linux/drivers/net/tulip/media.c

564 lines
17 KiB
C
Raw Normal View History

/*
drivers/net/tulip/media.c
Maintained by Jeff Garzik <jgarzik@pobox.com>
Copyright 2000,2001 The Linux Kernel Team
Written/copyright 1994-2001 by Donald Becker.
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
for more information on this driver, or visit the project
Web page at http://sourceforge.net/projects/tulip/
*/
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include "tulip.h"
/* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
met by back-to-back PCI I/O cycles, but we insert a delay to avoid
"overclocking" issues or future 66Mhz PCI. */
#define mdio_delay() ioread32(mdio_addr)
/* Read and write the MII registers using software-generated serial
MDIO protocol. It is just different enough from the EEPROM protocol
to not share code. The maxium data clock rate is 2.5 Mhz. */
#define MDIO_SHIFT_CLK 0x10000
#define MDIO_DATA_WRITE0 0x00000
#define MDIO_DATA_WRITE1 0x20000
#define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */
#define MDIO_ENB_IN 0x40000
#define MDIO_DATA_READ 0x80000
static const unsigned char comet_miireg2offset[32] = {
0xB4, 0xB8, 0xBC, 0xC0, 0xC4, 0xC8, 0xCC, 0, 0,0,0,0, 0,0,0,0,
0,0xD0,0,0, 0,0,0,0, 0,0,0,0, 0, 0xD4, 0xD8, 0xDC, };
/* MII transceiver control section.
Read and write the MII registers using software-generated serial
MDIO protocol. See the MII specifications or DP83840A data sheet
for details. */
int tulip_mdio_read(struct net_device *dev, int phy_id, int location)
{
struct tulip_private *tp = netdev_priv(dev);
int i;
int read_cmd = (0xf6 << 10) | ((phy_id & 0x1f) << 5) | location;
int retval = 0;
void __iomem *ioaddr = tp->base_addr;
void __iomem *mdio_addr = ioaddr + CSR9;
unsigned long flags;
if (location & ~0x1f)
return 0xffff;
if (tp->chip_id == COMET && phy_id == 30) {
if (comet_miireg2offset[location])
return ioread32(ioaddr + comet_miireg2offset[location]);
return 0xffff;
}
spin_lock_irqsave(&tp->mii_lock, flags);
if (tp->chip_id == LC82C168) {
int i = 1000;
iowrite32(0x60020000 + (phy_id<<23) + (location<<18), ioaddr + 0xA0);
ioread32(ioaddr + 0xA0);
ioread32(ioaddr + 0xA0);
while (--i > 0) {
barrier();
if ( ! ((retval = ioread32(ioaddr + 0xA0)) & 0x80000000))
break;
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
return retval & 0xffff;
}
if(tp->chip_id == ULI526X && tp->revision >= 0x40) {
int value;
int i = 1000;
value = ioread32(ioaddr + CSR9);
iowrite32(value & 0xFFEFFFFF, ioaddr + CSR9);
value = (phy_id << 21) | (location << 16) | 0x08000000;
iowrite32(value, ioaddr + CSR10);
while(--i > 0) {
mdio_delay();
if(ioread32(ioaddr + CSR10) & 0x10000000)
break;
}
retval = ioread32(ioaddr + CSR10);
spin_unlock_irqrestore(&tp->mii_lock, flags);
return retval & 0xFFFF;
}
/* Establish sync by sending at least 32 logic ones. */
for (i = 32; i >= 0; i--) {
iowrite32(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
mdio_delay();
iowrite32(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Shift the read command bits out. */
for (i = 15; i >= 0; i--) {
int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
iowrite32(MDIO_ENB | dataval, mdio_addr);
mdio_delay();
iowrite32(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Read the two transition, 16 data, and wire-idle bits. */
