linux/sound/oss/opl3.c

1259 lines
27 KiB
C
Raw Normal View History

/*
* sound/oss/opl3.c
*
* A low level driver for Yamaha YM3812 and OPL-3 -chips
*
*
* Copyright (C) by Hannu Savolainen 1993-1997
*
* OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL)
* Version 2 (June 1991). See the "COPYING" file distributed with this software
* for more info.
*
*
* Changes
* Thomas Sailer ioctl code reworked (vmalloc/vfree removed)
* Alan Cox modularisation, fixed sound_mem allocs.
* Christoph Hellwig Adapted to module_init/module_exit
* Arnaldo C. de Melo get rid of check_region, use request_region for
* OPL4, release it on exit, some cleanups.
*
* Status
* Believed to work. Badly needs rewriting a bit to support multiple
* OPL3 devices.
*/
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/delay.h>
/*
* Major improvements to the FM handling 30AUG92 by Rob Hooft,
* hooft@chem.ruu.nl
*/
#include "sound_config.h"
#include "opl3_hw.h"
#define MAX_VOICE 18
#define OFFS_4OP 11
struct voice_info
{
unsigned char keyon_byte;
long bender;
long bender_range;
unsigned long orig_freq;
unsigned long current_freq;
int volume;
int mode;
int panning; /* 0xffff means not set */
};
typedef struct opl_devinfo
{
int base;
int left_io, right_io;
int nr_voice;
int lv_map[MAX_VOICE];
struct voice_info voc[MAX_VOICE];
struct voice_alloc_info *v_alloc;
struct channel_info *chn_info;
struct sbi_instrument i_map[SBFM_MAXINSTR];
struct sbi_instrument *act_i[MAX_VOICE];
struct synth_info fm_info;
int busy;
int model;
unsigned char cmask;
int is_opl4;
} opl_devinfo;
static struct opl_devinfo *devc = NULL;
static int detected_model;
static int store_instr(int instr_no, struct sbi_instrument *instr);
static void freq_to_fnum(int freq, int *block, int *fnum);
static void opl3_command(int io_addr, unsigned int addr, unsigned int val);
static int opl3_kill_note(int dev, int voice, int note, int velocity);
static void enter_4op_mode(void)
{
int i;
static int v4op[MAX_VOICE] = {
0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17
};
devc->cmask = 0x3f; /* Connect all possible 4 OP voice operators */
opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, 0x3f);
for (i = 0; i < 3; i++)
pv_map[i].voice_mode = 4;
for (i = 3; i < 6; i++)
pv_map[i].voice_mode = 0;
for (i = 9; i < 12; i++)
pv_map[i].voice_mode = 4;
for (i = 12; i < 15; i++)
pv_map[i].voice_mode = 0;
for (i = 0; i < 12; i++)
devc->lv_map[i] = v4op[i];
devc->v_alloc->max_voice = devc->nr_voice = 12;
}
static int opl3_ioctl(int dev, unsigned int cmd, void __user * arg)
{
struct sbi_instrument ins;
switch (cmd) {
case SNDCTL_FM_LOAD_INSTR:
printk(KERN_WARNING "Warning: Obsolete ioctl(SNDCTL_FM_LOAD_INSTR) used. Fix the program.\n");
if (copy_from_user(&ins, arg, sizeof(ins)))
return -EFAULT;
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) {
printk(KERN_WARNING "FM Error: Invalid instrument number %d\n", ins.channel);
return -EINVAL;
}
return store_instr(ins.channel, &ins);
case SNDCTL_SYNTH_INFO:
devc->fm_info.nr_voices = (devc->nr_voice == 12) ? 6 : devc->nr_voice;
if (copy_to_user(arg, &devc->fm_info, sizeof(devc->fm_info)))
return -EFAULT;
return 0;
case SNDCTL_SYNTH_MEMAVL:
return 0x7fffffff;
case SNDCTL_FM_4OP_ENABLE:
if (devc->model == 2)
enter_4op_mode();
return 0;
default:
return -EINVAL;
}
}
static int opl3_detect(int ioaddr)
{
/*
* This function returns 1 if the FM chip is present at the given I/O port
* The detection algorithm plays with the timer built in the FM chip and
* looks for a change in the status register.
