linux/drivers/net/wireless/iwlwifi/iwl-agn-rs.c

3356 lines
99 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/skbuff.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/wireless.h>
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include "iwl-dev.h"
#include "iwl-sta.h"
#include "iwl-core.h"
#include "iwl-agn.h"
#define RS_NAME "iwl-agn-rs"
#define NUM_TRY_BEFORE_ANT_TOGGLE 1
#define IWL_NUMBER_TRY 1
#define IWL_HT_NUMBER_TRY 3
#define IWL_RATE_MAX_WINDOW 62 /* # tx in history window */
#define IWL_RATE_MIN_FAILURE_TH 6 /* min failures to calc tpt */
#define IWL_RATE_MIN_SUCCESS_TH 8 /* min successes to calc tpt */
/* max allowed rate miss before sync LQ cmd */
#define IWL_MISSED_RATE_MAX 15
/* max time to accum history 2 seconds */
#define IWL_RATE_SCALE_FLUSH_INTVL (3*HZ)
static u8 rs_ht_to_legacy[] = {
IWL_RATE_6M_INDEX, IWL_RATE_6M_INDEX,
IWL_RATE_6M_INDEX, IWL_RATE_6M_INDEX,
IWL_RATE_6M_INDEX,
IWL_RATE_6M_INDEX, IWL_RATE_9M_INDEX,
IWL_RATE_12M_INDEX, IWL_RATE_18M_INDEX,
IWL_RATE_24M_INDEX, IWL_RATE_36M_INDEX,
IWL_RATE_48M_INDEX, IWL_RATE_54M_INDEX
};
static const u8 ant_toggle_lookup[] = {
/*ANT_NONE -> */ ANT_NONE,
/*ANT_A -> */ ANT_B,
/*ANT_B -> */ ANT_C,
/*ANT_AB -> */ ANT_BC,
/*ANT_C -> */ ANT_A,
/*ANT_AC -> */ ANT_AB,
/*ANT_BC -> */ ANT_AC,
/*ANT_ABC -> */ ANT_ABC,
};
#define IWL_DECLARE_RATE_INFO(r, s, ip, in, rp, rn, pp, np) \
[IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \
IWL_RATE_SISO_##s##M_PLCP, \
IWL_RATE_MIMO2_##s##M_PLCP,\
IWL_RATE_MIMO3_##s##M_PLCP,\
IWL_RATE_##r##M_IEEE, \
IWL_RATE_##ip##M_INDEX, \
IWL_RATE_##in##M_INDEX, \
IWL_RATE_##rp##M_INDEX, \
IWL_RATE_##rn##M_INDEX, \
IWL_RATE_##pp##M_INDEX, \
IWL_RATE_##np##M_INDEX }
/*
* Parameter order:
* rate, ht rate, prev rate, next rate, prev tgg rate, next tgg rate
*
* If there isn't a valid next or previous rate then INV is used which
* maps to IWL_RATE_INVALID
*
*/
const struct iwl_rate_info iwl_rates[IWL_RATE_COUNT] = {
IWL_DECLARE_RATE_INFO(1, INV, INV, 2, INV, 2, INV, 2), /* 1mbps */
IWL_DECLARE_RATE_INFO(2, INV, 1, 5, 1, 5, 1, 5), /* 2mbps */
IWL_DECLARE_RATE_INFO(5, INV, 2, 6, 2, 11, 2, 11), /*5.5mbps */
IWL_DECLARE_RATE_INFO(11, INV, 9, 12, 9, 12, 5, 18), /* 11mbps */
IWL_DECLARE_RATE_INFO(6, 6, 5, 9, 5, 11, 5, 11), /* 6mbps */
IWL_DECLARE_RATE_INFO(9, 6, 6, 11, 6, 11, 5, 11), /* 9mbps */
IWL_DECLARE_RATE_INFO(12, 12, 11, 18, 11, 18, 11, 18), /* 12mbps */
IWL_DECLARE_RATE_INFO(18, 18, 12, 24, 12, 24, 11, 24), /* 18mbps */
IWL_DECLARE_RATE_INFO(24, 24, 18, 36, 18, 36, 18, 36), /* 24mbps */
IWL_DECLARE_RATE_INFO(36, 36, 24, 48, 24, 48, 24, 48), /* 36mbps */
IWL_DECLARE_RATE_INFO(48, 48, 36, 54, 36, 54, 36, 54), /* 48mbps */
IWL_DECLARE_RATE_INFO(54, 54, 48, INV, 48, INV, 48, INV),/* 54mbps */
IWL_DECLARE_RATE_INFO(60, 60, 48, INV, 48, INV, 48, INV),/* 60mbps */
/* FIXME:RS: ^^ should be INV (legacy) */
};
static inline u8 rs_extract_rate(u32 rate_n_flags)
{
return (u8)(rate_n_flags & RATE_MCS_RATE_MSK);
}
static int iwl_hwrate_to_plcp_idx(u32 rate_n_flags)
{
int idx = 0;
/* HT rate format */
if (rate_n_flags & RATE_MCS_HT_MSK) {
idx = rs_extract_rate(rate_n_flags);
if (idx >= IWL_RATE_MIMO3_6M_PLCP)
idx = idx - IWL_RATE_MIMO3_6M_PLCP;
else if (idx >= IWL_RATE_MIMO2_6M_PLCP)
idx = idx - IWL_RATE_MIMO2_6M_PLCP;
idx += IWL_FIRST_OFDM_RATE;
/* skip 9M not supported in ht*/
if (idx >= IWL_RATE_9M_INDEX)
idx += 1;
if ((idx >= IWL_FIRST_OFDM_RATE) && (idx <= IWL_LAST_OFDM_RATE))
return idx;
/* legacy rate format, search for match in table */
} else {
for (idx = 0; idx < ARRAY_SIZE(iwl_rates); idx++)
if (iwl_rates[idx].plcp ==
rs_extract_rate(rate_n_flags))
return idx;
}
return -1;
}
static void rs_rate_scale_perform(struct iwl_priv *priv,
struct sk_buff *skb,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta);
static void rs_fill_link_cmd(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta, u32 rate_n_flags);
static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search);
#ifdef CONFIG_MAC80211_DEBUGFS
static void rs_dbgfs_set_mcs(struct iwl_lq_sta *lq_sta,
u32 *rate_n_flags, int index);
#else
static void rs_dbgfs_set_mcs(struct iwl_lq_sta *lq_sta,
u32 *rate_n_flags, int index)
{}
#endif
/**
* The following tables contain the expected throughput metrics for all rates
*
* 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, 60 MBits
*
* where invalid entries are zeros.
*
* CCK rates are only valid in legacy table and will only be used in G
* (2.4 GHz) band.
*/
static s32 expected_tpt_legacy[IWL_RATE_COUNT] = {
7, 13, 35, 58, 40, 57, 72, 98, 121, 154, 177, 186, 0
};
static s32 expected_tpt_siso20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 42, 0, 76, 102, 124, 159, 183, 193, 202}, /* Norm */
{0, 0, 0, 0, 46, 0, 82, 110, 132, 168, 192, 202, 210}, /* SGI */
{0, 0, 0, 0, 47, 0, 91, 133, 171, 242, 305, 334, 362}, /* AGG */
{0, 0, 0, 0, 52, 0, 101, 145, 187, 264, 330, 361, 390}, /* AGG+SGI */
};
static s32 expected_tpt_siso40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 77, 0, 127, 160, 184, 220, 242, 250, 257}, /* Norm */
{0, 0, 0, 0, 83, 0, 135, 169, 193, 229, 250, 257, 264}, /* SGI */
{0, 0, 0, 0, 94, 0, 177, 249, 313, 423, 512, 550, 586}, /* AGG */
{0, 0, 0, 0, 104, 0, 193, 270, 338, 454, 545, 584, 620}, /* AGG+SGI */
};
static s32 expected_tpt_mimo2_20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 74, 0, 123, 155, 179, 214, 236, 244, 251}, /* Norm */
{0, 0, 0, 0, 81, 0, 131, 164, 188, 223, 243, 251, 257}, /* SGI */
{0, 0, 0, 0, 89, 0, 167, 235, 296, 402, 488, 526, 560}, /* AGG */
{0, 0, 0, 0, 97, 0, 182, 255, 320, 431, 520, 558, 593}, /* AGG+SGI*/
};
static s32 expected_tpt_mimo2_40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 123, 0, 182, 214, 235, 264, 279, 285, 289}, /* Norm */
{0, 0, 0, 0, 131, 0, 191, 222, 242, 270, 284, 289, 293}, /* SGI */
{0, 0, 0, 0, 171, 0, 305, 410, 496, 634, 731, 771, 805}, /* AGG */
{0, 0, 0, 0, 186, 0, 329, 439, 527, 667, 764, 803, 838}, /* AGG+SGI */
};
static s32 expected_tpt_mimo3_20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 99, 0, 153, 186, 208, 239, 256, 263, 268}, /* Norm */
{0, 0, 0, 0, 106, 0, 162, 194, 215, 246, 262, 268, 273}, /* SGI */
{0, 0, 0, 0, 134, 0, 249, 346, 431, 574, 685, 732, 775}, /* AGG */
{0, 0, 0, 0, 148, 0, 272, 376, 465, 614, 727, 775, 818}, /* AGG+SGI */
};
static s32 expected_tpt_mimo3_40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 152, 0, 211, 239, 255, 279, 290, 294, 297}, /* Norm */
{0, 0, 0, 0, 160, 0, 219, 245, 261, 284, 294, 297, 300}, /* SGI */
{0, 0, 0, 0, 254, 0, 443, 584, 695, 868, 984, 1030, 1070}, /* AGG */
{0, 0, 0, 0, 277, 0, 478, 624, 737, 911, 1026, 1070, 1109}, /* AGG+SGI */
};
/* mbps, mcs */
static const struct iwl_rate_mcs_info iwl_rate_mcs[IWL_RATE_COUNT] = {
{ "1", "BPSK DSSS"},
{ "2", "QPSK DSSS"},
{"5.5", "BPSK CCK"},
{ "11", "QPSK CCK"},
{ "6", "BPSK 1/2"},
{ "9", "BPSK 1/2"},
{ "12", "QPSK 1/2"},
{ "18", "QPSK 3/4"},
{ "24", "16QAM 1/2"},
{ "36", "16QAM 3/4"},
{ "48", "64QAM 2/3"},
{ "54", "64QAM 3/4"},
{ "60", "64QAM 5/6"},
};
#define MCS_INDEX_PER_STREAM (8)
static void rs_rate_scale_clear_window(struct iwl_rate_scale_data *window)
{
window->data = 0;
window->success_counter = 0;
window->success_ratio = IWL_INVALID_VALUE;
window->counter = 0;
window->average_tpt = IWL_INVALID_VALUE;
window->stamp = 0;
}
static inline u8 rs_is_valid_ant(u8 valid_antenna, u8 ant_type)
{
return (ant_type & valid_antenna) == ant_type;
}
/*
* removes the old data from the statistics. All data that is older than
* TID_MAX_TIME_DIFF, will be deleted.
