a ring descriptor command
SXG_GET_CMD(RingZero,
RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
ASSERT(RingDescriptorCmd);
RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
RcvDescriptorBlock =
(PSXG_RCV_DESCRIPTOR_BLOCK) RcvDescriptorBlockHdr->VirtualAddress;
// Fill in the descriptor block
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
ASSERT(RcvDataBufferHdr);
SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
RcvDescriptorBlock->Descriptors[i].VirtualAddress =
(void *)RcvDataBufferHdr;
RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
RcvDataBufferHdr->PhysicalAddress;
}
// Add the descriptor block to receive descriptor ring 0
RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
// RcvBuffersOnCard is not protected via the receive lock (see
// sxg_process_event_queue) We don't want to grap a lock every time a
// buffer is returned to us, so we use atomic interlocked functions
// instead.
adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
RcvDescriptorBlockHdr,
RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
return (STATUS_SUCCESS);
}
/*
* sxg_stock_rcv_buffers - Stock the card with receive buffers
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* None
*/
static void sxg_stock_rcv_buffers(p_adapter_t adapter)
{
PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
// First, see if we've got less than our minimum threshold of
// receive buffers, there isn't an allocation in progress, and
// we haven't exceeded our maximum.. get another block of buffers
// None of this needs to be SMP safe. It's round numbers.
if ((adapter->FreeRcvBufferCount < SXG_MIN_RCV_DATA_BUFFERS) &&
(adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
(adapter->AllocationsPending == 0)) {
sxg_allocate_buffer_memory(adapter,
SXG_RCV_BLOCK_SIZE(adapter->
ReceiveBufferSize),
SXG_BUFFER_TYPE_RCV);
}
// Now grab the RcvQLock lock and proceed
spin_lock(&adapter->RcvQLock);
while (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
PLIST_ENTRY _ple;
// Get a descriptor block
RcvDescriptorBlockHdr = NULL;
if (adapter->FreeRcvBlockCount) {
_ple = RemoveHeadList(&adapter->FreeRcvBlocks);
RcvDescriptorBlockHdr =
container_of(_ple, SXG_RCV_DESCRIPTOR_BLOCK_HDR,
FreeList);
adapter->FreeRcvBlockCount--;
RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
}
if (RcvDescriptorBlockHdr == NULL) {
// Bail out..
adapter->Stats.NoMem++;
break;
}
// Fill in the descriptor block and give it to the card
if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
STATUS_FAILURE) {
// Free the descriptor block
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
RcvDescriptorBlockHdr);
break;
}
}
spin_unlock(&adapter->RcvQLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
}
/*
* sxg_complete_descriptor_blocks - Return descriptor blocks that have been
* completed by the microcode
*
* Arguments -
* adapter - A pointer to our adapter structure
* Index - Where the microcode is up to
*
* Return
* None
*/
static void sxg_complete_descriptor_blocks(p_adapter_t adapter,
unsigned char Index)
{
PSXG_RCV_RING RingZero = &adapter->RcvRings[0];
PSXG_RING_INFO RcvRingInfo = &adapter->RcvRingZeroInfo;
PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr;
PSXG_CMD RingDescriptorCmd;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
// Now grab the RcvQLock lock and proceed
spin_lock(&adapter->RcvQLock);
ASSERT(Index != RcvRingInfo->Tail);
while (RcvRingInfo->Tail != Index) {
//
// Locate the current Cmd (ring descriptor entry), and
// associated receive descriptor block, and advance
// the tail
//
SXG_RETURN_CMD(RingZero,
RcvRingInfo,
RingDescriptorCmd, RcvDescriptorBlockHdr);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
RcvRingInfo->Head, RcvRingInfo->Tail,
RingDescriptorCmd, RcvDescriptorBlockHdr);
// Clear the SGL field
RingDescriptorCmd->Sgl = 0;
// Attempt to refill it and hand it right back to the
// card. If we fail to refill it, free the descriptor block
// header. The card will be restocked later via the
// RcvBuffersOnCard test
if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
STATUS_FAILURE) {
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
RcvDescriptorBlockHdr);
}
}
spin_unlock(&adapter->RcvQLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
}
static struct pci_driver sxg_driver = {
.name = DRV_NAME,
.id_table = sxg_pci_tbl,
.probe = sxg_entry_probe,
.remove = sxg_entry_remove,
#if SXG_POWER_MANAGEMENT_ENABLED
.suspend = sxgpm_suspend,
.resume = sxgpm_resume,
#endif
/* .shutdown = slic_shutdown, MOOK_INVESTIGATE */
};
static int __init sxg_module_init(void)
{
sxg_init_driver();
if (debug >= 0)
sxg_debug = debug;
return pci_register_driver(&sxg_driver);
}
static void __exit sxg_module_cleanup(void)
{
pci_unregister_driver(&sxg_driver);
}
module_init(sxg_module_init);
module_exit(sxg_module_cleanup);