*
* Note! The timers of the FM chip are not connected to AdLib (and compatible)
* boards.
*
* Note2! The chip is initialized if detected.
*/
unsigned char stat1, signature;
int i;
if (devc != NULL)
{
printk(KERN_ERR "opl3: Only one OPL3 supported.\n");
return 0;
}
devc = kzalloc(sizeof(*devc), GFP_KERNEL);
if (devc == NULL)
{
printk(KERN_ERR "opl3: Can't allocate memory for the device control "
"structure \n ");
return 0;
}
strcpy(devc->fm_info.name, "OPL2");
if (!request_region(ioaddr, 4, devc->fm_info.name)) {
printk(KERN_WARNING "opl3: I/O port 0x%x already in use\n", ioaddr);
goto cleanup_devc;
}
devc->base = ioaddr;
/* Reset timers 1 and 2 */
opl3_command(ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK);
/* Reset the IRQ of the FM chip */
opl3_command(ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET);
signature = stat1 = inb(ioaddr); /* Status register */
if (signature != 0x00 && signature != 0x06 && signature != 0x02 &&
signature != 0x0f)
{
MDB(printk(KERN_INFO "OPL3 not detected %x\n", signature));
goto cleanup_region;
}
if (signature == 0x06) /* OPL2 */
{
detected_model = 2;
}
else if (signature == 0x00 || signature == 0x0f) /* OPL3 or OPL4 */
{
unsigned char tmp;
detected_model = 3;
/*
* Detect availability of OPL4 (_experimental_). Works probably
* only after a cold boot. In addition the OPL4 port
* of the chip may not be connected to the PC bus at all.
*/
opl3_command(ioaddr + 2, OPL3_MODE_REGISTER, 0x00);
opl3_command(ioaddr + 2, OPL3_MODE_REGISTER, OPL3_ENABLE | OPL4_ENABLE);
if ((tmp = inb(ioaddr)) == 0x02) /* Have a OPL4 */
{
detected_model = 4;
}
if (request_region(ioaddr - 8, 2, "OPL4")) /* OPL4 port was free */
{
int tmp;
outb((0x02), ioaddr - 8); /* Select OPL4 ID register */
udelay(10);
tmp = inb(ioaddr - 7); /* Read it */
udelay(10);
if (tmp == 0x20) /* OPL4 should return 0x20 here */
{
detected_model = 4;
outb((0xF8), ioaddr - 8); /* Select OPL4 FM mixer control */
udelay(10);
outb((0x1B), ioaddr - 7); /* Write value */
udelay(10);
}
else
{ /* release OPL4 port */
release_region(ioaddr - 8, 2);
detected_model = 3;
}
}
opl3_command(ioaddr + 2, OPL3_MODE_REGISTER, 0);
}
for (i = 0; i < 9; i++)
opl3_command(ioaddr, KEYON_BLOCK + i, 0); /*
* Note off
*/
opl3_command(ioaddr, TEST_REGISTER, ENABLE_WAVE_SELECT);
opl3_command(ioaddr, PERCOSSION_REGISTER, 0x00); /*
* Melodic mode.
