linux/arch/arm/lib/uaccess_with_memcpy.c

229 lines
5.2 KiB
C
Raw Normal View History

[ARM] alternative copy_to_user/clear_user implementation This implements {copy_to,clear}_user() by faulting in the userland pages and then using the regular kernel mem{cpy,set}() to copy the data (while holding the page table lock). This is a win if the regular mem{cpy,set}() implementations are faster than the user copy functions, which is the case e.g. on Feroceon, where 8-word STMs (which memcpy() uses under the right conditions) give significantly higher memory write throughput than a sequence of individual 32bit stores. Here are numbers for page sized buffers on some Feroceon cores: - copy_to_user on Orion5x goes from 51 MB/s to 83 MB/s - clear_user on Orion5x goes from 89MB/s to 314MB/s - copy_to_user on Kirkwood goes from 240 MB/s to 356 MB/s - clear_user on Kirkwood goes from 367 MB/s to 1108 MB/s - copy_to_user on Disco-Duo goes from 248 MB/s to 398 MB/s - clear_user on Disco-Duo goes from 328 MB/s to 1741 MB/s Because the setup cost is non negligible, this is worthwhile only if the amount of data to copy is large enough. The operation falls back to the standard implementation when the amount of data is below a certain threshold. This threshold was determined empirically, however some targets could benefit from a lower runtime determined value for optimal results eventually. In the copy_from_user() case, this technique does not provide any worthwhile performance gain due to the fact that any kind of read access allocates the cache and subsequent 32bit loads are just as fast as the equivalent 8-word LDM. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Nicolas Pitre <nico@marvell.com> Tested-by: Martin Michlmayr <tbm@cyrius.com>
2009-03-09 18:30:09 +00:00
/*
* linux/arch/arm/lib/uaccess_with_memcpy.c
*
* Written by: Lennert Buytenhek and Nicolas Pitre
* Copyright (C) 2009 Marvell Semiconductor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/ctype.h>
#include <linux/uaccess.h>
#include <linux/rwsem.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/hardirq.h> /* for in_atomic() */
#include <asm/current.h>
#include <asm/page.h>
static int
pin_page_for_write(const void __user *_addr, pte_t **ptep, spinlock_t **ptlp)
{
unsigned long addr = (unsigned long)_addr;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
spinlock_t *ptl;
pgd = pgd_offset(current->mm, addr);
if (unlikely(pgd_none(*pgd) || pgd_bad(*pgd)))
return 0;
pmd = pmd_offset(pgd, addr);
if (unlikely(pmd_none(*pmd) || pmd_bad(*pmd)))
return 0;
pte = pte_offset_map_lock(current->mm, pmd, addr, &ptl);
if (unlikely(!pte_present(*pte) || !pte_young(*pte) ||
!pte_write(*pte) || !pte_dirty(*pte))) {
pte_unmap_unlock(pte, ptl);
return 0;
}
*ptep = pte;
*ptlp = ptl;
return 1;
}
static unsigned long noinline
__copy_to_user_memcpy(void __user *to, const void *from, unsigned long n)
[ARM] alternative copy_to_user/clear_user implementation This implements {copy_to,clear}_user() by faulting in the userland pages and then using the regular kernel mem{cpy,set}() to copy the data (while holding the page table lock). This is a win if the regular mem{cpy,set}() implementations are faster than the user copy functions, which is the case e.g. on Feroceon, where 8-word STMs (which memcpy() uses under the right conditions) give significantly higher memory write throughput than a sequence of individual 32bit stores. Here are numbers for page sized buffers on some Feroceon cores: - copy_to_user on Orion5x goes from 51 MB/s to 83 MB/s - clear_user on Orion5x goes from 89MB/s to 314MB/s - copy_to_user on Kirkwood goes from 240 MB/s to 356 MB/s - clear_user on Kirkwood goes from 367 MB/s to 1108 MB/s - copy_to_user on Disco-Duo goes from 248 MB/s to 398 MB/s - clear_user on Disco-Duo goes from 328 MB/s to 1741 MB/s Because the setup cost is non negligible, this is worthwhile only if the amount of data to copy is large enough. The operation falls back to the standard implementation when the amount of data is below a certain threshold. This threshold was determined empirically, however some targets could benefit from a lower runtime determined value for optimal results eventually. In the copy_from_user() case, this technique does not provide any worthwhile performance gain due to the fact that any kind of read access allocates the cache and subsequent 32bit loads are just as fast as the equivalent 8-word LDM. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Nicolas Pitre <nico@marvell.com> Tested-by: Martin Michlmayr <tbm@cyrius.com>
2009-03-09 18:30:09 +00:00
{
int atomic;
if (unlikely(segment_eq(get_fs(), KERNEL_DS))) {
memcpy((void *)to, from, n);
return 0;
}
/* the mmap semaphore is taken only if not in an atomic context */
atomic = in_atomic();
if (!atomic)
down_read(&current->mm->mmap_sem);
while (n) {
pte_t *pte;
spinlock_t *ptl;
int tocopy;
while (!pin_page_for_write(to, &pte, &ptl)) {
if (!atomic)
up_read(&current->mm->mmap_sem);
if (__put_user(0, (char __user *)to))
goto out;
if (!atomic)
down_read(&current->mm->mmap_sem);
}
tocopy = (~(unsigned long)to & ~PAGE_MASK) + 1;
if (tocopy > n)
tocopy = n;
memcpy((void *)to, from, tocopy);
to += tocopy;
from += tocopy;
n -= tocopy;
pte_unmap_unlock(pte, ptl);
}
if (!atomic)
up_read(&current->mm->mmap_sem);
out:
return n;
}
unsigned long
__copy_to_user(void __user *to, const void *from, unsigned long n)
{
/*
* This test is stubbed out of the main function above to keep
* the overhead for small copies low by avoiding a large
* register dump on the stack just to reload them right away.