for (i = 19; i > 0; i--) {
iowrite32(MDIO_ENB_IN, mdio_addr);
mdio_delay();
retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
iowrite32(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
return (retval>>1) & 0xffff;
}
void tulip_mdio_write(struct net_device *dev, int phy_id, int location, int val)
{
struct tulip_private *tp = netdev_priv(dev);
int i;
int cmd = (0x5002 << 16) | ((phy_id & 0x1f) << 23) | (location<<18) | (val & 0xffff);
void __iomem *ioaddr = tp->base_addr;
void __iomem *mdio_addr = ioaddr + CSR9;
unsigned long flags;
if (location & ~0x1f)
return;
if (tp->chip_id == COMET && phy_id == 30) {
if (comet_miireg2offset[location])
iowrite32(val, ioaddr + comet_miireg2offset[location]);
return;
}
spin_lock_irqsave(&tp->mii_lock, flags);
if (tp->chip_id == LC82C168) {
int i = 1000;
iowrite32(cmd, ioaddr + 0xA0);
do {
barrier();
if ( ! (ioread32(ioaddr + 0xA0) & 0x80000000))
break;
} while (--i > 0);
spin_unlock_irqrestore(&tp->mii_lock, flags);
return;
}
if (tp->chip_id == ULI526X && tp->revision >= 0x40) {
int value;
int i = 1000;
value = ioread32(ioaddr + CSR9);
iowrite32(value & 0xFFEFFFFF, ioaddr + CSR9);
value = (phy_id << 21) | (location << 16) | 0x04000000 | (val & 0xFFFF);
iowrite32(value, ioaddr + CSR10);
while(--i > 0) {
if (ioread32(ioaddr + CSR10) & 0x10000000)
break;
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
return;
}
/* Establish sync by sending 32 logic ones. */
for (i = 32; i >= 0; i--) {
iowrite32(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
mdio_delay();
iowrite32(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Shift the command bits out. */
for (i = 31; i >= 0; i--) {
int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
iowrite32(MDIO_ENB | dataval, mdio_addr);
mdio_delay();
iowrite32(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Clear out extra bits. */
for (i = 2; i > 0; i--) {
iowrite32(MDIO_ENB_IN, mdio_addr);
mdio_delay();
iowrite32(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
}
/* Set up the transceiver control registers for the selected media type. */
void tulip_select_media(struct net_device *dev, int startup)
{
struct tulip_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->base_addr;
struct mediatable *mtable = tp->mtable;
u32 new_csr6;
int i;
if (mtable) {
struct medialeaf *mleaf = &mtable->mleaf[tp->cur_index];
unsigned char *p = mleaf->leafdata;
switch (mleaf->type) {
case 0: /* 21140 non-MII xcvr. */
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: Using a 21140 non-MII transceiver"
" with control setting %2.2x.\n",
dev->name, p[1]);
dev->if_port = p[0];
if (startup)
iowrite32(mtable->csr12dir | 0x100, ioaddr + CSR12);
iowrite32(p[1], ioaddr + CSR12);
new_csr6 = 0x02000000 | ((p[2] & 0x71) << 18);
break;
case 2: case 4: {
u16 setup[5];
u32 csr13val, csr14val, csr15dir, csr15val;
for (i = 0; i < 5; i++)
setup[i] = get_u16(&p[i*2 + 1]);
dev->if_port = p[0] & MEDIA_MASK;
if (tulip_media_cap[dev->if_port] & MediaAlwaysFD)
tp->full_duplex = 1;
if (startup && mtable->has_reset) {
struct medialeaf *rleaf = &mtable->mleaf[mtable->has_reset];
unsigned char *rst = rleaf->leafdata;
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: Resetting the transceiver.\n",