*/
return 1;
cleanup_region:
release_region(ioaddr, 4);
cleanup_devc:
kfree(devc);
devc = NULL;
return 0;
}
static int opl3_kill_note (int devno, int voice, int note, int velocity)
{
struct physical_voice_info *map;
if (voice < 0 || voice >= devc->nr_voice)
return 0;
devc->v_alloc->map[voice] = 0;
map = &pv_map[devc->lv_map[voice]];
DEB(printk("Kill note %d\n", voice));
if (map->voice_mode == 0)
return 0;
opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, devc->voc[voice].keyon_byte & ~0x20);
devc->voc[voice].keyon_byte = 0;
devc->voc[voice].bender = 0;
devc->voc[voice].volume = 64;
devc->voc[voice].panning = 0xffff; /* Not set */
devc->voc[voice].bender_range = 200;
devc->voc[voice].orig_freq = 0;
devc->voc[voice].current_freq = 0;
devc->voc[voice].mode = 0;
return 0;
}
#define HIHAT 0
#define CYMBAL 1
#define TOMTOM 2
#define SNARE 3
#define BDRUM 4
#define UNDEFINED TOMTOM
#define DEFAULT TOMTOM
static int store_instr(int instr_no, struct sbi_instrument *instr)
{
if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || devc->model != 2))
printk(KERN_WARNING "FM warning: Invalid patch format field (key) 0x%x\n", instr->key);
memcpy((char *) &(devc->i_map[instr_no]), (char *) instr, sizeof(*instr));
return 0;
}
static int opl3_set_instr (int dev, int voice, int instr_no)
{
if (voice < 0 || voice >= devc->nr_voice)
return 0;
if (instr_no < 0 || instr_no >= SBFM_MAXINSTR)
instr_no = 0; /* Acoustic piano (usually) */
devc->act_i[voice] = &devc->i_map[instr_no];
return 0;
}
/*
* The next table looks magical, but it certainly is not. Its values have
* been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception
* for i=0. This log-table converts a linear volume-scaling (0..127) to a
* logarithmic scaling as present in the FM-synthesizer chips. so : Volume
* 64 = 0 db = relative volume 0 and: Volume 32 = -6 db = relative
* volume -8 it was implemented as a table because it is only 128 bytes and
* it saves a lot of log() calculations. (RH)
*/
static char fm_volume_table[128] =
{
-64, -48, -40, -35, -32, -29, -27, -26,
-24, -23, -21, -20, -19, -18, -18, -17,
-16, -15, -15, -14, -13, -13, -12, -12,
-11, -11, -10, -10, -10, -9, -9, -8,
-8, -8, -7, -7, -7, -6, -6, -6,
-5, -5, -5, -5, -4, -4, -4, -4,
-3, -3, -3, -3, -2, -2, -2, -2,
-2, -1, -1, -1, -1, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
6, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 8, 8, 8, 8, 8
};
static void calc_vol(unsigned char *regbyte, int volume, int main_vol)
{
int level = (~*regbyte & 0x3f);
if (main_vol > 127)
main_vol = 127;
volume = (volume * main_vol) / 127;
if (level)
level += fm_volume_table[volume];
if (level > 0x3f)
level = 0x3f;
if (level < 0)
level = 0;
*regbyte = (*regbyte & 0xc0) | (~level & 0x3f);
}
static void set_voice_volume(int voice, int volume, int main_vol)
{
unsigned char vol1, vol2, vol3, vol4;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= devc->nr_voice)
return;
map = &pv_map[devc->lv_map[voice]];
instr = devc->act_i[voice];
if (!instr)
instr = &devc->i_map[0];
if (instr->channel < 0)
return;
if (devc->voc[voice].mode == 0)
return;
if (devc->voc[voice].mode == 2)
{
vol1 = instr->operators[2];
vol2 = instr->operators[3];
if ((instr->operators[10] & 0x01))
