680 lines
18 KiB
C
680 lines
18 KiB
C
|
/*
|
||
|
* Copyright (c) 2007 Oracle. All rights reserved.
|
||
|
*
|
||
|
* This software is available to you under a choice of one of two
|
||
|
* licenses. You may choose to be licensed under the terms of the GNU
|
||
|
* General Public License (GPL) Version 2, available from the file
|
||
|
* COPYING in the main directory of this source tree, or the
|
||
|
* OpenIB.org BSD license below:
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or
|
||
|
* without modification, are permitted provided that the following
|
||
|
* conditions are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer.
|
||
|
*
|
||
|
* - Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials
|
||
|
* provided with the distribution.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*
|
||
|
*/
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/rbtree.h>
|
||
|
#include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
|
||
|
|
||
|
#include "rdma.h"
|
||
|
|
||
|
/*
|
||
|
* XXX
|
||
|
* - build with sparse
|
||
|
* - should we limit the size of a mr region? let transport return failure?
|
||
|
* - should we detect duplicate keys on a socket? hmm.
|
||
|
* - an rdma is an mlock, apply rlimit?
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* get the number of pages by looking at the page indices that the start and
|
||
|
* end addresses fall in.
|
||
|
*
|
||
|
* Returns 0 if the vec is invalid. It is invalid if the number of bytes
|
||
|
* causes the address to wrap or overflows an unsigned int. This comes
|
||
|
* from being stored in the 'length' member of 'struct scatterlist'.
|
||
|
*/
|
||
|
static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
|
||
|
{
|
||
|
if ((vec->addr + vec->bytes <= vec->addr) ||
|
||
|
(vec->bytes > (u64)UINT_MAX))
|
||
|
return 0;
|
||
|
|
||
|
return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
|
||
|
(vec->addr >> PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
|
||
|
struct rds_mr *insert)
|
||
|
{
|
||
|
struct rb_node **p = &root->rb_node;
|
||
|
struct rb_node *parent = NULL;
|
||
|
struct rds_mr *mr;
|
||
|
|
||
|
while (*p) {
|
||
|
parent = *p;
|
||
|
mr = rb_entry(parent, struct rds_mr, r_rb_node);
|
||
|
|
||
|
if (key < mr->r_key)
|
||
|
p = &(*p)->rb_left;
|
||
|
else if (key > mr->r_key)
|
||
|
p = &(*p)->rb_right;
|
||
|
else
|
||
|
return mr;
|
||
|
}
|
||
|
|
||
|
if (insert) {
|
||
|
rb_link_node(&insert->r_rb_node, parent, p);
|
||
|
rb_insert_color(&insert->r_rb_node, root);
|
||
|
atomic_inc(&insert->r_refcount);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Destroy the transport-specific part of a MR.
|
||
|
*/
|
||
|
static void rds_destroy_mr(struct rds_mr *mr)
|
||
|
{
|
||
|
struct rds_sock *rs = mr->r_sock;
|
||
|
void *trans_private = NULL;
|
||
|
unsigned long flags;
|
||
|
|
||
|
rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
|
||
|
mr->r_key, atomic_read(&mr->r_refcount));
|
||
|
|
||
|
if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
|
||
|
return;
|
||
|
|
||
|
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
|
||
|
if (!RB_EMPTY_NODE(&mr->r_rb_node))
|
||
|
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
|
||
|
trans_private = mr->r_trans_private;
|
||
|
mr->r_trans_private = NULL;
|
||
|
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
|
||
|
|
||
|
if (trans_private)
|
||
|
mr->r_trans->free_mr(trans_private, mr->r_invalidate);
|
||
|
}
|
||
|
|
||
|
void __rds_put_mr_final(struct rds_mr *mr)
|
||
|
{
|
||
|
rds_destroy_mr(mr);
|
||
|
kfree(mr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* By the time this is called we can't have any more ioctls called on
|
||
|
* the socket so we don't need to worry about racing with others.