*/
static void rs_tl_rm_old_stats(struct iwl_traffic_load *tl, u32 curr_time)
{
/* The oldest age we want to keep */
u32 oldest_time = curr_time - TID_MAX_TIME_DIFF;
while (tl->queue_count &&
(tl->time_stamp < oldest_time)) {
tl->total -= tl->packet_count[tl->head];
tl->packet_count[tl->head] = 0;
tl->time_stamp += TID_QUEUE_CELL_SPACING;
tl->queue_count--;
tl->head++;
if (tl->head >= TID_QUEUE_MAX_SIZE)
tl->head = 0;
}
}
/*
* increment traffic load value for tid and also remove
* any old values if passed the certain time period
*/
static u8 rs_tl_add_packet(struct iwl_lq_sta *lq_data,
struct ieee80211_hdr *hdr)
{
u32 curr_time = jiffies_to_msecs(jiffies);
u32 time_diff;
s32 index;
struct iwl_traffic_load *tl = NULL;
u8 tid;
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
} else
return MAX_TID_COUNT;
if (unlikely(tid >= TID_MAX_LOAD_COUNT))
return MAX_TID_COUNT;
tl = &lq_data->load[tid];
curr_time -= curr_time % TID_ROUND_VALUE;
/* Happens only for the first packet. Initialize the data */
if (!(tl->queue_count)) {
tl->total = 1;
tl->time_stamp = curr_time;
tl->queue_count = 1;
tl->head = 0;
tl->packet_count[0] = 1;
return MAX_TID_COUNT;
}
time_diff = TIME_WRAP_AROUND(tl->time_stamp, curr_time);
index = time_diff / TID_QUEUE_CELL_SPACING;
/* The history is too long: remove data that is older than */
/* TID_MAX_TIME_DIFF */
if (index >= TID_QUEUE_MAX_SIZE)
rs_tl_rm_old_stats(tl, curr_time);
index = (tl->head + index) % TID_QUEUE_MAX_SIZE;
tl->packet_count[index] = tl->packet_count[index] + 1;
tl->total = tl->total + 1;
if ((index + 1) > tl->queue_count)
tl->queue_count = index + 1;
return tid;
}
#ifdef CONFIG_MAC80211_DEBUGFS
static void rs_program_fix_rate(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta)
{
struct iwl_station_priv *sta_priv =
container_of(lq_sta, struct iwl_station_priv, lq_sta);
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
lq_sta->active_legacy_rate = 0x0FFF; /* 1 - 54 MBits, includes CCK */
lq_sta->active_siso_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
lq_sta->active_mimo2_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
lq_sta->active_mimo3_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
lq_sta->dbg_fixed_rate = priv->dbg_fixed_rate;
IWL_DEBUG_RATE(priv, "sta_id %d rate 0x%X\n",
lq_sta->lq.sta_id, priv->dbg_fixed_rate);
if (priv->dbg_fixed_rate) {
rs_fill_link_cmd(NULL, lq_sta, priv->dbg_fixed_rate);
iwl_send_lq_cmd(lq_sta->drv, ctx, &lq_sta->lq, CMD_ASYNC,
false);
}
}
#endif
/*
get the traffic load value for tid
*/
static u32 rs_tl_get_load(struct iwl_lq_sta *lq_data, u8 tid)
{
u32 curr_time = jiffies_to_msecs(jiffies);
u32 time_diff;
s32 index;
struct iwl_traffic_load *tl = NULL;
if (tid >= TID_MAX_LOAD_COUNT)
return 0;
tl = &(lq_data->load[tid]);
curr_time -= curr_time % TID_ROUND_VALUE;
if (!(tl->queue_count))
return 0;
time_diff = TIME_WRAP_AROUND(tl->time_stamp, curr_time);
index = time_diff / TID_QUEUE_CELL_SPACING;
/* The history is too long: remove data that is older than */
/* TID_MAX_TIME_DIFF */
if (index >= TID_QUEUE_MAX_SIZE)
rs_tl_rm_old_stats(tl, curr_time);
return tl->total;
}
static int rs_tl_turn_on_agg_for_tid(struct iwl_priv *priv,
struct iwl_lq_sta *lq_data, u8 tid,
struct ieee80211_sta *sta)
{
int ret = -EAGAIN;
u32 load;
/*
* Don't create TX aggregation sessions when in high
* BT traffic, as they would just be disrupted by BT.
*/
if (priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH) {
IWL_ERR(priv, "BT traffic (%d), no aggregation allowed\n",
priv->bt_traffic_load);
return ret;
}
load = rs_tl_get_load(lq_data, tid);
if (load > IWL_AGG_LOAD_THRESHOLD) {
IWL_DEBUG_HT(priv, "Starting Tx agg: STA: %pM tid: %d\n",
sta->addr, tid);
ret = ieee80211_start_tx_ba_session(sta, tid, 5000);
if (ret == -EAGAIN) {
/*
* driver and mac80211 is out of sync
* this might be cause by reloading firmware
* stop the tx ba session here
*/
IWL_ERR(priv, "Fail start Tx agg on tid: %d\n",
tid);
ieee80211_stop_tx_ba_session(sta, tid);
}
} else {
IWL_ERR(priv, "Aggregation not enabled for tid %d "
"because load = %u\n", tid, load);
}
return ret;
}
static void rs_tl_turn_on_agg(struct iwl_priv *priv, u8 tid,
struct iwl_lq_sta *lq_data,
struct ieee80211_sta *sta)
{
if (tid < TID_MAX_LOAD_COUNT)
rs_tl_turn_on_agg_for_tid(priv, lq_data, tid, sta);
else
IWL_ERR(priv, "tid exceeds max load count: %d/%d\n",
tid, TID_MAX_LOAD_COUNT);
}
static inline int get_num_of_ant_from_rate(u32 rate_n_flags)
{
return !!(rate_n_flags & RATE_MCS_ANT_A_MSK) +
!!(rate_n_flags & RATE_MCS_ANT_B_MSK) +
!!(rate_n_flags & RATE_MCS_ANT_C_MSK);
}
/*
* Static function to get the expected throughput from an iwl_scale_tbl_info
* that wraps a NULL pointer check
*/
static s32 get_expected_tpt(struct iwl_scale_tbl_info *tbl, int rs_index)
{
if (tbl->expected_tpt)
return tbl->expected_tpt[rs_index];
return 0;
}
/**
* rs_collect_tx_data - Update the success/failure sliding window
*
* We keep a sliding window of the last 62 packets transmitted
* at this rate. window->data contains the bitmask of successful
* packets.
*/
static int rs_collect_tx_data(struct iwl_scale_tbl_info *tbl,
int scale_index, int attempts, int successes)
{
struct iwl_rate_scale_data *window = NULL;
static const u64 mask = (((u64)1) << (IWL_RATE_MAX_WINDOW - 1));
s32 fail_count, tpt;
if (scale_index < 0 || scale_index >= IWL_RATE_COUNT)
return -EINVAL;
/* Select window for current tx bit rate */
window = &(tbl->win[scale_index]);
/* Get expected throughput */
tpt = get_expected_tpt(tbl, scale_index);
/*
* Keep track of only the latest 62 tx frame attempts in this rate's
* history window; anything older isn't really relevant any more.
* If we have filled up the sliding window, drop the oldest attempt;
* if the oldest attempt (highest bit in bitmap) shows "success",
* subtract "1" from the success counter (this is the main reason
* we keep these bitmaps!).
*/
while (attempts > 0) {
if (window->counter >= IWL_RATE_MAX_WINDOW) {
/* remove earliest */
window->counter = IWL_RATE_MAX_WINDOW - 1;
if (window->data & mask) {
window->data &= ~mask;
window->success_counter--;
}
}
/* Increment frames-attempted counter */
window->counter++;
/* Shift bitmap by one frame to throw away oldest history */
window->data <<= 1;
/* Mark the most recent #successes attempts as successful */
if (successes > 0) {
window->success_counter++;
window->data |= 0x1;
successes--;
}
attempts--;
}
/* Calculate current success ratio, avoid divide-by-0! */
if (window->counter > 0)
window->success_ratio = 128 * (100 * window->success_counter)
/ window->counter;
else
window->success_ratio = IWL_INVALID_VALUE;
fail_count = window->counter - window->success_counter;
/* Calculate average throughput, if we have enough history. */
if ((fail_count >= IWL_RATE_MIN_FAILURE_TH) ||
(window->success_counter >= IWL_RATE_MIN_SUCCESS_TH))
window->average_tpt = (window->success_ratio * tpt + 64) / 128;
else
window->average_tpt = IWL_INVALID_VALUE;
/* Tag this window as having been updated */
window->stamp = jiffies;
return 0;
}
/*
* Fill uCode API rate_n_flags field, based on "search" or "active" table.
*/
/* FIXME:RS:remove this function and put the flags statically in the table */
static u32 rate_n_flags_from_tbl(struct iwl_priv *priv,
struct iwl_scale_tbl_info *tbl,
int index, u8 use_green)
{
u32 rate_n_flags = 0;
if (is_legacy(tbl->lq_type)) {
rate_n_flags = iwl_rates[index].plcp;
if (index >= IWL_FIRST_CCK_RATE && index <= IWL_LAST_CCK_RATE)
rate_n_flags |= RATE_MCS_CCK_MSK;
} else if (is_Ht(tbl->lq_type)) {
if (index > IWL_LAST_OFDM_RATE) {
IWL_ERR(priv, "Invalid HT rate index %d\n", index);
index = IWL_LAST_OFDM_RATE;
}
rate_n_flags = RATE_MCS_HT_MSK;
if (is_siso(tbl->lq_type))
rate_n_flags |= iwl_rates[index].plcp_siso;
else if (is_mimo2(tbl->lq_type))
rate_n_flags |= iwl_rates[index].plcp_mimo2;
else
rate_n_flags |= iwl_rates[index].plcp_mimo3;
} else {
IWL_ERR(priv, "Invalid tbl->lq_type %d\n", tbl->lq_type);
}
rate_n_flags |= ((tbl->ant_type << RATE_MCS_ANT_POS) &
RATE_MCS_ANT_ABC_MSK);
if (is_Ht(tbl->lq_type)) {
if (tbl->is_ht40) {
if (tbl->is_dup)
rate_n_flags |= RATE_MCS_DUP_MSK;
else
rate_n_flags |= RATE_MCS_HT40_MSK;
}
if (tbl->is_SGI)
rate_n_flags |= RATE_MCS_SGI_MSK;
if (use_green) {
rate_n_flags |= RATE_MCS_GF_MSK;
if (is_siso(tbl->lq_type) && tbl->is_SGI) {
rate_n_flags &= ~RATE_MCS_SGI_MSK;
IWL_ERR(priv, "GF was set with SGI:SISO\n");
}
}
}
return rate_n_flags;
}
/*
* Interpret uCode API's rate_n_flags format,
* fill "search" or "active" tx mode table.