{
calc_vol(&vol1, volume, main_vol);
calc_vol(&vol2, volume, main_vol);
}
else
{
calc_vol(&vol2, volume, main_vol);
}
opl3_command(map->ioaddr, KSL_LEVEL + map->op[0], vol1);
opl3_command(map->ioaddr, KSL_LEVEL + map->op[1], vol2);
}
else
{ /*
* 4 OP voice
*/
int connection;
vol1 = instr->operators[2];
vol2 = instr->operators[3];
vol3 = instr->operators[OFFS_4OP + 2];
vol4 = instr->operators[OFFS_4OP + 3];
/*
* The connection method for 4 OP devc->voc is defined by the rightmost
* bits at the offsets 10 and 10+OFFS_4OP
*/
connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection)
{
case 0:
calc_vol(&vol4, volume, main_vol);
break;
case 1:
calc_vol(&vol2, volume, main_vol);
calc_vol(&vol4, volume, main_vol);
break;
case 2:
calc_vol(&vol1, volume, main_vol);
calc_vol(&vol4, volume, main_vol);
break;
case 3:
calc_vol(&vol1, volume, main_vol);
calc_vol(&vol3, volume, main_vol);
calc_vol(&vol4, volume, main_vol);
break;
default:
;
}
opl3_command(map->ioaddr, KSL_LEVEL + map->op[0], vol1);
opl3_command(map->ioaddr, KSL_LEVEL + map->op[1], vol2);
opl3_command(map->ioaddr, KSL_LEVEL + map->op[2], vol3);
opl3_command(map->ioaddr, KSL_LEVEL + map->op[3], vol4);
}
}
static int opl3_start_note (int dev, int voice, int note, int volume)
{
unsigned char data, fpc;
int block, fnum, freq, voice_mode, pan;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= devc->nr_voice)
return 0;
map = &pv_map[devc->lv_map[voice]];
pan = devc->voc[voice].panning;
if (map->voice_mode == 0)
return 0;
if (note == 255) /*
* Just change the volume
*/
{
set_voice_volume(voice, volume, devc->voc[voice].volume);
return 0;
}
/*
* Kill previous note before playing
*/
opl3_command(map->ioaddr, KSL_LEVEL + map->op[1], 0xff); /*
* Carrier
* volume to
* min
*/
opl3_command(map->ioaddr, KSL_LEVEL + map->op[0], 0xff); /*
* Modulator
* volume to
*/
if (map->voice_mode == 4)
{
opl3_command(map->ioaddr, KSL_LEVEL + map->op[2], 0xff);
opl3_command(map->ioaddr, KSL_LEVEL + map->op[3], 0xff);
}
opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, 0x00); /*
* Note
* off
*/
instr = devc->act_i[voice];
if (!instr)
instr = &devc->i_map[0];
if (instr->channel < 0)
{
printk(KERN_WARNING "opl3: Initializing voice %d with undefined instrument\n", voice);
return 0;
}
if (map->voice_mode == 2 && instr->key == OPL3_PATCH)
return 0; /*
* Cannot play
*/
voice_mode = map->voice_mode;
if (voice_mode == 4)
{
int voice_shift;
voice_shift = (map->ioaddr == devc->left_io) ? 0 : 3;
voice_shift += map->voice_num;
if (instr->key != OPL3_PATCH) /*
* Just 2 OP patch
*/
{
voice_mode = 2;
devc->cmask &= ~(1 << voice_shift);
}
else
{
devc->cmask |= (1 << voice_shift);
}
opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, devc->cmask);
}
/*
* Set Sound Characteristics
*/
opl3_command(map->ioaddr, AM_VIB + map->op[0], instr->operators[0]);
opl3_command(map->ioaddr, AM_VIB + map->op[1], instr->operators[1]);
/*
* Set Attack/Decay
*/
opl3_command(map->ioaddr, ATTACK_DECAY + map->op[0], instr->operators[4]);
opl3_command(map->ioaddr, ATTACK_DECAY + map->op[1], instr->operators[5]);
/*
* Set Sustain/Release
*/
opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[0], instr->operators[6]);
opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[1], instr->operators[7]);