|
||
|
*/
|
||
|
void rds_rdma_drop_keys(struct rds_sock *rs)
|
||
|
{
|
||
|
struct rds_mr *mr;
|
||
|
struct rb_node *node;
|
||
|
|
||
|
/* Release any MRs associated with this socket */
|
||
|
while ((node = rb_first(&rs->rs_rdma_keys))) {
|
||
|
mr = container_of(node, struct rds_mr, r_rb_node);
|
||
|
if (mr->r_trans == rs->rs_transport)
|
||
|
mr->r_invalidate = 0;
|
||
|
rds_mr_put(mr);
|
||
|
}
|
||
|
|
||
|
if (rs->rs_transport && rs->rs_transport->flush_mrs)
|
||
|
rs->rs_transport->flush_mrs();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Helper function to pin user pages.
|
||
|
*/
|
||
|
static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
|
||
|
struct page **pages, int write)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
down_read(¤t->mm->mmap_sem);
|
||
|
ret = get_user_pages(current, current->mm, user_addr,
|
||
|
nr_pages, write, 0, pages, NULL);
|
||
|
up_read(¤t->mm->mmap_sem);
|
||
|
|
||
|
if (0 <= ret && (unsigned) ret < nr_pages) {
|
||
|
while (ret--)
|
||
|
put_page(pages[ret]);
|
||
|
ret = -EFAULT;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
|
||
|
u64 *cookie_ret, struct rds_mr **mr_ret)
|
||
|
{
|
||
|
struct rds_mr *mr = NULL, *found;
|
||
|
unsigned int nr_pages;
|
||
|
struct page **pages = NULL;
|
||
|
struct scatterlist *sg;
|
||
|
void *trans_private;
|
||
|
unsigned long flags;
|
||
|
rds_rdma_cookie_t cookie;
|
||
|
unsigned int nents;
|
||
|
long i;
|
||
|
int ret;
|
||
|
|
||
|
if (rs->rs_bound_addr == 0) {
|
||
|
ret = -ENOTCONN; /* XXX not a great errno */
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rs->rs_transport->get_mr == NULL) {
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
nr_pages = rds_pages_in_vec(&args->vec);
|
||
|
if (nr_pages == 0) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
|
||
|
args->vec.addr, args->vec.bytes, nr_pages);
|
||
|
|
||
|
/* XXX clamp nr_pages to limit the size of this alloc? */
|
||
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
|
||
|
if (pages == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
|
||
|
if (mr == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
atomic_set(&mr->r_refcount, 1);
|
||
|
RB_CLEAR_NODE(&mr->r_rb_node);
|
||
|
mr->r_trans = rs->rs_transport;
|
||
|
mr->r_sock = rs;
|
||
|
|
||
|
if (args->flags & RDS_RDMA_USE_ONCE)
|
||
|
mr->r_use_once = 1;
|
||
|
if (args->flags & RDS_RDMA_INVALIDATE)
|
||
|
mr->r_invalidate = 1;
|
||
|
if (args->flags & RDS_RDMA_READWRITE)
|
||
|
mr->r_write = 1;
|
||
|
|
||
|
/*
|
||
|
* Pin the pages that make up the user buffer and transfer the page
|
||
|
* pointers to the mr's sg array. We check to see if we've mapped
|
||
|
* the whole region after transferring the partial page references
|
||
|
* to the sg array so that we can have one page ref cleanup path.
|
||
|
*
|
||
|
* For now we have no flag that tells us whether the mapping is
|
||
|
* r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
|
||
|
* the zero page.
|
||
|
*/
|
||
|
ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
nents = ret;
|
||
|
sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
|
||
|
if (sg == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
WARN_ON(!nents);
|
||
|
sg_init_table(sg, nents);
|
||
|
|
||
|
/* Stick all pages into the scatterlist */
|
||
|
for (i = 0 ; i < nents; i++)
|
||
|
sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
|
||
|
|
||
|
rdsdebug("RDS: trans_private nents is %u\n", nents);
|
||
|
|
||
|
/* Obtain a transport specific MR. If this succeeds, the
|
||
|
* s/g list is now owned by the MR.