*/
static int rs_get_tbl_info_from_mcs(const u32 rate_n_flags,
enum ieee80211_band band,
struct iwl_scale_tbl_info *tbl,
int *rate_idx)
{
u32 ant_msk = (rate_n_flags & RATE_MCS_ANT_ABC_MSK);
u8 num_of_ant = get_num_of_ant_from_rate(rate_n_flags);
u8 mcs;
memset(tbl, 0, sizeof(struct iwl_scale_tbl_info));
*rate_idx = iwl_hwrate_to_plcp_idx(rate_n_flags);
if (*rate_idx == IWL_RATE_INVALID) {
*rate_idx = -1;
return -EINVAL;
}
tbl->is_SGI = 0; /* default legacy setup */
tbl->is_ht40 = 0;
tbl->is_dup = 0;
tbl->ant_type = (ant_msk >> RATE_MCS_ANT_POS);
tbl->lq_type = LQ_NONE;
tbl->max_search = IWL_MAX_SEARCH;
/* legacy rate format */
if (!(rate_n_flags & RATE_MCS_HT_MSK)) {
if (num_of_ant == 1) {
if (band == IEEE80211_BAND_5GHZ)
tbl->lq_type = LQ_A;
else
tbl->lq_type = LQ_G;
}
/* HT rate format */
} else {
if (rate_n_flags & RATE_MCS_SGI_MSK)
tbl->is_SGI = 1;
if ((rate_n_flags & RATE_MCS_HT40_MSK) ||
(rate_n_flags & RATE_MCS_DUP_MSK))
tbl->is_ht40 = 1;
if (rate_n_flags & RATE_MCS_DUP_MSK)
tbl->is_dup = 1;
mcs = rs_extract_rate(rate_n_flags);
/* SISO */
if (mcs <= IWL_RATE_SISO_60M_PLCP) {
if (num_of_ant == 1)
tbl->lq_type = LQ_SISO; /*else NONE*/
/* MIMO2 */
} else if (mcs <= IWL_RATE_MIMO2_60M_PLCP) {
if (num_of_ant == 2)
tbl->lq_type = LQ_MIMO2;
/* MIMO3 */
} else {
if (num_of_ant == 3) {
tbl->max_search = IWL_MAX_11N_MIMO3_SEARCH;
tbl->lq_type = LQ_MIMO3;
}
}
}
return 0;
}
/* switch to another antenna/antennas and return 1 */
/* if no other valid antenna found, return 0 */
static int rs_toggle_antenna(u32 valid_ant, u32 *rate_n_flags,
struct iwl_scale_tbl_info *tbl)
{
u8 new_ant_type;
if (!tbl->ant_type || tbl->ant_type > ANT_ABC)
return 0;
if (!rs_is_valid_ant(valid_ant, tbl->ant_type))
return 0;
new_ant_type = ant_toggle_lookup[tbl->ant_type];
while ((new_ant_type != tbl->ant_type) &&
!rs_is_valid_ant(valid_ant, new_ant_type))
new_ant_type = ant_toggle_lookup[new_ant_type];
if (new_ant_type == tbl->ant_type)
return 0;
tbl->ant_type = new_ant_type;
*rate_n_flags &= ~RATE_MCS_ANT_ABC_MSK;
*rate_n_flags |= new_ant_type << RATE_MCS_ANT_POS;
return 1;
}
/**
* Green-field mode is valid if the station supports it and
* there are no non-GF stations present in the BSS.
*/
static bool rs_use_green(struct ieee80211_sta *sta)
{
struct iwl_station_priv *sta_priv = (void *)sta->drv_priv;
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
return (sta->ht_cap.cap & IEEE80211_HT_CAP_GRN_FLD) &&
!(ctx->ht.non_gf_sta_present);
}
/**
* rs_get_supported_rates - get the available rates
*
* if management frame or broadcast frame only return
* basic available rates.
*
*/
static u16 rs_get_supported_rates(struct iwl_lq_sta *lq_sta,
struct ieee80211_hdr *hdr,
enum iwl_table_type rate_type)
{
if (is_legacy(rate_type)) {
return lq_sta->active_legacy_rate;
} else {
if (is_siso(rate_type))
return lq_sta->active_siso_rate;
else if (is_mimo2(rate_type))
return lq_sta->active_mimo2_rate;
else
return lq_sta->active_mimo3_rate;
}
}
static u16 rs_get_adjacent_rate(struct iwl_priv *priv, u8 index, u16 rate_mask,
int rate_type)
{
u8 high = IWL_RATE_INVALID;
u8 low = IWL_RATE_INVALID;
/* 802.11A or ht walks to the next literal adjacent rate in
* the rate table */
if (is_a_band(rate_type) || !is_legacy(rate_type)) {
int i;
u32 mask;
/* Find the previous rate that is in the rate mask */
i = index - 1;
for (mask = (1 << i); i >= 0; i--, mask >>= 1) {
if (rate_mask & mask) {
low = i;
break;
}
}
/* Find the next rate that is in the rate mask */
i = index + 1;
for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) {
if (rate_mask & mask) {
high = i;
break;
}
}
return (high << 8) | low;
}
low = index;
while (low != IWL_RATE_INVALID) {
low = iwl_rates[low].prev_rs;
if (low == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << low))
break;
IWL_DEBUG_RATE(priv, "Skipping masked lower rate: %d\n", low);
}
high = index;
while (high != IWL_RATE_INVALID) {
high = iwl_rates[high].next_rs;
if (high == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << high))
break;
IWL_DEBUG_RATE(priv, "Skipping masked higher rate: %d\n", high);
}
return (high << 8) | low;
}
static u32 rs_get_lower_rate(struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl,
u8 scale_index, u8 ht_possible)
{
s32 low;
u16 rate_mask;
u16 high_low;
u8 switch_to_legacy = 0;
u8 is_green = lq_sta->is_green;
struct iwl_priv *priv = lq_sta->drv;
/* check if we need to switch from HT to legacy rates.
* assumption is that mandatory rates (1Mbps or 6Mbps)
* are always supported (spec demand) */
if (!is_legacy(tbl->lq_type) && (!ht_possible || !scale_index)) {
switch_to_legacy = 1;
scale_index = rs_ht_to_legacy[scale_index];
if (lq_sta->band == IEEE80211_BAND_5GHZ)
tbl->lq_type = LQ_A;
else
tbl->lq_type = LQ_G;
if (num_of_ant(tbl->ant_type) > 1)
tbl->ant_type =
first_antenna(priv->hw_params.valid_tx_ant);
tbl->is_ht40 = 0;
tbl->is_SGI = 0;
tbl->max_search = IWL_MAX_SEARCH;
}
rate_mask = rs_get_supported_rates(lq_sta, NULL, tbl->lq_type);
/* Mask with station rate restriction */
if (is_legacy(tbl->lq_type)) {
/* supp_rates has no CCK bits in A mode */
if (lq_sta->band == IEEE80211_BAND_5GHZ)
rate_mask = (u16)(rate_mask &
(lq_sta->supp_rates << IWL_FIRST_OFDM_RATE));
else
rate_mask = (u16)(rate_mask & lq_sta->supp_rates);
}
/* If we switched from HT to legacy, check current rate */
if (switch_to_legacy && (rate_mask & (1 << scale_index))) {
low = scale_index;
goto out;
}
high_low = rs_get_adjacent_rate(lq_sta->drv, scale_index, rate_mask,
tbl->lq_type);
low = high_low & 0xff;
if (low == IWL_RATE_INVALID)
low = scale_index;
out:
return rate_n_flags_from_tbl(lq_sta->drv, tbl, low, is_green);
}
/*
* Simple function to compare two rate scale table types
*/
static bool table_type_matches(struct iwl_scale_tbl_info *a,
struct iwl_scale_tbl_info *b)
{
return (a->lq_type == b->lq_type) && (a->ant_type == b->ant_type) &&
(a->is_SGI == b->is_SGI);
}
static void rs_bt_update_lq(struct iwl_priv *priv, struct iwl_rxon_context *ctx,
struct iwl_lq_sta *lq_sta)
{
struct iwl_scale_tbl_info *tbl;
bool full_concurrent = priv->bt_full_concurrent;
unsigned long flags;
if (priv->bt_ant_couple_ok) {
/*
* Is there a need to switch between
* full concurrency and 3-wire?
*/
spin_lock_irqsave(&priv->lock, flags);
if (priv->bt_ci_compliance && priv->bt_ant_couple_ok)
full_concurrent = true;
else
full_concurrent = false;
spin_unlock_irqrestore(&priv->lock, flags);
}
if ((priv->bt_traffic_load != priv->last_bt_traffic_load) ||
(priv->bt_full_concurrent != full_concurrent)) {
priv->bt_full_concurrent = full_concurrent;
/* Update uCode's rate table. */
tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
rs_fill_link_cmd(priv, lq_sta, tbl->current_rate);
iwl_send_lq_cmd(priv, ctx, &lq_sta->lq, CMD_ASYNC, false);
queue_work(priv->workqueue, &priv->bt_full_concurrency);
}
}
/*
* mac80211 sends us Tx status
*/
static void rs_tx_status(void *priv_r, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb)
{
int legacy_success;
int retries;
int rs_index, mac_index, i;
struct iwl_lq_sta *lq_sta = priv_sta;
struct iwl_link_quality_cmd *table;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct iwl_priv *priv = (struct iwl_priv *)priv_r;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
enum mac80211_rate_control_flags mac_flags;
u32 tx_rate;
struct iwl_scale_tbl_info tbl_type;
struct iwl_scale_tbl_info *curr_tbl, *other_tbl, *tmp_tbl;
struct iwl_station_priv *sta_priv = (void *)sta->drv_priv;
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
IWL_DEBUG_RATE_LIMIT(priv, "get frame ack response, update rate scale window\n");
/* Treat uninitialized rate scaling data same as non-existing. */
if (!lq_sta) {
IWL_DEBUG_RATE(priv, "Station rate scaling not created yet.\n");
return;
} else if (!lq_sta->drv) {
IWL_DEBUG_RATE(priv, "Rate scaling not initialized yet.\n");
return;
}
if (!ieee80211_is_data(hdr->frame_control) ||
info->flags & IEEE80211_TX_CTL_NO_ACK)
return;
/* This packet was aggregated but doesn't carry status info */
if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
!(info->flags & IEEE80211_TX_STAT_AMPDU))
return;
/*
* Ignore this Tx frame response if its initial rate doesn't match
* that of latest Link Quality command. There may be stragglers
* from a previous Link Quality command, but we're no longer interested
* in those; they're either from the "active" mode while we're trying
* to check "search" mode, or a prior "search" mode after we've moved
* to a new "search" mode (which might become the new "active" mode).
*/
table = &lq_sta->lq;
tx_rate = le32_to_cpu(table->rs_table[0].rate_n_flags);
rs_get_tbl_info_from_mcs(tx_rate, priv->band, &tbl_type, &rs_index);
if (priv->band == IEEE80211_BAND_5GHZ)
rs_index -= IWL_FIRST_OFDM_RATE;
mac_flags = info->status.rates[0].flags;
mac_index = info->status.rates[0].idx;
/* For HT packets, map MCS to PLCP */
if (mac_flags & IEEE80211_TX_RC_MCS) {
mac_index &= RATE_MCS_CODE_MSK; /* Remove # of streams */
if (mac_index >= (IWL_RATE_9M_INDEX - IWL_FIRST_OFDM_RATE))
mac_index++;
/*
* mac80211 HT index is always zero-indexed; we need to move
* HT OFDM rates after CCK rates in 2.4 GHz band
*/
if (priv->band == IEEE80211_BAND_2GHZ)
mac_index += IWL_FIRST_OFDM_RATE;
}
/* Here we actually compare this rate to the latest LQ command */
if ((mac_index < 0) ||
(tbl_type.is_SGI != !!(mac_flags & IEEE80211_TX_RC_SHORT_GI)) ||
(tbl_type.is_ht40 != !!(mac_flags & IEEE80211_TX_RC_40_MHZ_WIDTH)) ||
(tbl_type.is_dup != !!(mac_flags & IEEE80211_TX_RC_DUP_DATA)) ||
(tbl_type.ant_type != info->antenna_sel_tx) ||
(!!(tx_rate & RATE_MCS_HT_MSK) != !!(mac_flags & IEEE80211_TX_RC_MCS)) ||
(!!(tx_rate & RATE_MCS_GF_MSK) != !!(mac_flags & IEEE80211_TX_RC_GREEN_FIELD)) ||
(rs_index != mac_index)) {
IWL_DEBUG_RATE(priv, "initial rate %d does not match %d (0x%x)\n", mac_index, rs_index, tx_rate);
/*
* Since rates mis-match, the last LQ command may have failed.