/*
* Set Wave Select
*/
opl3_command(map->ioaddr, WAVE_SELECT + map->op[0], instr->operators[8]);
opl3_command(map->ioaddr, WAVE_SELECT + map->op[1], instr->operators[9]);
/*
* Set Feedback/Connection
*/
fpc = instr->operators[10];
if (pan != 0xffff)
{
fpc &= ~STEREO_BITS;
if (pan < -64)
fpc |= VOICE_TO_LEFT;
else
if (pan > 64)
fpc |= VOICE_TO_RIGHT;
else
fpc |= (VOICE_TO_LEFT | VOICE_TO_RIGHT);
}
if (!(fpc & 0x30))
fpc |= 0x30; /*
* Ensure that at least one chn is enabled
*/
opl3_command(map->ioaddr, FEEDBACK_CONNECTION + map->voice_num, fpc);
/*
* If the voice is a 4 OP one, initialize the operators 3 and 4 also
*/
if (voice_mode == 4)
{
/*
* Set Sound Characteristics
*/
opl3_command(map->ioaddr, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]);
opl3_command(map->ioaddr, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]);
/*
* Set Attack/Decay
*/
opl3_command(map->ioaddr, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]);
opl3_command(map->ioaddr, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]);
/*
* Set Sustain/Release
*/
opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]);
opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]);
/*
* Set Wave Select
*/
opl3_command(map->ioaddr, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]);
opl3_command(map->ioaddr, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]);
/*
* Set Feedback/Connection
*/
fpc = instr->operators[OFFS_4OP + 10];
if (!(fpc & 0x30))
fpc |= 0x30; /*
* Ensure that at least one chn is enabled
*/
opl3_command(map->ioaddr, FEEDBACK_CONNECTION + map->voice_num + 3, fpc);
}
devc->voc[voice].mode = voice_mode;
set_voice_volume(voice, volume, devc->voc[voice].volume);
freq = devc->voc[voice].orig_freq = note_to_freq(note) / 1000;
/*
* Since the pitch bender may have been set before playing the note, we
* have to calculate the bending now.
*/
freq = compute_finetune(devc->voc[voice].orig_freq, devc->voc[voice].bender, devc->voc[voice].bender_range, 0);
devc->voc[voice].current_freq = freq;
freq_to_fnum(freq, &block, &fnum);
/*
* Play note
*/
data = fnum & 0xff; /*
* Least significant bits of fnumber
*/
opl3_command(map->ioaddr, FNUM_LOW + map->voice_num, data);
data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3);
devc->voc[voice].keyon_byte = data;
opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, data);
if (voice_mode == 4)
opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num + 3, data);
return 0;
}
static void freq_to_fnum (int freq, int *block, int *fnum)
{
int f, octave;
/*
* Converts the note frequency to block and fnum values for the FM chip
*/
/*
* First try to compute the block -value (octave) where the note belongs
*/
f = freq;
octave = 5;
if (f == 0)
octave = 0;
else if (f < 261)
{
while (f < 261)
{
octave--;
f <<= 1;
}
}
else if (f > 493)
{
while (f > 493)
{
octave++;
f >>= 1;
}
}
if (octave > 7)
octave = 7;
*fnum = freq * (1 << (20 - octave)) / 49716;
*block = octave;
}
static void opl3_command (int io_addr, unsigned int addr, unsigned int val)
{
int i;
/*
* The original 2-OP synth requires a quite long delay after writing to a
* register. The OPL-3 survives with just two INBs
*/
outb(((unsigned char) (addr & 0xff)), io_addr);