|
||
|
* Note that dma_map() implies that pending writes are
|
||
|
* flushed to RAM, so no dma_sync is needed here. */
|
||
|
trans_private = rs->rs_transport->get_mr(sg, nents, rs,
|
||
|
&mr->r_key);
|
||
|
|
||
|
if (IS_ERR(trans_private)) {
|
||
|
for (i = 0 ; i < nents; i++)
|
||
|
put_page(sg_page(&sg[i]));
|
||
|
kfree(sg);
|
||
|
ret = PTR_ERR(trans_private);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mr->r_trans_private = trans_private;
|
||
|
|
||
|
rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
|
||
|
mr->r_key, (void *)(unsigned long) args->cookie_addr);
|
||
|
|
||
|
/* The user may pass us an unaligned address, but we can only
|
||
|
* map page aligned regions. So we keep the offset, and build
|
||
|
* a 64bit cookie containing <R_Key, offset> and pass that
|
||
|
* around. */
|
||
|
cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
|
||
|
if (cookie_ret)
|
||
|
*cookie_ret = cookie;
|
||
|
|
||
|
if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
|
||
|
ret = -EFAULT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Inserting the new MR into the rbtree bumps its
|
||
|
* reference count. */
|
||
|
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
|
||
|
found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
|
||
|
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
|
||
|
|
||
|
BUG_ON(found && found != mr);
|
||
|
|
||
|
rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
|
||
|
if (mr_ret) {
|
||
|
atomic_inc(&mr->r_refcount);
|
||
|
*mr_ret = mr;
|
||
|
}
|
||
|
|
||
|
ret = 0;
|
||
|
out:
|
||
|
kfree(pages);
|
||
|
if (mr)
|
||
|
rds_mr_put(mr);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
|
||
|
{
|
||
|
struct rds_get_mr_args args;
|
||
|
|
||
|
if (optlen != sizeof(struct rds_get_mr_args))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
|
||
|
sizeof(struct rds_get_mr_args)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
return __rds_rdma_map(rs, &args, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free the MR indicated by the given R_Key
|
||
|
*/
|
||
|
int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
|
||
|
{
|
||
|
struct rds_free_mr_args args;
|
||
|
struct rds_mr *mr;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (optlen != sizeof(struct rds_free_mr_args))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
|
||
|
sizeof(struct rds_free_mr_args)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
/* Special case - a null cookie means flush all unused MRs */
|
||
|
if (args.cookie == 0) {
|
||
|
if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
|
||
|
return -EINVAL;
|
||
|
rs->rs_transport->flush_mrs();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Look up the MR given its R_key and remove it from the rbtree
|
||
|
* so nobody else finds it.
|
||
|
* This should also prevent races with rds_rdma_unuse.
|
||
|
*/
|
||
|
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
|
||
|
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
|
||
|
if (mr) {
|
||
|
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
|
||
|
RB_CLEAR_NODE(&mr->r_rb_node);
|
||
|
if (args.flags & RDS_RDMA_INVALIDATE)
|
||
|
mr->r_invalidate = 1;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
|
||
|
|
||
|
if (!mr)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* call rds_destroy_mr() ourselves so that we're sure it's done by the time
|
||
|
* we return. If we let rds_mr_put() do it it might not happen until
|
||
|
* someone else drops their ref.
|
||
|
*/
|
||
|
rds_destroy_mr(mr);
|
||
|
rds_mr_put(mr);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is called when we receive an extension header that
|
||
|
* tells us this MR was used. It allows us to implement
|
||
|
* use_once semantics
|
||
|
*/
|
||
|
void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
|
||
|
{
|
||
|
struct rds_mr *mr;
|
||
|
unsigned long flags;
|
||
|
int zot_me = 0;
|
||
|
|
||
|
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
|
||
|
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
|
||
|
if (mr && (mr->r_use_once || force)) {
|
||
|
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
|
||
|
RB_CLEAR_NODE(&mr->r_rb_node);
|
||
|
zot_me = 1;
|
||
|
} else if (mr)
|
||
|
atomic_inc(&mr->r_refcount);
|
||
|
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
|
||
|
|
||
|
/* May have to issue a dma_sync on this memory region.