* After IWL_MISSED_RATE_MAX mis-matches, resync the uCode with
* ... driver.
*/
lq_sta->missed_rate_counter++;
if (lq_sta->missed_rate_counter > IWL_MISSED_RATE_MAX) {
lq_sta->missed_rate_counter = 0;
iwl_send_lq_cmd(priv, ctx, &lq_sta->lq, CMD_ASYNC, false);
}
/* Regardless, ignore this status info for outdated rate */
return;
} else
/* Rate did match, so reset the missed_rate_counter */
lq_sta->missed_rate_counter = 0;
/* Figure out if rate scale algorithm is in active or search table */
if (table_type_matches(&tbl_type,
&(lq_sta->lq_info[lq_sta->active_tbl]))) {
curr_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
other_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
} else if (table_type_matches(&tbl_type,
&lq_sta->lq_info[1 - lq_sta->active_tbl])) {
curr_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
other_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
} else {
IWL_DEBUG_RATE(priv, "Neither active nor search matches tx rate\n");
tmp_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
IWL_DEBUG_RATE(priv, "active- lq:%x, ant:%x, SGI:%d\n",
tmp_tbl->lq_type, tmp_tbl->ant_type, tmp_tbl->is_SGI);
tmp_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
IWL_DEBUG_RATE(priv, "search- lq:%x, ant:%x, SGI:%d\n",
tmp_tbl->lq_type, tmp_tbl->ant_type, tmp_tbl->is_SGI);
IWL_DEBUG_RATE(priv, "actual- lq:%x, ant:%x, SGI:%d\n",
tbl_type.lq_type, tbl_type.ant_type, tbl_type.is_SGI);
/*
* no matching table found, let's by-pass the data collection
* and continue to perform rate scale to find the rate table
*/
rs_stay_in_table(lq_sta, true);
goto done;
}
/*
* Updating the frame history depends on whether packets were
* aggregated.
*
* For aggregation, all packets were transmitted at the same rate, the
* first index into rate scale table.
*/
if (info->flags & IEEE80211_TX_STAT_AMPDU) {
tx_rate = le32_to_cpu(table->rs_table[0].rate_n_flags);
rs_get_tbl_info_from_mcs(tx_rate, priv->band, &tbl_type,
&rs_index);
rs_collect_tx_data(curr_tbl, rs_index,
info->status.ampdu_len,
info->status.ampdu_ack_len);
/* Update success/fail counts if not searching for new mode */
if (lq_sta->stay_in_tbl) {
lq_sta->total_success += info->status.ampdu_ack_len;
lq_sta->total_failed += (info->status.ampdu_len -
info->status.ampdu_ack_len);
}
} else {
/*
* For legacy, update frame history with for each Tx retry.
*/
retries = info->status.rates[0].count - 1;
/* HW doesn't send more than 15 retries */
retries = min(retries, 15);
/* The last transmission may have been successful */
legacy_success = !!(info->flags & IEEE80211_TX_STAT_ACK);
/* Collect data for each rate used during failed TX attempts */
for (i = 0; i <= retries; ++i) {
tx_rate = le32_to_cpu(table->rs_table[i].rate_n_flags);
rs_get_tbl_info_from_mcs(tx_rate, priv->band,
&tbl_type, &rs_index);
/*
* Only collect stats if retried rate is in the same RS
* table as active/search.
*/
if (table_type_matches(&tbl_type, curr_tbl))
tmp_tbl = curr_tbl;
else if (table_type_matches(&tbl_type, other_tbl))
tmp_tbl = other_tbl;
else
continue;
rs_collect_tx_data(tmp_tbl, rs_index, 1,
i < retries ? 0 : legacy_success);
}
/* Update success/fail counts if not searching for new mode */
if (lq_sta->stay_in_tbl) {
lq_sta->total_success += legacy_success;
lq_sta->total_failed += retries + (1 - legacy_success);
}
}
/* The last TX rate is cached in lq_sta; it's set in if/else above */
lq_sta->last_rate_n_flags = tx_rate;
done:
/* See if there's a better rate or modulation mode to try. */
if (sta && sta->supp_rates[sband->band])
rs_rate_scale_perform(priv, skb, sta, lq_sta);
#ifdef CONFIG_MAC80211_DEBUGFS
if (priv->dbg_fixed_rate != lq_sta->dbg_fixed_rate)
rs_program_fix_rate(priv, lq_sta);
#endif
if (priv->cfg->bt_params && priv->cfg->bt_params->advanced_bt_coexist)
rs_bt_update_lq(priv, ctx, lq_sta);
}
/*
* Begin a period of staying with a selected modulation mode.
* Set "stay_in_tbl" flag to prevent any mode switches.
* Set frame tx success limits according to legacy vs. high-throughput,
* and reset overall (spanning all rates) tx success history statistics.
* These control how long we stay using same modulation mode before
* searching for a new mode.
*/
static void rs_set_stay_in_table(struct iwl_priv *priv, u8 is_legacy,
struct iwl_lq_sta *lq_sta)
{
IWL_DEBUG_RATE(priv, "we are staying in the same table\n");
lq_sta->stay_in_tbl = 1; /* only place this gets set */
if (is_legacy) {
lq_sta->table_count_limit = IWL_LEGACY_TABLE_COUNT;
lq_sta->max_failure_limit = IWL_LEGACY_FAILURE_LIMIT;
lq_sta->max_success_limit = IWL_LEGACY_SUCCESS_LIMIT;
} else {
lq_sta->table_count_limit = IWL_NONE_LEGACY_TABLE_COUNT;
lq_sta->max_failure_limit = IWL_NONE_LEGACY_FAILURE_LIMIT;
lq_sta->max_success_limit = IWL_NONE_LEGACY_SUCCESS_LIMIT;
}
lq_sta->table_count = 0;
lq_sta->total_failed = 0;
lq_sta->total_success = 0;
lq_sta->flush_timer = jiffies;
lq_sta->action_counter = 0;
}
/*
* Find correct throughput table for given mode of modulation
*/
static void rs_set_expected_tpt_table(struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl)
{
/* Used to choose among HT tables */
s32 (*ht_tbl_pointer)[IWL_RATE_COUNT];
/* Check for invalid LQ type */
if (WARN_ON_ONCE(!is_legacy(tbl->lq_type) && !is_Ht(tbl->lq_type))) {
tbl->expected_tpt = expected_tpt_legacy;
return;
}
/* Legacy rates have only one table */
if (is_legacy(tbl->lq_type)) {
tbl->expected_tpt = expected_tpt_legacy;
return;
}
/* Choose among many HT tables depending on number of streams
* (SISO/MIMO2/MIMO3), channel width (20/40), SGI, and aggregation
* status */
if (is_siso(tbl->lq_type) && (!tbl->is_ht40 || lq_sta->is_dup))
ht_tbl_pointer = expected_tpt_siso20MHz;
else if (is_siso(tbl->lq_type))
ht_tbl_pointer = expected_tpt_siso40MHz;
else if (is_mimo2(tbl->lq_type) && (!tbl->is_ht40 || lq_sta->is_dup))
ht_tbl_pointer = expected_tpt_mimo2_20MHz;
else if (is_mimo2(tbl->lq_type))
ht_tbl_pointer = expected_tpt_mimo2_40MHz;
else if (is_mimo3(tbl->lq_type) && (!tbl->is_ht40 || lq_sta->is_dup))
ht_tbl_pointer = expected_tpt_mimo3_20MHz;
else /* if (is_mimo3(tbl->lq_type)) <-- must be true */
ht_tbl_pointer = expected_tpt_mimo3_40MHz;
if (!tbl->is_SGI && !lq_sta->is_agg) /* Normal */
tbl->expected_tpt = ht_tbl_pointer[0];
else if (tbl->is_SGI && !lq_sta->is_agg) /* SGI */
tbl->expected_tpt = ht_tbl_pointer[1];
else if (!tbl->is_SGI && lq_sta->is_agg) /* AGG */
tbl->expected_tpt = ht_tbl_pointer[2];
else /* AGG+SGI */
tbl->expected_tpt = ht_tbl_pointer[3];
}
/*
* Find starting rate for new "search" high-throughput mode of modulation.
* Goal is to find lowest expected rate (under perfect conditions) that is
* above the current measured throughput of "active" mode, to give new mode
* a fair chance to prove itself without too many challenges.
*
* This gets called when transitioning to more aggressive modulation
* (i.e. legacy to SISO or MIMO, or SISO to MIMO), as well as less aggressive
* (i.e. MIMO to SISO). When moving to MIMO, bit rate will typically need
* to decrease to match "active" throughput. When moving from MIMO to SISO,
* bit rate will typically need to increase, but not if performance was bad.
*/
static s32 rs_get_best_rate(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl, /* "search" */
u16 rate_mask, s8 index)
{
/* "active" values */
struct iwl_scale_tbl_info *active_tbl =
&(lq_sta->lq_info[lq_sta->active_tbl]);
s32 active_sr = active_tbl->win[index].success_ratio;
s32 active_tpt = active_tbl->expected_tpt[index];
/* expected "search" throughput */
s32 *tpt_tbl = tbl->expected_tpt;
s32 new_rate, high, low, start_hi;
u16 high_low;
s8 rate = index;
new_rate = high = low = start_hi = IWL_RATE_INVALID;
for (; ;) {
high_low = rs_get_adjacent_rate(priv, rate, rate_mask,
tbl->lq_type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
/*
* Lower the "search" bit rate, to give new "search" mode
* approximately the same throughput as "active" if:
*
* 1) "Active" mode has been working modestly well (but not
* great), and expected "search" throughput (under perfect
* conditions) at candidate rate is above the actual
* measured "active" throughput (but less than expected
* "active" throughput under perfect conditions).
* OR
* 2) "Active" mode has been working perfectly or very well
* and expected "search" throughput (under perfect
* conditions) at candidate rate is above expected
* "active" throughput (under perfect conditions).