if (devc->model != 2)
udelay(10);
else
for (i = 0; i < 2; i++)
inb(io_addr);
outb(((unsigned char) (val & 0xff)), io_addr + 1);
if (devc->model != 2)
udelay(30);
else
for (i = 0; i < 2; i++)
inb(io_addr);
}
static void opl3_reset(int devno)
{
int i;
for (i = 0; i < 18; i++)
devc->lv_map[i] = i;
for (i = 0; i < devc->nr_voice; i++)
{
opl3_command(pv_map[devc->lv_map[i]].ioaddr,
KSL_LEVEL + pv_map[devc->lv_map[i]].op[0], 0xff);
opl3_command(pv_map[devc->lv_map[i]].ioaddr,
KSL_LEVEL + pv_map[devc->lv_map[i]].op[1], 0xff);
if (pv_map[devc->lv_map[i]].voice_mode == 4)
{
opl3_command(pv_map[devc->lv_map[i]].ioaddr,
KSL_LEVEL + pv_map[devc->lv_map[i]].op[2], 0xff);
opl3_command(pv_map[devc->lv_map[i]].ioaddr,
KSL_LEVEL + pv_map[devc->lv_map[i]].op[3], 0xff);
}
opl3_kill_note(devno, i, 0, 64);
}
if (devc->model == 2)
{
devc->v_alloc->max_voice = devc->nr_voice = 18;
for (i = 0; i < 18; i++)
pv_map[i].voice_mode = 2;
}
}
static int opl3_open(int dev, int mode)
{
int i;
if (devc->busy)
return -EBUSY;
devc->busy = 1;
devc->v_alloc->max_voice = devc->nr_voice = (devc->model == 2) ? 18 : 9;
devc->v_alloc->timestamp = 0;
for (i = 0; i < 18; i++)
{
devc->v_alloc->map[i] = 0;
devc->v_alloc->alloc_times[i] = 0;
}
devc->cmask = 0x00; /*
* Just 2 OP mode
*/
if (devc->model == 2)
opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, devc->cmask);
return 0;
}
static void opl3_close(int dev)
{
devc->busy = 0;
devc->v_alloc->max_voice = devc->nr_voice = (devc->model == 2) ? 18 : 9;
devc->fm_info.nr_drums = 0;
devc->fm_info.perc_mode = 0;
opl3_reset(dev);
}
static void opl3_hw_control(int dev, unsigned char *event)
{
}
static int opl3_load_patch(int dev, int format, const char __user *addr,
int count, int pmgr_flag)
{
struct sbi_instrument ins;
if (count <sizeof(ins))
{
printk(KERN_WARNING "FM Error: Patch record too short\n");
return -EINVAL;
}
if (copy_from_user(&ins, addr, sizeof(ins)))
return -EFAULT;
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR)
{
printk(KERN_WARNING "FM Error: Invalid instrument number %d\n", ins.channel);
return -EINVAL;
}
ins.key = format;
return store_instr(ins.channel, &ins);
}
static void opl3_panning(int dev, int voice, int value)
{
if (voice < 0 || voice >= devc->nr_voice)
return;
devc->voc[voice].panning = value;
}
static void opl3_volume_method(int dev, int mode)
{
}
#define SET_VIBRATO(cell) { \
tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \
if (pressure > 110) \
tmp |= 0x40; /* Vibrato on */ \
opl3_command (map->ioaddr, AM_VIB + map->op[cell-1], tmp);}
static void opl3_aftertouch(int dev, int voice, int pressure)
{
int tmp;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= devc->nr_voice)
return;
map = &pv_map[devc->lv_map[voice]];
DEB(printk("Aftertouch %d\n", voice));
if (map->voice_mode == 0)
return;
/*
* Adjust the amount of vibrato depending the pressure
*/
instr = devc->act_i[voice];
if (!instr)
instr = &devc->i_map[0];
if (devc->voc[voice].mode == 4)
{
int connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection)
{
case 0:
SET_VIBRATO(4);
break;
case 1:
SET_VIBRATO(2);
SET_VIBRATO(4);
break;
case 2:
SET_VIBRATO(1);
SET_VIBRATO(4);
break;
case 3:
SET_VIBRATO(1);
SET_VIBRATO(3);
SET_VIBRATO(4);
break;
}
/*