|
||
|
* Note we could avoid this if the operation was a RDMA READ,
|
||
|
* but at this point we can't tell. */
|
||
|
if (mr != NULL) {
|
||
|
if (mr->r_trans->sync_mr)
|
||
|
mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
|
||
|
|
||
|
/* If the MR was marked as invalidate, this will
|
||
|
* trigger an async flush. */
|
||
|
if (zot_me)
|
||
|
rds_destroy_mr(mr);
|
||
|
rds_mr_put(mr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void rds_rdma_free_op(struct rds_rdma_op *ro)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
for (i = 0; i < ro->r_nents; i++) {
|
||
|
struct page *page = sg_page(&ro->r_sg[i]);
|
||
|
|
||
|
/* Mark page dirty if it was possibly modified, which
|
||
|
* is the case for a RDMA_READ which copies from remote
|
||
|
* to local memory */
|
||
|
if (!ro->r_write)
|
||
|
set_page_dirty(page);
|
||
|
put_page(page);
|
||
|
}
|
||
|
|
||
|
kfree(ro->r_notifier);
|
||
|
kfree(ro);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* args is a pointer to an in-kernel copy in the sendmsg cmsg.
|
||
|
*/
|
||
|
static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs,
|
||
|
struct rds_rdma_args *args)
|
||
|
{
|
||
|
struct rds_iovec vec;
|
||
|
struct rds_rdma_op *op = NULL;
|
||
|
unsigned int nr_pages;
|
||
|
unsigned int max_pages;
|
||
|
unsigned int nr_bytes;
|
||
|
struct page **pages = NULL;
|
||
|
struct rds_iovec __user *local_vec;
|
||
|
struct scatterlist *sg;
|
||
|
unsigned int nr;
|
||
|
unsigned int i, j;
|
||
|
int ret;
|
||
|
|
||
|
|
||
|
if (rs->rs_bound_addr == 0) {
|
||
|
ret = -ENOTCONN; /* XXX not a great errno */
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (args->nr_local > (u64)UINT_MAX) {
|
||
|
ret = -EMSGSIZE;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
nr_pages = 0;
|
||
|
max_pages = 0;
|
||
|
|
||
|
local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
|
||
|
|
||
|
/* figure out the number of pages in the vector */
|
||
|
for (i = 0; i < args->nr_local; i++) {
|
||
|
if (copy_from_user(&vec, &local_vec[i],
|
||
|
sizeof(struct rds_iovec))) {
|
||
|
ret = -EFAULT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
nr = rds_pages_in_vec(&vec);
|
||
|
if (nr == 0) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
max_pages = max(nr, max_pages);
|
||
|
nr_pages += nr;
|
||
|
}
|
||
|
|
||
|
pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL);
|
||
|
if (pages == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL);
|
||
|
if (op == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
op->r_write = !!(args->flags & RDS_RDMA_READWRITE);
|
||
|
op->r_fence = !!(args->flags & RDS_RDMA_FENCE);
|
||
|
op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
|
||
|
op->r_recverr = rs->rs_recverr;
|
||
|
WARN_ON(!nr_pages);
|
||
|
sg_init_table(op->r_sg, nr_pages);
|
||
|
|
||
|
if (op->r_notify || op->r_recverr) {
|
||
|
/* We allocate an uninitialized notifier here, because
|
||
|
* we don't want to do that in the completion handler. We
|
||
|
* would have to use GFP_ATOMIC there, and don't want to deal
|
||
|
* with failed allocations.
|
||
|
*/
|
||
|
op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
|
||
|
if (!op->r_notifier) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
op->r_notifier->n_user_token = args->user_token;
|
||
|
op->r_notifier->n_status = RDS_RDMA_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/* The cookie contains the R_Key of the remote memory region, and
|
||
|
* optionally an offset into it. This is how we implement RDMA into
|
||
|
* unaligned memory.
|
||
|
* When setting up the RDMA, we need to add that offset to the
|
||
|
* destination address (which is really an offset into the MR)
|
||
|
* FIXME: We may want to move this into ib_rdma.c
|
||
|
*/
|
||
|
op->r_key = rds_rdma_cookie_key(args->cookie);
|
||
|
op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
|
||
|
|
||
|
nr_bytes = 0;
|
||
|
|
||
|
rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
|
||
|
(unsigned long long)args->nr_local,
|
||
|
(unsigned long long)args->remote_vec.addr,
|
||
|
op->r_key);
|
||
|
|
||
|
for (i = 0; i < args->nr_local; i++) {
|
||
|
if (copy_from_user(&vec, &local_vec[i],
|
||
|
sizeof(struct rds_iovec))) {
|
||
|
ret = -EFAULT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
nr = rds_pages_in_vec(&vec);
|
||
|
if (nr == 0) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
rs->rs_user_addr = vec.addr;
|
||
|
rs->rs_user_bytes = vec.bytes;
|
||
|
|
||
|
/* did the user change the vec under us? */
|
||
|
if (nr > max_pages || op->r_nents + nr > nr_pages) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
/* If it's a WRITE operation, we want to pin the pages for reading.