*/
if ((((100 * tpt_tbl[rate]) > lq_sta->last_tpt) &&
((active_sr > IWL_RATE_DECREASE_TH) &&
(active_sr <= IWL_RATE_HIGH_TH) &&
(tpt_tbl[rate] <= active_tpt))) ||
((active_sr >= IWL_RATE_SCALE_SWITCH) &&
(tpt_tbl[rate] > active_tpt))) {
/* (2nd or later pass)
* If we've already tried to raise the rate, and are
* now trying to lower it, use the higher rate. */
if (start_hi != IWL_RATE_INVALID) {
new_rate = start_hi;
break;
}
new_rate = rate;
/* Loop again with lower rate */
if (low != IWL_RATE_INVALID)
rate = low;
/* Lower rate not available, use the original */
else
break;
/* Else try to raise the "search" rate to match "active" */
} else {
/* (2nd or later pass)
* If we've already tried to lower the rate, and are
* now trying to raise it, use the lower rate. */
if (new_rate != IWL_RATE_INVALID)
break;
/* Loop again with higher rate */
else if (high != IWL_RATE_INVALID) {
start_hi = high;
rate = high;
/* Higher rate not available, use the original */
} else {
new_rate = rate;
break;
}
}
}
return new_rate;
}
/*
* Set up search table for MIMO2
*/
static int rs_switch_to_mimo2(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl, int index)
{
u16 rate_mask;
s32 rate;
s8 is_green = lq_sta->is_green;
struct iwl_station_priv *sta_priv = (void *)sta->drv_priv;
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
if (!conf_is_ht(conf) || !sta->ht_cap.ht_supported)
return -1;
if (((sta->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 2)
== WLAN_HT_CAP_SM_PS_STATIC)
return -1;
/* Need both Tx chains/antennas to support MIMO */
if (priv->hw_params.tx_chains_num < 2)
return -1;
IWL_DEBUG_RATE(priv, "LQ: try to switch to MIMO2\n");
tbl->lq_type = LQ_MIMO2;
tbl->is_dup = lq_sta->is_dup;
tbl->action = 0;
tbl->max_search = IWL_MAX_SEARCH;
rate_mask = lq_sta->active_mimo2_rate;
if (iwl_is_ht40_tx_allowed(priv, ctx, &sta->ht_cap))
tbl->is_ht40 = 1;
else
tbl->is_ht40 = 0;
rs_set_expected_tpt_table(lq_sta, tbl);
rate = rs_get_best_rate(priv, lq_sta, tbl, rate_mask, index);
IWL_DEBUG_RATE(priv, "LQ: MIMO2 best rate %d mask %X\n", rate, rate_mask);
if ((rate == IWL_RATE_INVALID) || !((1 << rate) & rate_mask)) {
IWL_DEBUG_RATE(priv, "Can't switch with index %d rate mask %x\n",
rate, rate_mask);
return -1;
}
tbl->current_rate = rate_n_flags_from_tbl(priv, tbl, rate, is_green);
IWL_DEBUG_RATE(priv, "LQ: Switch to new mcs %X index is green %X\n",
tbl->current_rate, is_green);
return 0;
}
/*
* Set up search table for MIMO3
*/
static int rs_switch_to_mimo3(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl, int index)
{
u16 rate_mask;
s32 rate;
s8 is_green = lq_sta->is_green;
struct iwl_station_priv *sta_priv = (void *)sta->drv_priv;
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
if (!conf_is_ht(conf) || !sta->ht_cap.ht_supported)
return -1;
if (((sta->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 2)
== WLAN_HT_CAP_SM_PS_STATIC)
return -1;
/* Need both Tx chains/antennas to support MIMO */
if (priv->hw_params.tx_chains_num < 3)
return -1;
IWL_DEBUG_RATE(priv, "LQ: try to switch to MIMO3\n");
tbl->lq_type = LQ_MIMO3;
tbl->is_dup = lq_sta->is_dup;
tbl->action = 0;
tbl->max_search = IWL_MAX_11N_MIMO3_SEARCH;
rate_mask = lq_sta->active_mimo3_rate;
if (iwl_is_ht40_tx_allowed(priv, ctx, &sta->ht_cap))
tbl->is_ht40 = 1;
else
tbl->is_ht40 = 0;
rs_set_expected_tpt_table(lq_sta, tbl);
rate = rs_get_best_rate(priv, lq_sta, tbl, rate_mask, index);
IWL_DEBUG_RATE(priv, "LQ: MIMO3 best rate %d mask %X\n",
rate, rate_mask);
if ((rate == IWL_RATE_INVALID) || !((1 << rate) & rate_mask)) {
IWL_DEBUG_RATE(priv, "Can't switch with index %d rate mask %x\n",
rate, rate_mask);
return -1;
}
tbl->current_rate = rate_n_flags_from_tbl(priv, tbl, rate, is_green);
IWL_DEBUG_RATE(priv, "LQ: Switch to new mcs %X index is green %X\n",
tbl->current_rate, is_green);
return 0;
}
/*
* Set up search table for SISO
*/
static int rs_switch_to_siso(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl, int index)
{
u16 rate_mask;
u8 is_green = lq_sta->is_green;
s32 rate;
struct iwl_station_priv *sta_priv = (void *)sta->drv_priv;
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
if (!conf_is_ht(conf) || !sta->ht_cap.ht_supported)
return -1;
IWL_DEBUG_RATE(priv, "LQ: try to switch to SISO\n");
tbl->is_dup = lq_sta->is_dup;
tbl->lq_type = LQ_SISO;
tbl->action = 0;
tbl->max_search = IWL_MAX_SEARCH;
rate_mask = lq_sta->active_siso_rate;
if (iwl_is_ht40_tx_allowed(priv, ctx, &sta->ht_cap))
tbl->is_ht40 = 1;
else
tbl->is_ht40 = 0;
if (is_green)
tbl->is_SGI = 0; /*11n spec: no SGI in SISO+Greenfield*/
rs_set_expected_tpt_table(lq_sta, tbl);
rate = rs_get_best_rate(priv, lq_sta, tbl, rate_mask, index);
IWL_DEBUG_RATE(priv, "LQ: get best rate %d mask %X\n", rate, rate_mask);
if ((rate == IWL_RATE_INVALID) || !((1 << rate) & rate_mask)) {
IWL_DEBUG_RATE(priv, "can not switch with index %d rate mask %x\n",
rate, rate_mask);
return -1;
}
tbl->current_rate = rate_n_flags_from_tbl(priv, tbl, rate, is_green);
IWL_DEBUG_RATE(priv, "LQ: Switch to new mcs %X index is green %X\n",
tbl->current_rate, is_green);
return 0;
}
/*
* Try to switch to new modulation mode from legacy
*/
static int rs_move_legacy_other(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta,
int index)
{
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
struct iwl_rate_scale_data *window = &(tbl->win[index]);
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action;
u8 valid_tx_ant = priv->hw_params.valid_tx_ant;
u8 tx_chains_num = priv->hw_params.tx_chains_num;
int ret = 0;
u8 update_search_tbl_counter = 0;
switch (priv->bt_traffic_load) {
case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
/* nothing */
break;
case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
/* avoid antenna B unless MIMO */
valid_tx_ant = first_antenna(priv->hw_params.valid_tx_ant);
if (tbl->action == IWL_LEGACY_SWITCH_ANTENNA2)
tbl->action = IWL_LEGACY_SWITCH_ANTENNA1;
break;
case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
/* avoid antenna B and MIMO */
valid_tx_ant = first_antenna(priv->hw_params.valid_tx_ant);
if (tbl->action >= IWL_LEGACY_SWITCH_ANTENNA2 &&
tbl->action != IWL_LEGACY_SWITCH_SISO)
tbl->action = IWL_LEGACY_SWITCH_SISO;
break;
default:
IWL_ERR(priv, "Invalid BT load %d", priv->bt_traffic_load);
break;
}
if (!iwl_ht_enabled(priv))
/* stay in Legacy */
tbl->action = IWL_LEGACY_SWITCH_ANTENNA1;
else if (iwl_tx_ant_restriction(priv) == IWL_ANT_OK_SINGLE &&
tbl->action > IWL_LEGACY_SWITCH_SISO)
tbl->action = IWL_LEGACY_SWITCH_SISO;
/* configure as 1x1 if bt full concurrency */
if (priv->bt_full_concurrent) {
if (!iwl_ht_enabled(priv))
tbl->action = IWL_LEGACY_SWITCH_ANTENNA1;
else if (tbl->action >= IWL_LEGACY_SWITCH_ANTENNA2)
tbl->action = IWL_LEGACY_SWITCH_SISO;
valid_tx_ant = first_antenna(priv->hw_params.valid_tx_ant);
}
start_action = tbl->action;
for (; ;) {
lq_sta->action_counter++;
switch (tbl->action) {
case IWL_LEGACY_SWITCH_ANTENNA1:
case IWL_LEGACY_SWITCH_ANTENNA2:
IWL_DEBUG_RATE(priv, "LQ: Legacy toggle Antenna\n");
if ((tbl->action == IWL_LEGACY_SWITCH_ANTENNA1 &&
tx_chains_num <= 1) ||
(tbl->action == IWL_LEGACY_SWITCH_ANTENNA2 &&
tx_chains_num <= 2))
break;
/* Don't change antenna if success has been great */
if (window->success_ratio >= IWL_RS_GOOD_RATIO &&
!priv->bt_full_concurrent &&
priv->bt_traffic_load ==
IWL_BT_COEX_TRAFFIC_LOAD_NONE)
break;
/* Set up search table to try other antenna */
memcpy(search_tbl, tbl, sz);
if (rs_toggle_antenna(valid_tx_ant,
&search_tbl->current_rate, search_tbl)) {
update_search_tbl_counter = 1;
rs_set_expected_tpt_table(lq_sta, search_tbl);
goto out;
}
break;
case IWL_LEGACY_SWITCH_SISO:
IWL_DEBUG_RATE(priv, "LQ: Legacy switch to SISO\n");
/* Set up search table to try SISO */
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
ret = rs_switch_to_siso(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret) {
lq_sta->action_counter = 0;
goto out;
}
break;
case IWL_LEGACY_SWITCH_MIMO2_AB:
case IWL_LEGACY_SWITCH_MIMO2_AC:
case IWL_LEGACY_SWITCH_MIMO2_BC:
IWL_DEBUG_RATE(priv, "LQ: Legacy switch to MIMO2\n");
/* Set up search table to try MIMO */
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
if (tbl->action == IWL_LEGACY_SWITCH_MIMO2_AB)
search_tbl->ant_type = ANT_AB;
else if (tbl->action == IWL_LEGACY_SWITCH_MIMO2_AC)
search_tbl->ant_type = ANT_AC;
else
search_tbl->ant_type = ANT_BC;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_mimo2(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret) {
lq_sta->action_counter = 0;
goto out;
}
break;
case IWL_LEGACY_SWITCH_MIMO3_ABC:
IWL_DEBUG_RATE(priv, "LQ: Legacy switch to MIMO3\n");
/* Set up search table to try MIMO3 */
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
search_tbl->ant_type = ANT_ABC;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_mimo3(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret) {
lq_sta->action_counter = 0;
goto out;
}
break;
}
tbl->action++;
if (tbl->action > IWL_LEGACY_SWITCH_MIMO3_ABC)
tbl->action = IWL_LEGACY_SWITCH_ANTENNA1;
if (tbl->action == start_action)
break;
}
search_tbl->lq_type = LQ_NONE;
return 0;
out:
lq_sta->search_better_tbl = 1;
tbl->action++;
if (tbl->action > IWL_LEGACY_SWITCH_MIMO3_ABC)
tbl->action = IWL_LEGACY_SWITCH_ANTENNA1;
if (update_search_tbl_counter)
search_tbl->action = tbl->action;
return 0;
}
/*
* Try to switch to new modulation mode from SISO
*/
static int rs_move_siso_to_other(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta, int index)
{
u8 is_green = lq_sta->is_green;
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
struct iwl_rate_scale_data *window = &(tbl->win[index]);
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action;
u8 valid_tx_ant = priv->hw_params.valid_tx_ant;
u8 tx_chains_num = priv->hw_params.tx_chains_num;
u8 update_search_tbl_counter = 0;
int ret;
switch (priv->bt_traffic_load) {
case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
/* nothing */
break;
case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
/* avoid antenna B unless MIMO */
valid_tx_ant = first_antenna(priv->hw_params.valid_tx_ant);
if (tbl->action == IWL_SISO_SWITCH_ANTENNA2)
tbl->action = IWL_SISO_SWITCH_ANTENNA1;
break;
case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
/* avoid antenna B and MIMO */
valid_tx_ant = first_antenna(priv->hw_params.valid_tx_ant);
if (tbl->action != IWL_SISO_SWITCH_ANTENNA1)
tbl->action = IWL_SISO_SWITCH_ANTENNA1;
break;
default:
IWL_ERR(priv, "Invalid BT load %d", priv->bt_traffic_load);
break;
}