dev->name);
for (i = 0; i < rst[0]; i++)
iowrite32(get_u16(rst + 1 + (i<<1)) << 16, ioaddr + CSR15);
}
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: 21143 non-MII %s transceiver control "
"%4.4x/%4.4x.\n",
dev->name, medianame[dev->if_port], setup[0], setup[1]);
if (p[0] & 0x40) { /* SIA (CSR13-15) setup values are provided. */
csr13val = setup[0];
csr14val = setup[1];
csr15dir = (setup[3]<<16) | setup[2];
csr15val = (setup[4]<<16) | setup[2];
iowrite32(0, ioaddr + CSR13);
iowrite32(csr14val, ioaddr + CSR14);
iowrite32(csr15dir, ioaddr + CSR15); /* Direction */
iowrite32(csr15val, ioaddr + CSR15); /* Data */
iowrite32(csr13val, ioaddr + CSR13);
} else {
csr13val = 1;
csr14val = 0;
csr15dir = (setup[0]<<16) | 0x0008;
csr15val = (setup[1]<<16) | 0x0008;
if (dev->if_port <= 4)
csr14val = t21142_csr14[dev->if_port];
if (startup) {
iowrite32(0, ioaddr + CSR13);
iowrite32(csr14val, ioaddr + CSR14);
}
iowrite32(csr15dir, ioaddr + CSR15); /* Direction */
iowrite32(csr15val, ioaddr + CSR15); /* Data */
if (startup) iowrite32(csr13val, ioaddr + CSR13);
}
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: Setting CSR15 to %8.8x/%8.8x.\n",
dev->name, csr15dir, csr15val);
if (mleaf->type == 4)
new_csr6 = 0x82020000 | ((setup[2] & 0x71) << 18);
else
new_csr6 = 0x82420000;
break;
}
case 1: case 3: {
int phy_num = p[0];
int init_length = p[1];
u16 *misc_info, tmp_info;
dev->if_port = 11;
new_csr6 = 0x020E0000;
if (mleaf->type == 3) { /* 21142 */
u16 *init_sequence = (u16*)(p+2);
u16 *reset_sequence = &((u16*)(p+3))[init_length];
int reset_length = p[2 + init_length*2];
misc_info = reset_sequence + reset_length;
if (startup)
for (i = 0; i < reset_length; i++)
iowrite32(get_u16(&reset_sequence[i]) << 16, ioaddr + CSR15);
for (i = 0; i < init_length; i++)
iowrite32(get_u16(&init_sequence[i]) << 16, ioaddr + CSR15);
} else {
u8 *init_sequence = p + 2;
u8 *reset_sequence = p + 3 + init_length;
int reset_length = p[2 + init_length];
misc_info = (u16*)(reset_sequence + reset_length);
if (startup) {
iowrite32(mtable->csr12dir | 0x100, ioaddr + CSR12);
for (i = 0; i < reset_length; i++)
iowrite32(reset_sequence[i], ioaddr + CSR12);
}
for (i = 0; i < init_length; i++)
iowrite32(init_sequence[i], ioaddr + CSR12);
}
tmp_info = get_u16(&misc_info[1]);
if (tmp_info)
tp->advertising[phy_num] = tmp_info | 1;
if (tmp_info && startup < 2) {
if (tp->mii_advertise == 0)
tp->mii_advertise = tp->advertising[phy_num];
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: Advertising %4.4x on MII %d.\n",
dev->name, tp->mii_advertise, tp->phys[phy_num]);
tulip_mdio_write(dev, tp->phys[phy_num], 4, tp->mii_advertise);
}
break;
}
case 5: case 6: {
u16 setup[5];
new_csr6 = 0; /* FIXME */
for (i = 0; i < 5; i++)
setup[i] = get_u16(&p[i*2 + 1]);
if (startup && mtable->has_reset) {
struct medialeaf *rleaf = &mtable->mleaf[mtable->has_reset];
unsigned char *rst = rleaf->leafdata;
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: Resetting the transceiver.\n",
dev->name);
for (i = 0; i < rst[0]; i++)
iowrite32(get_u16(rst + 1 + (i<<1)) << 16, ioaddr + CSR15);
}
break;
}
default:
printk(KERN_DEBUG "%s: Invalid media table selection %d.\n",
dev->name, mleaf->type);
new_csr6 = 0x020E0000;
}