* With frame pointer disabled, tail call optimization kicks in
* as well making this test almost invisible.
*/
if (n < 64)
return __copy_to_user_std(to, from, n);
return __copy_to_user_memcpy(to, from, n);
}
static unsigned long noinline
__clear_user_memset(void __user *addr, unsigned long n)
[ARM] alternative copy_to_user/clear_user implementation This implements {copy_to,clear}_user() by faulting in the userland pages and then using the regular kernel mem{cpy,set}() to copy the data (while holding the page table lock). This is a win if the regular mem{cpy,set}() implementations are faster than the user copy functions, which is the case e.g. on Feroceon, where 8-word STMs (which memcpy() uses under the right conditions) give significantly higher memory write throughput than a sequence of individual 32bit stores. Here are numbers for page sized buffers on some Feroceon cores: - copy_to_user on Orion5x goes from 51 MB/s to 83 MB/s - clear_user on Orion5x goes from 89MB/s to 314MB/s - copy_to_user on Kirkwood goes from 240 MB/s to 356 MB/s - clear_user on Kirkwood goes from 367 MB/s to 1108 MB/s - copy_to_user on Disco-Duo goes from 248 MB/s to 398 MB/s - clear_user on Disco-Duo goes from 328 MB/s to 1741 MB/s Because the setup cost is non negligible, this is worthwhile only if the amount of data to copy is large enough. The operation falls back to the standard implementation when the amount of data is below a certain threshold. This threshold was determined empirically, however some targets could benefit from a lower runtime determined value for optimal results eventually. In the copy_from_user() case, this technique does not provide any worthwhile performance gain due to the fact that any kind of read access allocates the cache and subsequent 32bit loads are just as fast as the equivalent 8-word LDM. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Nicolas Pitre <nico@marvell.com> Tested-by: Martin Michlmayr <tbm@cyrius.com>
2009-03-09 18:30:09 +00:00
{
if (unlikely(segment_eq(get_fs(), KERNEL_DS))) {
memset((void *)addr, 0, n);
return 0;
}
down_read(&current->mm->mmap_sem);
while (n) {
pte_t *pte;
spinlock_t *ptl;
int tocopy;
while (!pin_page_for_write(addr, &pte, &ptl)) {
up_read(&current->mm->mmap_sem);
if (__put_user(0, (char __user *)addr))
goto out;
down_read(&current->mm->mmap_sem);
}
tocopy = (~(unsigned long)addr & ~PAGE_MASK) + 1;
if (tocopy > n)
tocopy = n;
memset((void *)addr, 0, tocopy);
addr += tocopy;
n -= tocopy;
pte_unmap_unlock(pte, ptl);
}
up_read(&current->mm->mmap_sem);
out:
return n;
}
unsigned long __clear_user(void __user *addr, unsigned long n)
{
/* See rational for this in __copy_to_user() above. */
if (n < 64)
return __clear_user_std(addr, n);
return __clear_user_memset(addr, n);
}
#if 0
/*
* This code is disabled by default, but kept around in case the chosen
* thresholds need to be revalidated. Some overhead (small but still)
* would be implied by a runtime determined variable threshold, and
* so far the measurement on concerned targets didn't show a worthwhile
* variation.
*
* Note that a fairly precise sched_clock() implementation is needed
* for results to make some sense.
*/
#include <linux/vmalloc.h>
static int __init test_size_treshold(void)
{
struct page *src_page, *dst_page;
void *user_ptr, *kernel_ptr;
unsigned long long t0, t1, t2;
int size, ret;
ret = -ENOMEM;
src_page = alloc_page(GFP_KERNEL);
if (!src_page)
goto no_src;
dst_page = alloc_page(GFP_KERNEL);
if (!dst_page)
goto no_dst;
kernel_ptr = page_address(src_page);
user_ptr = vmap(&dst_page, 1, VM_IOREMAP, __pgprot(__P010));
if (!user_ptr)
goto no_vmap;
/* warm up the src page dcache */
ret = __copy_to_user_memcpy(user_ptr, kernel_ptr, PAGE_SIZE);
for (size = PAGE_SIZE; size >= 4; size /= 2) {
t0 = sched_clock();
ret |= __copy_to_user_memcpy(user_ptr, kernel_ptr, size);
t1 = sched_clock();
ret |= __copy_to_user_std(user_ptr, kernel_ptr, size);
t2 = sched_clock();
printk("copy_to_user: %d %llu %llu\n", size, t1 - t0, t2 - t1);
}
for (size = PAGE_SIZE; size >= 4; size /= 2) {
t0 = sched_clock();
ret |= __clear_user_memset(user_ptr, size);
t1 = sched_clock();
ret |= __clear_user_std(user_ptr, size);
t2 = sched_clock();
printk("clear_user: %d %llu %llu\n", size, t1 - t0, t2 - t1);
}
if (ret)
ret = -EFAULT;
vunmap(user_ptr);
no_vmap:
put_page(dst_page);
no_dst:
put_page(src_page);
no_src:
return ret;
}
subsys_initcall(test_size_treshold);
#endif