|
||
|
* If it's a READ operation, we need to pin the pages for writing.
|
||
|
*/
|
||
|
ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n",
|
||
|
nr_bytes, nr, vec.bytes, vec.addr);
|
||
|
|
||
|
nr_bytes += vec.bytes;
|
||
|
|
||
|
for (j = 0; j < nr; j++) {
|
||
|
unsigned int offset = vec.addr & ~PAGE_MASK;
|
||
|
|
||
|
sg = &op->r_sg[op->r_nents + j];
|
||
|
sg_set_page(sg, pages[j],
|
||
|
min_t(unsigned int, vec.bytes, PAGE_SIZE - offset),
|
||
|
offset);
|
||
|
|
||
|
rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n",
|
||
|
sg->offset, sg->length, vec.addr, vec.bytes);
|
||
|
|
||
|
vec.addr += sg->length;
|
||
|
vec.bytes -= sg->length;
|
||
|
}
|
||
|
|
||
|
op->r_nents += nr;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (nr_bytes > args->remote_vec.bytes) {
|
||
|
rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
|
||
|
nr_bytes,
|
||
|
(unsigned int) args->remote_vec.bytes);
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
op->r_bytes = nr_bytes;
|
||
|
|
||
|
ret = 0;
|
||
|
out:
|
||
|
kfree(pages);
|
||
|
if (ret) {
|
||
|
if (op)
|
||
|
rds_rdma_free_op(op);
|
||
|
op = ERR_PTR(ret);
|
||
|
}
|
||
|
return op;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The application asks for a RDMA transfer.
|
||
|
* Extract all arguments and set up the rdma_op
|
||
|
*/
|
||
|
int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
|
||
|
struct cmsghdr *cmsg)
|
||
|
{
|
||
|
struct rds_rdma_op *op;
|
||
|
|
||
|
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
|
||
|
|| rm->m_rdma_op != NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
op = rds_rdma_prepare(rs, CMSG_DATA(cmsg));
|
||
|
if (IS_ERR(op))
|
||
|
return PTR_ERR(op);
|
||
|
rds_stats_inc(s_send_rdma);
|
||
|
rm->m_rdma_op = op;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The application wants us to pass an RDMA destination (aka MR)
|
||
|
* to the remote
|
||
|
*/
|
||
|
int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
|
||
|
struct cmsghdr *cmsg)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct rds_mr *mr;
|
||
|
u32 r_key;
|
||
|
int err = 0;
|
||
|
|
||
|
if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t))
|
||
|
|| rm->m_rdma_cookie != 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
|
||
|
|
||
|
/* We are reusing a previously mapped MR here. Most likely, the
|
||
|
* application has written to the buffer, so we need to explicitly
|
||
|
* flush those writes to RAM. Otherwise the HCA may not see them
|
||
|
* when doing a DMA from that buffer.
|
||
|
*/
|
||
|
r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
|
||
|
|
||
|
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
|
||
|
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
|
||
|
if (mr == NULL)
|
||
|
err = -EINVAL; /* invalid r_key */
|
||
|
else
|
||
|
atomic_inc(&mr->r_refcount);
|
||
|
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
|
||
|
|
||
|
if (mr) {
|
||
|
mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
|
||
|
rm->m_rdma_mr = mr;
|
||
|
}
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The application passes us an address range it wants to enable RDMA
|
||
|
* to/from. We map the area, and save the <R_Key,offset> pair
|
||
|
* in rm->m_rdma_cookie. This causes it to be sent along to the peer
|
||
|
* in an extension header.
|
||
|
*/
|
||
|
int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
|
||
|
struct cmsghdr *cmsg)
|
||
|
{
|
||
|
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args))
|
||
|
|| rm->m_rdma_cookie != 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr);
|
||
|
}
|