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: Using media type %s, CSR12 is %2.2x.\n",
dev->name, medianame[dev->if_port],
ioread32(ioaddr + CSR12) & 0xff);
} else if (tp->chip_id == LC82C168) {
if (startup && ! tp->medialock)
dev->if_port = tp->mii_cnt ? 11 : 0;
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: PNIC PHY status is %3.3x, media %s.\n",
dev->name, ioread32(ioaddr + 0xB8), medianame[dev->if_port]);
if (tp->mii_cnt) {
new_csr6 = 0x810C0000;
iowrite32(0x0001, ioaddr + CSR15);
iowrite32(0x0201B07A, ioaddr + 0xB8);
} else if (startup) {
/* Start with 10mbps to do autonegotiation. */
iowrite32(0x32, ioaddr + CSR12);
new_csr6 = 0x00420000;
iowrite32(0x0001B078, ioaddr + 0xB8);
iowrite32(0x0201B078, ioaddr + 0xB8);
} else if (dev->if_port == 3 || dev->if_port == 5) {
iowrite32(0x33, ioaddr + CSR12);
new_csr6 = 0x01860000;
/* Trigger autonegotiation. */
iowrite32(startup ? 0x0201F868 : 0x0001F868, ioaddr + 0xB8);
} else {
iowrite32(0x32, ioaddr + CSR12);
new_csr6 = 0x00420000;
iowrite32(0x1F078, ioaddr + 0xB8);
}
} else { /* Unknown chip type with no media table. */
if (tp->default_port == 0)
dev->if_port = tp->mii_cnt ? 11 : 3;
if (tulip_media_cap[dev->if_port] & MediaIsMII) {
new_csr6 = 0x020E0000;
} else if (tulip_media_cap[dev->if_port] & MediaIsFx) {
new_csr6 = 0x02860000;
} else
new_csr6 = 0x03860000;
if (tulip_debug > 1)
printk(KERN_DEBUG "%s: No media description table, assuming "
"%s transceiver, CSR12 %2.2x.\n",
dev->name, medianame[dev->if_port],
ioread32(ioaddr + CSR12));
}
tp->csr6 = new_csr6 | (tp->csr6 & 0xfdff) | (tp->full_duplex ? 0x0200 : 0);
return;
}
/*
Check the MII negotiated duplex and change the CSR6 setting if
required.
Return 0 if everything is OK.
Return < 0 if the transceiver is missing or has no link beat.
*/
int tulip_check_duplex(struct net_device *dev)
{
struct tulip_private *tp = netdev_priv(dev);
unsigned int bmsr, lpa, negotiated, new_csr6;
bmsr = tulip_mdio_read(dev, tp->phys[0], MII_BMSR);
lpa = tulip_mdio_read(dev, tp->phys[0], MII_LPA);
if (tulip_debug > 1)
printk(KERN_INFO "%s: MII status %4.4x, Link partner report "
"%4.4x.\n", dev->name, bmsr, lpa);
if (bmsr == 0xffff)
return -2;
if ((bmsr & BMSR_LSTATUS) == 0) {
int new_bmsr = tulip_mdio_read(dev, tp->phys[0], MII_BMSR);
if ((new_bmsr & BMSR_LSTATUS) == 0) {
if (tulip_debug > 1)
printk(KERN_INFO "%s: No link beat on the MII interface,"
" status %4.4x.\n", dev->name, new_bmsr);
return -1;
}
}
negotiated = lpa & tp->advertising[0];
tp->full_duplex = mii_duplex(tp->full_duplex_lock, negotiated);
new_csr6 = tp->csr6;
if (negotiated & LPA_100) new_csr6 &= ~TxThreshold;
else new_csr6 |= TxThreshold;
if (tp->full_duplex) new_csr6 |= FullDuplex;
else new_csr6 &= ~FullDuplex;
if (new_csr6 != tp->csr6) {
tp->csr6 = new_csr6;
tulip_restart_rxtx(tp);
if (tulip_debug > 0)
printk(KERN_INFO "%s: Setting %s-duplex based on MII"
"#%d link partner capability of %4.4x.\n",
dev->name, tp->full_duplex ? "full" : "half",
tp->phys[0], lpa);
return 1;
}
return 0;
}
void __devinit tulip_find_mii (struct net_device *dev, int board_idx)
{
struct tulip_private *tp = netdev_priv(dev);
int phyn, phy_idx = 0;
int mii_reg0;
int mii_advert;
unsigned int to_advert, new_bmcr, ane_switch;
/* Find the connected MII xcvrs.