* Not implemented yet
*/
}
else
{
SET_VIBRATO(1);
if ((instr->operators[10] & 0x01)) /*
* Additive synthesis
*/
SET_VIBRATO(2);
}
}
#undef SET_VIBRATO
static void bend_pitch(int dev, int voice, int value)
{
unsigned char data;
int block, fnum, freq;
struct physical_voice_info *map;
map = &pv_map[devc->lv_map[voice]];
if (map->voice_mode == 0)
return;
devc->voc[voice].bender = value;
if (!value)
return;
if (!(devc->voc[voice].keyon_byte & 0x20))
return; /*
* Not keyed on
*/
freq = compute_finetune(devc->voc[voice].orig_freq, devc->voc[voice].bender, devc->voc[voice].bender_range, 0);
devc->voc[voice].current_freq = freq;
freq_to_fnum(freq, &block, &fnum);
data = fnum & 0xff; /*
* Least significant bits of fnumber
*/
opl3_command(map->ioaddr, FNUM_LOW + map->voice_num, data);
data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3);
devc->voc[voice].keyon_byte = data;
opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, data);
}
static void opl3_controller (int dev, int voice, int ctrl_num, int value)
{
if (voice < 0 || voice >= devc->nr_voice)
return;
switch (ctrl_num)
{
case CTRL_PITCH_BENDER:
bend_pitch(dev, voice, value);
break;
case CTRL_PITCH_BENDER_RANGE:
devc->voc[voice].bender_range = value;
break;
case CTL_MAIN_VOLUME:
devc->voc[voice].volume = value / 128;
break;
case CTL_PAN:
devc->voc[voice].panning = (value * 2) - 128;
break;
}
}
static void opl3_bender(int dev, int voice, int value)
{
if (voice < 0 || voice >= devc->nr_voice)
return;
bend_pitch(dev, voice, value - 8192);
}
static int opl3_alloc_voice(int dev, int chn, int note, struct voice_alloc_info *alloc)
{
int i, p, best, first, avail, best_time = 0x7fffffff;
struct sbi_instrument *instr;
int is4op;
int instr_no;
if (chn < 0 || chn > 15)
instr_no = 0;
else
instr_no = devc->chn_info[chn].pgm_num;
instr = &devc->i_map[instr_no];
if (instr->channel < 0 || /* Instrument not loaded */
devc->nr_voice != 12) /* Not in 4 OP mode */
is4op = 0;
else if (devc->nr_voice == 12) /* 4 OP mode */
is4op = (instr->key == OPL3_PATCH);
else
is4op = 0;
if (is4op)
{
first = p = 0;
avail = 6;
}
else
{
if (devc->nr_voice == 12) /* 4 OP mode. Use the '2 OP only' operators first */
first = p = 6;
else
first = p = 0;
avail = devc->nr_voice;
}
/*
* Now try to find a free voice
*/
best = first;
for (i = 0; i < avail; i++)
{
if (alloc->map[p] == 0)
{
return p;
}
if (alloc->alloc_times[p] < best_time) /* Find oldest playing note */
{
best_time = alloc->alloc_times[p];
best = p;
}
p = (p + 1) % avail;
}
/*
* Insert some kind of priority mechanism here.
*/
if (best < 0)
best = 0;
if (best > devc->nr_voice)
best -= devc->nr_voice;
return best; /* All devc->voc in use. Select the first one. */
}
static void opl3_setup_voice(int dev, int voice, int chn)
{
struct channel_info *info;
if (voice < 0 || voice >= devc->nr_voice)
return;
if (chn < 0 || chn > 15)
return;
info = &synth_devs[dev]->chn_info[chn];
opl3_set_instr(dev, voice, info->pgm_num);
devc->voc[voice].bender = 0;
devc->voc[voice].bender_range = info->bender_range;
devc->voc[voice].volume = info->controllers[CTL_MAIN_VOLUME];
devc->voc[voice].panning = (info->controllers[CTL_PAN] * 2) - 128;
}
static struct synth_operations opl3_operations =
{
.owner = THIS_MODULE,
.id = "OPL",