if (iwl_tx_ant_restriction(priv) == IWL_ANT_OK_SINGLE &&
tbl->action > IWL_SISO_SWITCH_ANTENNA2) {
/* stay in SISO */
tbl->action = IWL_SISO_SWITCH_ANTENNA1;
}
/* configure as 1x1 if bt full concurrency */
if (priv->bt_full_concurrent) {
valid_tx_ant = first_antenna(priv->hw_params.valid_tx_ant);
if (tbl->action >= IWL_LEGACY_SWITCH_ANTENNA2)
tbl->action = IWL_SISO_SWITCH_ANTENNA1;
}
start_action = tbl->action;
for (;;) {
lq_sta->action_counter++;
switch (tbl->action) {
case IWL_SISO_SWITCH_ANTENNA1:
case IWL_SISO_SWITCH_ANTENNA2:
IWL_DEBUG_RATE(priv, "LQ: SISO toggle Antenna\n");
if ((tbl->action == IWL_SISO_SWITCH_ANTENNA1 &&
tx_chains_num <= 1) ||
(tbl->action == IWL_SISO_SWITCH_ANTENNA2 &&
tx_chains_num <= 2))
break;
if (window->success_ratio >= IWL_RS_GOOD_RATIO &&
!priv->bt_full_concurrent &&
priv->bt_traffic_load ==
IWL_BT_COEX_TRAFFIC_LOAD_NONE)
break;
memcpy(search_tbl, tbl, sz);
if (rs_toggle_antenna(valid_tx_ant,
&search_tbl->current_rate, search_tbl)) {
update_search_tbl_counter = 1;
goto out;
}
break;
case IWL_SISO_SWITCH_MIMO2_AB:
case IWL_SISO_SWITCH_MIMO2_AC:
case IWL_SISO_SWITCH_MIMO2_BC:
IWL_DEBUG_RATE(priv, "LQ: SISO switch to MIMO2\n");
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
if (tbl->action == IWL_SISO_SWITCH_MIMO2_AB)
search_tbl->ant_type = ANT_AB;
else if (tbl->action == IWL_SISO_SWITCH_MIMO2_AC)
search_tbl->ant_type = ANT_AC;
else
search_tbl->ant_type = ANT_BC;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_mimo2(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret)
goto out;
break;
case IWL_SISO_SWITCH_GI:
if (!tbl->is_ht40 && !(ht_cap->cap &
IEEE80211_HT_CAP_SGI_20))
break;
if (tbl->is_ht40 && !(ht_cap->cap &
IEEE80211_HT_CAP_SGI_40))
break;
IWL_DEBUG_RATE(priv, "LQ: SISO toggle SGI/NGI\n");
memcpy(search_tbl, tbl, sz);
if (is_green) {
if (!tbl->is_SGI)
break;
else
IWL_ERR(priv,
"SGI was set in GF+SISO\n");
}
search_tbl->is_SGI = !tbl->is_SGI;
rs_set_expected_tpt_table(lq_sta, search_tbl);
if (tbl->is_SGI) {
s32 tpt = lq_sta->last_tpt / 100;
if (tpt >= search_tbl->expected_tpt[index])
break;
}
search_tbl->current_rate =
rate_n_flags_from_tbl(priv, search_tbl,
index, is_green);
update_search_tbl_counter = 1;
goto out;
case IWL_SISO_SWITCH_MIMO3_ABC:
IWL_DEBUG_RATE(priv, "LQ: SISO switch to MIMO3\n");
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
search_tbl->ant_type = ANT_ABC;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_mimo3(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret)
goto out;
break;
}
tbl->action++;
if (tbl->action > IWL_LEGACY_SWITCH_MIMO3_ABC)
tbl->action = IWL_SISO_SWITCH_ANTENNA1;
if (tbl->action == start_action)
break;
}
search_tbl->lq_type = LQ_NONE;
return 0;
out:
lq_sta->search_better_tbl = 1;
tbl->action++;
if (tbl->action > IWL_SISO_SWITCH_MIMO3_ABC)
tbl->action = IWL_SISO_SWITCH_ANTENNA1;
if (update_search_tbl_counter)
search_tbl->action = tbl->action;
return 0;
}
/*
* Try to switch to new modulation mode from MIMO2
*/
static int rs_move_mimo2_to_other(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta, int index)
{
s8 is_green = lq_sta->is_green;
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
struct iwl_rate_scale_data *window = &(tbl->win[index]);
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action;
u8 valid_tx_ant = priv->hw_params.valid_tx_ant;
u8 tx_chains_num = priv->hw_params.tx_chains_num;
u8 update_search_tbl_counter = 0;
int ret;
switch (priv->bt_traffic_load) {
case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
/* nothing */
break;
case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
/* avoid antenna B and MIMO */
if (tbl->action != IWL_MIMO2_SWITCH_SISO_A)
tbl->action = IWL_MIMO2_SWITCH_SISO_A;
break;
case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
/* avoid antenna B unless MIMO */
if (tbl->action == IWL_MIMO2_SWITCH_SISO_B ||
tbl->action == IWL_MIMO2_SWITCH_SISO_C)
tbl->action = IWL_MIMO2_SWITCH_SISO_A;
break;
default:
IWL_ERR(priv, "Invalid BT load %d", priv->bt_traffic_load);
break;
}
if ((iwl_tx_ant_restriction(priv) == IWL_ANT_OK_SINGLE) &&
(tbl->action < IWL_MIMO2_SWITCH_SISO_A ||
tbl->action > IWL_MIMO2_SWITCH_SISO_C)) {
/* switch in SISO */
tbl->action = IWL_MIMO2_SWITCH_SISO_A;
}
/* configure as 1x1 if bt full concurrency */
if (priv->bt_full_concurrent &&
(tbl->action < IWL_MIMO2_SWITCH_SISO_A ||
tbl->action > IWL_MIMO2_SWITCH_SISO_C))
tbl->action = IWL_MIMO2_SWITCH_SISO_A;
start_action = tbl->action;
for (;;) {
lq_sta->action_counter++;
switch (tbl->action) {
case IWL_MIMO2_SWITCH_ANTENNA1:
case IWL_MIMO2_SWITCH_ANTENNA2:
IWL_DEBUG_RATE(priv, "LQ: MIMO2 toggle Antennas\n");
if (tx_chains_num <= 2)
break;
if (window->success_ratio >= IWL_RS_GOOD_RATIO)
break;
memcpy(search_tbl, tbl, sz);
if (rs_toggle_antenna(valid_tx_ant,
&search_tbl->current_rate, search_tbl)) {
update_search_tbl_counter = 1;
goto out;
}
break;
case IWL_MIMO2_SWITCH_SISO_A:
case IWL_MIMO2_SWITCH_SISO_B:
case IWL_MIMO2_SWITCH_SISO_C:
IWL_DEBUG_RATE(priv, "LQ: MIMO2 switch to SISO\n");
/* Set up new search table for SISO */
memcpy(search_tbl, tbl, sz);
if (tbl->action == IWL_MIMO2_SWITCH_SISO_A)
search_tbl->ant_type = ANT_A;
else if (tbl->action == IWL_MIMO2_SWITCH_SISO_B)
search_tbl->ant_type = ANT_B;
else
search_tbl->ant_type = ANT_C;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_siso(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret)
goto out;
break;
case IWL_MIMO2_SWITCH_GI:
if (!tbl->is_ht40 && !(ht_cap->cap &
IEEE80211_HT_CAP_SGI_20))
break;
if (tbl->is_ht40 && !(ht_cap->cap &
IEEE80211_HT_CAP_SGI_40))
break;
IWL_DEBUG_RATE(priv, "LQ: MIMO2 toggle SGI/NGI\n");
/* Set up new search table for MIMO2 */
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = !tbl->is_SGI;
rs_set_expected_tpt_table(lq_sta, search_tbl);
/*
* If active table already uses the fastest possible
* modulation (dual stream with short guard interval),
* and it's working well, there's no need to look
* for a better type of modulation!
*/
if (tbl->is_SGI) {
s32 tpt = lq_sta->last_tpt / 100;
if (tpt >= search_tbl->expected_tpt[index])
break;
}
search_tbl->current_rate =
rate_n_flags_from_tbl(priv, search_tbl,
index, is_green);
update_search_tbl_counter = 1;
goto out;
case IWL_MIMO2_SWITCH_MIMO3_ABC:
IWL_DEBUG_RATE(priv, "LQ: MIMO2 switch to MIMO3\n");
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
search_tbl->ant_type = ANT_ABC;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_mimo3(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret)
goto out;
break;
}
tbl->action++;
if (tbl->action > IWL_MIMO2_SWITCH_MIMO3_ABC)
tbl->action = IWL_MIMO2_SWITCH_ANTENNA1;
if (tbl->action == start_action)
break;
}
search_tbl->lq_type = LQ_NONE;
return 0;
out:
lq_sta->search_better_tbl = 1;
tbl->action++;
if (tbl->action > IWL_MIMO2_SWITCH_MIMO3_ABC)
tbl->action = IWL_MIMO2_SWITCH_ANTENNA1;
if (update_search_tbl_counter)
search_tbl->action = tbl->action;
return 0;
}
/*
* Try to switch to new modulation mode from MIMO3
*/
static int rs_move_mimo3_to_other(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta, int index)
{
s8 is_green = lq_sta->is_green;
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
struct iwl_rate_scale_data *window = &(tbl->win[index]);
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action;
u8 valid_tx_ant = priv->hw_params.valid_tx_ant;
u8 tx_chains_num = priv->hw_params.tx_chains_num;
int ret;
u8 update_search_tbl_counter = 0;
switch (priv->bt_traffic_load) {
case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
/* nothing */
break;
case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
/* avoid antenna B and MIMO */
if (tbl->action != IWL_MIMO3_SWITCH_SISO_A)
tbl->action = IWL_MIMO3_SWITCH_SISO_A;
break;
case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
/* avoid antenna B unless MIMO */
if (tbl->action == IWL_MIMO3_SWITCH_SISO_B ||
tbl->action == IWL_MIMO3_SWITCH_SISO_C)
tbl->action = IWL_MIMO3_SWITCH_SISO_A;
break;
default:
IWL_ERR(priv, "Invalid BT load %d", priv->bt_traffic_load);
break;
}
if ((iwl_tx_ant_restriction(priv) == IWL_ANT_OK_SINGLE) &&
(tbl->action < IWL_MIMO3_SWITCH_SISO_A ||
tbl->action > IWL_MIMO3_SWITCH_SISO_C)) {
/* switch in SISO */
tbl->action = IWL_MIMO3_SWITCH_SISO_A;
}
/* configure as 1x1 if bt full concurrency */
if (priv->bt_full_concurrent &&
(tbl->action < IWL_MIMO3_SWITCH_SISO_A ||
tbl->action > IWL_MIMO3_SWITCH_SISO_C))
tbl->action = IWL_MIMO3_SWITCH_SISO_A;
start_action = tbl->action;
for (;;) {
lq_sta->action_counter++;
switch (tbl->action) {
case IWL_MIMO3_SWITCH_ANTENNA1:
case IWL_MIMO3_SWITCH_ANTENNA2:
IWL_DEBUG_RATE(priv, "LQ: MIMO3 toggle Antennas\n");
if (tx_chains_num <= 3)
break;
if (window->success_ratio >= IWL_RS_GOOD_RATIO)
break;
memcpy(search_tbl, tbl, sz);
if (rs_toggle_antenna(valid_tx_ant,
&search_tbl->current_rate, search_tbl))
goto out;
break;
case IWL_MIMO3_SWITCH_SISO_A:
case IWL_MIMO3_SWITCH_SISO_B:
case IWL_MIMO3_SWITCH_SISO_C:
IWL_DEBUG_RATE(priv, "LQ: MIMO3 switch to SISO\n");
/* Set up new search table for SISO */
memcpy(search_tbl, tbl, sz);
if (tbl->action == IWL_MIMO3_SWITCH_SISO_A)
search_tbl->ant_type = ANT_A;
else if (tbl->action == IWL_MIMO3_SWITCH_SISO_B)
search_tbl->ant_type = ANT_B;
else
search_tbl->ant_type = ANT_C;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_siso(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret)
goto out;
break;
case IWL_MIMO3_SWITCH_MIMO2_AB:
case IWL_MIMO3_SWITCH_MIMO2_AC:
case IWL_MIMO3_SWITCH_MIMO2_BC:
IWL_DEBUG_RATE(priv, "LQ: MIMO3 switch to MIMO2\n");
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = 0;
if (tbl->action == IWL_MIMO3_SWITCH_MIMO2_AB)
search_tbl->ant_type = ANT_AB;
else if (tbl->action == IWL_MIMO3_SWITCH_MIMO2_AC)
search_tbl->ant_type = ANT_AC;
else
search_tbl->ant_type = ANT_BC;
if (!rs_is_valid_ant(valid_tx_ant, search_tbl->ant_type))
break;
ret = rs_switch_to_mimo2(priv, lq_sta, conf, sta,
search_tbl, index);
if (!ret)
goto out;
break;
case IWL_MIMO3_SWITCH_GI:
if (!tbl->is_ht40 && !(ht_cap->cap &
IEEE80211_HT_CAP_SGI_20))
break;
if (tbl->is_ht40 && !(ht_cap->cap &
IEEE80211_HT_CAP_SGI_40))
break;
IWL_DEBUG_RATE(priv, "LQ: MIMO3 toggle SGI/NGI\n");
/* Set up new search table for MIMO */
memcpy(search_tbl, tbl, sz);
search_tbl->is_SGI = !tbl->is_SGI;
rs_set_expected_tpt_table(lq_sta, search_tbl);
/*
* If active table already uses the fastest possible
* modulation (dual stream with short guard interval),
* and it's working well, there's no need to look
* for a better type of modulation!