Doing this in open() would allow detecting external xcvrs later,
but takes much time. */
for (phyn = 1; phyn <= 32 && phy_idx < sizeof (tp->phys); phyn++) {
int phy = phyn & 0x1f;
int mii_status = tulip_mdio_read (dev, phy, MII_BMSR);
if ((mii_status & 0x8301) == 0x8001 ||
((mii_status & BMSR_100BASE4) == 0
&& (mii_status & 0x7800) != 0)) {
/* preserve Becker logic, gain indentation level */
} else {
continue;
}
mii_reg0 = tulip_mdio_read (dev, phy, MII_BMCR);
mii_advert = tulip_mdio_read (dev, phy, MII_ADVERTISE);
ane_switch = 0;
/* if not advertising at all, gen an
* advertising value from the capability
* bits in BMSR
*/
if ((mii_advert & ADVERTISE_ALL) == 0) {
unsigned int tmpadv = tulip_mdio_read (dev, phy, MII_BMSR);
mii_advert = ((tmpadv >> 6) & 0x3e0) | 1;
}
if (tp->mii_advertise) {
tp->advertising[phy_idx] =
to_advert = tp->mii_advertise;
} else if (tp->advertising[phy_idx]) {
to_advert = tp->advertising[phy_idx];
} else {
tp->advertising[phy_idx] =
tp->mii_advertise =
to_advert = mii_advert;
}
tp->phys[phy_idx++] = phy;
printk (KERN_INFO "tulip%d: MII transceiver #%d "
"config %4.4x status %4.4x advertising %4.4x.\n",
board_idx, phy, mii_reg0, mii_status, mii_advert);
/* Fixup for DLink with miswired PHY. */
if (mii_advert != to_advert) {
printk (KERN_DEBUG "tulip%d: Advertising %4.4x on PHY %d,"
" previously advertising %4.4x.\n",
board_idx, to_advert, phy, mii_advert);
tulip_mdio_write (dev, phy, 4, to_advert);
}
/* Enable autonegotiation: some boards default to off. */
if (tp->default_port == 0) {
new_bmcr = mii_reg0 | BMCR_ANENABLE;
if (new_bmcr != mii_reg0) {
new_bmcr |= BMCR_ANRESTART;
ane_switch = 1;
}
}
/* ...or disable nway, if forcing media */
else {
new_bmcr = mii_reg0 & ~BMCR_ANENABLE;
if (new_bmcr != mii_reg0)
ane_switch = 1;
}
/* clear out bits we never want at this point */
new_bmcr &= ~(BMCR_CTST | BMCR_FULLDPLX | BMCR_ISOLATE |
BMCR_PDOWN | BMCR_SPEED100 | BMCR_LOOPBACK |
BMCR_RESET);
if (tp->full_duplex)
new_bmcr |= BMCR_FULLDPLX;
if (tulip_media_cap[tp->default_port] & MediaIs100)
new_bmcr |= BMCR_SPEED100;
if (new_bmcr != mii_reg0) {
/* some phys need the ANE switch to
* happen before forced media settings
* will "take." However, we write the
* same value twice in order not to
* confuse the sane phys.
*/
if (ane_switch) {
tulip_mdio_write (dev, phy, MII_BMCR, new_bmcr);
udelay (10);
}
tulip_mdio_write (dev, phy, MII_BMCR, new_bmcr);
}
}
tp->mii_cnt = phy_idx;
if (tp->mtable && tp->mtable->has_mii && phy_idx == 0) {
printk (KERN_INFO "tulip%d: ***WARNING***: No MII transceiver found!\n",
board_idx);
tp->phys[0] = 1;
}
}