.info = NULL,
.midi_dev = 0,
.synth_type = SYNTH_TYPE_FM,
.synth_subtype = FM_TYPE_ADLIB,
.open = opl3_open,
.close = opl3_close,
.ioctl = opl3_ioctl,
.kill_note = opl3_kill_note,
.start_note = opl3_start_note,
.set_instr = opl3_set_instr,
.reset = opl3_reset,
.hw_control = opl3_hw_control,
.load_patch = opl3_load_patch,
.aftertouch = opl3_aftertouch,
.controller = opl3_controller,
.panning = opl3_panning,
.volume_method = opl3_volume_method,
.bender = opl3_bender,
.alloc_voice = opl3_alloc_voice,
.setup_voice = opl3_setup_voice
};
static int opl3_init(int ioaddr, struct module *owner)
{
int i;
int me;
if (devc == NULL)
{
printk(KERN_ERR "opl3: Device control structure not initialized.\n");
return -1;
}
if ((me = sound_alloc_synthdev()) == -1)
{
printk(KERN_WARNING "opl3: Too many synthesizers\n");
return -1;
}
devc->nr_voice = 9;
devc->fm_info.device = 0;
devc->fm_info.synth_type = SYNTH_TYPE_FM;
devc->fm_info.synth_subtype = FM_TYPE_ADLIB;
devc->fm_info.perc_mode = 0;
devc->fm_info.nr_voices = 9;
devc->fm_info.nr_drums = 0;
devc->fm_info.instr_bank_size = SBFM_MAXINSTR;
devc->fm_info.capabilities = 0;
devc->left_io = ioaddr;
devc->right_io = ioaddr + 2;
if (detected_model <= 2)
devc->model = 1;
else
{
devc->model = 2;
if (detected_model == 4)
devc->is_opl4 = 1;
}
opl3_operations.info = &devc->fm_info;
synth_devs[me] = &opl3_operations;
if (owner)
synth_devs[me]->owner = owner;
sequencer_init();
devc->v_alloc = &opl3_operations.alloc;
devc->chn_info = &opl3_operations.chn_info[0];
if (devc->model == 2)
{
if (devc->is_opl4)
strcpy(devc->fm_info.name, "Yamaha OPL4/OPL3 FM");
else
strcpy(devc->fm_info.name, "Yamaha OPL3");
devc->v_alloc->max_voice = devc->nr_voice = 18;
devc->fm_info.nr_drums = 0;
devc->fm_info.synth_subtype = FM_TYPE_OPL3;
devc->fm_info.capabilities |= SYNTH_CAP_OPL3;
for (i = 0; i < 18; i++)
{
if (pv_map[i].ioaddr == USE_LEFT)
pv_map[i].ioaddr = devc->left_io;
else
pv_map[i].ioaddr = devc->right_io;
}
opl3_command(devc->right_io, OPL3_MODE_REGISTER, OPL3_ENABLE);
opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, 0x00);
}
else
{
strcpy(devc->fm_info.name, "Yamaha OPL2");
devc->v_alloc->max_voice = devc->nr_voice = 9;
devc->fm_info.nr_drums = 0;
for (i = 0; i < 18; i++)
pv_map[i].ioaddr = devc->left_io;
};
conf_printf2(devc->fm_info.name, ioaddr, 0, -1, -1);
for (i = 0; i < SBFM_MAXINSTR; i++)
devc->i_map[i].channel = -1;
return me;
}
static int me;
static int io = -1;
module_param(io, int, 0);
static int __init init_opl3 (void)
{
printk(KERN_INFO "YM3812 and OPL-3 driver Copyright (C) by Hannu Savolainen, Rob Hooft 1993-1996\n");
if (io != -1) /* User loading pure OPL3 module */
{
if (!opl3_detect(io))
{
return -ENODEV;
}
me = opl3_init(io, THIS_MODULE);
}
return 0;
}
static void __exit cleanup_opl3(void)
{
if (devc && io != -1)
{
if (devc->base) {
release_region(devc->base,4);
if (devc->is_opl4)
release_region(devc->base - 8, 2);
}
kfree(devc);
devc = NULL;
sound_unload_synthdev(me);
}
}
module_init(init_opl3);
module_exit(cleanup_opl3);
#ifndef MODULE
static int __init setup_opl3(char *str)
{
/* io */
int ints[2];
str = get_options(str, ARRAY_SIZE(ints), ints);
io = ints[1];
return 1;
}
__setup("opl3=", setup_opl3);
#endif
MODULE_LICENSE("GPL");