*/
if (tbl->is_SGI) {
s32 tpt = lq_sta->last_tpt / 100;
if (tpt >= search_tbl->expected_tpt[index])
break;
}
search_tbl->current_rate =
rate_n_flags_from_tbl(priv, search_tbl,
index, is_green);
update_search_tbl_counter = 1;
goto out;
}
tbl->action++;
if (tbl->action > IWL_MIMO3_SWITCH_GI)
tbl->action = IWL_MIMO3_SWITCH_ANTENNA1;
if (tbl->action == start_action)
break;
}
search_tbl->lq_type = LQ_NONE;
return 0;
out:
lq_sta->search_better_tbl = 1;
tbl->action++;
if (tbl->action > IWL_MIMO3_SWITCH_GI)
tbl->action = IWL_MIMO3_SWITCH_ANTENNA1;
if (update_search_tbl_counter)
search_tbl->action = tbl->action;
return 0;
}
/*
* Check whether we should continue using same modulation mode, or
* begin search for a new mode, based on:
* 1) # tx successes or failures while using this mode
* 2) # times calling this function
* 3) elapsed time in this mode (not used, for now)
*/
static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search)
{
struct iwl_scale_tbl_info *tbl;
int i;
int active_tbl;
int flush_interval_passed = 0;
struct iwl_priv *priv;
priv = lq_sta->drv;
active_tbl = lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
/* If we've been disallowing search, see if we should now allow it */
if (lq_sta->stay_in_tbl) {
/* Elapsed time using current modulation mode */
if (lq_sta->flush_timer)
flush_interval_passed =
time_after(jiffies,
(unsigned long)(lq_sta->flush_timer +
IWL_RATE_SCALE_FLUSH_INTVL));
/*
* Check if we should allow search for new modulation mode.
* If many frames have failed or succeeded, or we've used
* this same modulation for a long time, allow search, and
* reset history stats that keep track of whether we should
* allow a new search. Also (below) reset all bitmaps and
* stats in active history.
*/
if (force_search ||
(lq_sta->total_failed > lq_sta->max_failure_limit) ||
(lq_sta->total_success > lq_sta->max_success_limit) ||
((!lq_sta->search_better_tbl) && (lq_sta->flush_timer)
&& (flush_interval_passed))) {
IWL_DEBUG_RATE(priv, "LQ: stay is expired %d %d %d\n:",
lq_sta->total_failed,
lq_sta->total_success,
flush_interval_passed);
/* Allow search for new mode */
lq_sta->stay_in_tbl = 0; /* only place reset */
lq_sta->total_failed = 0;
lq_sta->total_success = 0;
lq_sta->flush_timer = 0;
/*
* Else if we've used this modulation mode enough repetitions
* (regardless of elapsed time or success/failure), reset
* history bitmaps and rate-specific stats for all rates in
* active table.
*/
} else {
lq_sta->table_count++;
if (lq_sta->table_count >=
lq_sta->table_count_limit) {
lq_sta->table_count = 0;
IWL_DEBUG_RATE(priv, "LQ: stay in table clear win\n");
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(
&(tbl->win[i]));
}
}
/* If transitioning to allow "search", reset all history
* bitmaps and stats in active table (this will become the new
* "search" table). */
if (!lq_sta->stay_in_tbl) {
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(tbl->win[i]));
}
}
}
/*
* setup rate table in uCode
* return rate_n_flags as used in the table
*/
static void rs_update_rate_tbl(struct iwl_priv *priv,
struct iwl_rxon_context *ctx,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl,
int index, u8 is_green)
{
u32 rate;
/* Update uCode's rate table. */
rate = rate_n_flags_from_tbl(priv, tbl, index, is_green);
rs_fill_link_cmd(priv, lq_sta, rate);
iwl_send_lq_cmd(priv, ctx, &lq_sta->lq, CMD_ASYNC, false);
}
/*
* Do rate scaling and search for new modulation mode.
*/
static void rs_rate_scale_perform(struct iwl_priv *priv,
struct sk_buff *skb,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta)
{
struct ieee80211_hw *hw = priv->hw;
struct ieee80211_conf *conf = &hw->conf;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int low = IWL_RATE_INVALID;
int high = IWL_RATE_INVALID;
int index;
int i;
struct iwl_rate_scale_data *window = NULL;
int current_tpt = IWL_INVALID_VALUE;
int low_tpt = IWL_INVALID_VALUE;
int high_tpt = IWL_INVALID_VALUE;
u32 fail_count;
s8 scale_action = 0;
u16 rate_mask;
u8 update_lq = 0;
struct iwl_scale_tbl_info *tbl, *tbl1;
u16 rate_scale_index_msk = 0;
u8 is_green = 0;
u8 active_tbl = 0;
u8 done_search = 0;
u16 high_low;
s32 sr;
u8 tid = MAX_TID_COUNT;
struct iwl_tid_data *tid_data;
struct iwl_station_priv *sta_priv = (void *)sta->drv_priv;
struct iwl_rxon_context *ctx = sta_priv->common.ctx;
IWL_DEBUG_RATE(priv, "rate scale calculate new rate for skb\n");
/* Send management frames and NO_ACK data using lowest rate. */
/* TODO: this could probably be improved.. */
if (!ieee80211_is_data(hdr->frame_control) ||
info->flags & IEEE80211_TX_CTL_NO_ACK)
return;
if (!sta || !lq_sta)
return;
lq_sta->supp_rates = sta->supp_rates[lq_sta->band];
tid = rs_tl_add_packet(lq_sta, hdr);
if ((tid != MAX_TID_COUNT) && (lq_sta->tx_agg_tid_en & (1 << tid))) {
tid_data = &priv->stations[lq_sta->lq.sta_id].tid[tid];
if (tid_data->agg.state == IWL_AGG_OFF)
lq_sta->is_agg = 0;
else
lq_sta->is_agg = 1;
} else
lq_sta->is_agg = 0;
/*
* Select rate-scale / modulation-mode table to work with in
* the rest of this function: "search" if searching for better
* modulation mode, or "active" if doing rate scaling within a mode.
*/
if (!lq_sta->search_better_tbl)
active_tbl = lq_sta->active_tbl;
else
active_tbl = 1 - lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
if (is_legacy(tbl->lq_type))
lq_sta->is_green = 0;
else
lq_sta->is_green = rs_use_green(sta);
is_green = lq_sta->is_green;
/* current tx rate */
index = lq_sta->last_txrate_idx;
IWL_DEBUG_RATE(priv, "Rate scale index %d for type %d\n", index,
tbl->lq_type);
/* rates available for this association, and for modulation mode */
rate_mask = rs_get_supported_rates(lq_sta, hdr, tbl->lq_type);
IWL_DEBUG_RATE(priv, "mask 0x%04X\n", rate_mask);
/* mask with station rate restriction */
if (is_legacy(tbl->lq_type)) {
if (lq_sta->band == IEEE80211_BAND_5GHZ)
/* supp_rates has no CCK bits in A mode */
rate_scale_index_msk = (u16) (rate_mask &
(lq_sta->supp_rates << IWL_FIRST_OFDM_RATE));
else
rate_scale_index_msk = (u16) (rate_mask &
lq_sta->supp_rates);
} else
rate_scale_index_msk = rate_mask;
if (!rate_scale_index_msk)
rate_scale_index_msk = rate_mask;
if (!((1 << index) & rate_scale_index_msk)) {
IWL_ERR(priv, "Current Rate is not valid\n");
if (lq_sta->search_better_tbl) {
/* revert to active table if search table is not valid*/
tbl->lq_type = LQ_NONE;
lq_sta->search_better_tbl = 0;
tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
/* get "active" rate info */
index = iwl_hwrate_to_plcp_idx(tbl->current_rate);
rs_update_rate_tbl(priv, ctx, lq_sta, tbl,
index, is_green);
}
return;
}
/* Get expected throughput table and history window for current rate */
if (!tbl->expected_tpt) {
IWL_ERR(priv, "tbl->expected_tpt is NULL\n");
return;
}
/* force user max rate if set by user */
if ((lq_sta->max_rate_idx != -1) &&
(lq_sta->max_rate_idx < index)) {
index = lq_sta->max_rate_idx;
update_lq = 1;
window = &(tbl->win[index]);
goto lq_update;
}
window = &(tbl->win[index]);
/*
* If there is not enough history to calculate actual average
* throughput, keep analyzing results of more tx frames, without
* changing rate or mode (bypass most of the rest of this function).
* Set up new rate table in uCode only if old rate is not supported
* in current association (use new rate found above).
*/
fail_count = window->counter - window->success_counter;
if ((fail_count < IWL_RATE_MIN_FAILURE_TH) &&
(window->success_counter < IWL_RATE_MIN_SUCCESS_TH)) {
IWL_DEBUG_RATE(priv, "LQ: still below TH. succ=%d total=%d "
"for index %d\n",
window->success_counter, window->counter, index);
/* Can't calculate this yet; not enough history */
window->average_tpt = IWL_INVALID_VALUE;
/* Should we stay with this modulation mode,
* or search for a new one? */
rs_stay_in_table(lq_sta, false);
goto out;
}
/* Else we have enough samples; calculate estimate of
* actual average throughput */
if (window->average_tpt != ((window->success_ratio *
tbl->expected_tpt[index] + 64) / 128)) {
IWL_ERR(priv, "expected_tpt should have been calculated by now\n");
window->average_tpt = ((window->success_ratio *
tbl->expected_tpt[index] + 64) / 128);
}
/* If we are searching for better modulation mode, check success. */
if (lq_sta->search_better_tbl &&
(iwl_tx_ant_restriction(priv) == IWL_ANT_OK_MULTI)) {
/* If good success, continue using the "search" mode;
* no need to send new link quality command, since we're
* continuing to use the setup that we've been trying. */
if (window->average_tpt > lq_sta->last_tpt) {
IWL_DEBUG_RATE(priv, "LQ: SWITCHING TO NEW TABLE "
"suc=%d cur-tpt=%d old-tpt=%d\n",
window->success_ratio,
window->average_tpt,
lq_sta->last_tpt);
if (!is_legacy(tbl->lq_type))
lq_sta->enable_counter = 1;
/* Swap tables; "search" becomes "active" */
lq_sta->active_tbl = active_tbl;
current_tpt = window->average_tpt;
/* Else poor success; go back to mode in "active" table */
} else {
IWL_DEBUG_RATE(priv, "LQ: GOING BACK TO THE OLD TABLE "
"suc=%d cur-tpt=%d old-tpt=%d\n",
window->success_ratio,
window->average_tpt,
lq_sta->last_tpt);
/* Nullify "search" table */
tbl->lq_type = LQ_NONE;
/* Revert to "active" table */
active_tbl = lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
/* Revert to "active" rate and throughput info */
index = iwl_hwrate_to_plcp_idx(tbl->current_rate);
current_tpt = lq_sta->last_tpt;
/* Need to set up a new rate table in uCode */
update_lq = 1;
}
/* Either way, we've made a decision; modulation mode
* search is done, allow rate adjustment next time. */
lq_sta->search_better_tbl = 0;
done_search = 1; /* Don't switch modes below! */
goto lq_update;
}
/* (Else) not in search of better modulation mode, try for better
* starting rate, while staying in this mode. */
high_low = rs_get_adjacent_rate(priv, index, rate_scale_index_msk,
tbl->lq_type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
/* If user set max rate, dont allow higher than user constrain */
if ((lq_sta->max_rate_idx != -1) &&
(lq_sta->max_rate_idx < high))
high = IWL_RATE_INVALID;
sr = window->success_ratio;
/* Collect measured throughputs for current and adjacent rates */
current_tpt = window->average_tpt;
if (low != IWL_RATE_INVALID)
low_tpt = tbl->win[low].average_tpt;
if (high != IWL_RATE_INVALID)
high_tpt = tbl->win[high].average_tpt;
scale_action = 0;
/* Too many failures, decrease rate */
if ((sr <= IWL_RATE_DECREASE_TH) || (current_tpt == 0)) {
IWL_DEBUG_RATE(priv, "decrease rate because of low success_ratio\n");
scale_action = -1;
/* No throughput measured yet for adjacent rates; try increase. */
} else if ((low_tpt == IWL_INVALID_VALUE) &&
(high_tpt == IWL_INVALID_VALUE)) {
if (high != IWL_RATE_INVALID && sr >= IWL_RATE_INCREASE_TH)
scale_action = 1;
else if (low != IWL_RATE_INVALID)
scale_action = 0;
}
/* Both adjacent throughputs are measured, but neither one has better
* throughput; we're using the best rate, don't change it! */
else if ((low_tpt != IWL_INVALID_VALUE) &&
(high_tpt != IWL_INVALID_VALUE) &&
(low_tpt < current_tpt) &&
(high_tpt < current_tpt))
scale_action = 0;
/* At least one adjacent rate's throughput is measured,
* and may have better performance. */
else {
/* Higher adjacent rate's throughput is measured */
if (high_tpt != IWL_INVALID_VALUE) {
/* Higher rate has better throughput */
if (high_tpt > current_tpt &&
sr >= IWL_RATE_INCREASE_TH) {
scale_action = 1;
} else {
scale_action = 0;
}
/* Lower adjacent rate's throughput is measured */
} else if (low_tpt != IWL_INVALID_VALUE) {
/* Lower rate has better throughput */
if (low_tpt > current_tpt) {
IWL_DEBUG_RATE(priv,
"decrease rate because of low tpt\n");
scale_action = -1;
} else if (sr >= IWL_RATE_INCREASE_TH) {
scale_action = 1;
}
}
}
/* Sanity check; asked for decrease, but success rate or throughput
* has been good at old rate. Don't change it. */
if ((scale_action == -1) && (low != IWL_RATE_INVALID) &&
((sr > IWL_RATE_HIGH_TH) ||
(current_tpt > (100 * tbl->expected_tpt[low]))))
scale_action = 0;
if (!iwl_ht_enabled(priv) && !is_legacy(tbl->lq_type))
scale_action = -1;
if (iwl_tx_ant_restriction(priv) != IWL_ANT_OK_MULTI &&
(is_mimo2(tbl->lq_type) || is_mimo3(tbl->lq_type)))
scale_action = -1;
if ((priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH) &&
(is_mimo2(tbl->lq_type) || is_mimo3(tbl->lq_type))) {
if (lq_sta->last_bt_traffic > priv->bt_traffic_load) {
/*
* don't set scale_action, don't want to scale up if
* the rate scale doesn't otherwise think that is a
* good idea.
*/
} else if (lq_sta->last_bt_traffic <= priv->bt_traffic_load) {
scale_action = -1;
}
}
lq_sta->last_bt_traffic = priv->bt_traffic_load;
if ((priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH) &&
(is_mimo2(tbl->lq_type) || is_mimo3(tbl->lq_type))) {
/* search for a new modulation */
rs_stay_in_table(lq_sta, true);
goto lq_update;
}
switch (scale_action) {
case -1:
/* Decrease starting rate, update uCode's rate table */
if (low != IWL_RATE_INVALID) {
update_lq = 1;
index = low;
}
break;
case 1:
/* Increase starting rate, update uCode's rate table */
if (high != IWL_RATE_INVALID) {
update_lq = 1;
index = high;
}
break;
case 0:
/* No change */
default:
break;
}
IWL_DEBUG_RATE(priv, "choose rate scale index %d action %d low %d "
"high %d type %d\n",
index, scale_action, low, high, tbl->lq_type);
lq_update:
/* Replace uCode's rate table for the destination station. */
if (update_lq)
rs_update_rate_tbl(priv, ctx, lq_sta, tbl, index, is_green);
if (iwl_tx_ant_restriction(priv) == IWL_ANT_OK_MULTI) {
/* Should we stay with this modulation mode,
* or search for a new one? */
rs_stay_in_table(lq_sta, false);
}
/*
* Search for new modulation mode if we're:
* 1) Not changing rates right now
* 2) Not just finishing up a search
* 3) Allowing a new search
*/
if (!update_lq && !done_search && !lq_sta->stay_in_tbl && window->counter) {
/* Save current throughput to compare with "search" throughput*/
lq_sta->last_tpt = current_tpt;
/* Select a new "search" modulation mode to try.
* If one is found, set up the new "search" table. */
if (is_legacy(tbl->lq_type))
rs_move_legacy_other(priv, lq_sta, conf, sta, index);
else if (is_siso(tbl->lq_type))
rs_move_siso_to_other(priv, lq_sta, conf, sta, index);
else if (is_mimo2(tbl->lq_type))
rs_move_mimo2_to_other(priv, lq_sta, conf, sta, index);
else
rs_move_mimo3_to_other(priv, lq_sta, conf, sta, index);
/* If new "search" mode was selected, set up in uCode table */
if (lq_sta->search_better_tbl) {
/* Access the "search" table, clear its history. */
tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(tbl->win[i]));
/* Use new "search" start rate */
index = iwl_hwrate_to_plcp_idx(tbl->current_rate);
IWL_DEBUG_RATE(priv, "Switch current mcs: %X index: %d\n",
tbl->current_rate, index);
rs_fill_link_cmd(priv, lq_sta, tbl->current_rate);
iwl_send_lq_cmd(priv, ctx, &lq_sta->lq, CMD_ASYNC, false);
} else
done_search = 1;
}
if (done_search && !lq_sta->stay_in_tbl) {
/* If the "active" (non-search) mode was legacy,
* and we've tried switching antennas,
* but we haven't been able to try HT modes (not available),
* stay with best antenna legacy modulation for a while
* before next round of mode comparisons. */
tbl1 = &(lq_sta->lq_info[lq_sta->active_tbl]);
if (is_legacy(tbl1->lq_type) && !conf_is_ht(conf) &&
lq_sta->action_counter > tbl1->max_search) {
IWL_DEBUG_RATE(priv, "LQ: STAY in legacy table\n");
rs_set_stay_in_table(priv, 1, lq_sta);
}
/* If we're in an HT mode, and all 3 mode switch actions
* have been tried and compared, stay in this best modulation
* mode for a while before next round of mode comparisons. */
if (lq_sta->enable_counter &&
(lq_sta->action_counter >= tbl1->max_search) &&
iwl_ht_enabled(priv)) {
if ((lq_sta->last_tpt > IWL_AGG_TPT_THREHOLD) &&
(lq_sta->tx_agg_tid_en & (1 << tid)) &&
(tid != MAX_TID_COUNT)) {
tid_data =
&priv->stations[lq_sta->lq.sta_id].tid[tid];
if (tid_data->agg.state == IWL_AGG_OFF) {
IWL_DEBUG_RATE(priv,
"try to aggregate tid %d\n",
tid);
rs_tl_turn_on_agg(priv, tid,
lq_sta, sta);
}
}
rs_set_stay_in_table(priv, 0, lq_sta);
}
}
out:
tbl->current_rate = rate_n_flags_from_tbl(priv, tbl, index, is_green);
i = index;
lq_sta->last_txrate_idx = i;
}
/**
* rs_initialize_lq - Initialize a station's hardware rate table
*
* The uCode's station table contains a table of fallback rates
* for automatic fallback during transmission.
*
* NOTE: This sets up a default set of values. These will be replaced later
* if the driver's iwl-agn-rs rate scaling algorithm is used, instead of
* rc80211_simple.
*
* NOTE: Run REPLY_ADD_STA command to set up station table entry, before
* calling this function (which runs REPLY_TX_LINK_QUALITY_CMD,
* which requires station table entry to exist).
*/
static void rs_initialize_lq(struct iwl_priv *priv,
struct ieee80211_conf *conf,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta)
{
struct iwl_scale_tbl_info *tbl;
int rate_idx;
int i;
u32 rate;
u8 use_green = rs_use_green(sta);
u8 active_tbl = 0;
u8 valid_tx_ant;
struct iwl_station_priv *sta_priv;
struct iwl_rxon_context *ctx;
if (!sta || !lq_sta)
return;
sta_priv = (void *)sta->drv_priv;
ctx = sta_priv->common.ctx;
i = lq_sta->last_txrate_idx;
valid_tx_ant = priv->hw_params.valid_tx_ant;
if (!lq_sta->search_better_tbl)
active_tbl = lq_sta->active_tbl;
else
active_tbl = 1 - lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
if ((i < 0) || (i >= IWL_RATE_COUNT))
i = 0;
rate = iwl_rates[i].plcp;
tbl->ant_type = first_antenna(valid_tx_ant);
rate |= tbl->ant_type << RATE_MCS_ANT_POS;
if (i >= IWL_FIRST_CCK_RATE && i <= IWL_LAST_CCK_RATE)
rate |= RATE_MCS_CCK_MSK;
rs_get_tbl_info_from_mcs(rate, priv->band, tbl, &rate_idx);
if (!rs_is_valid_ant(valid_tx_ant, tbl->ant_type))
rs_toggle_antenna(valid_tx_ant, &rate, tbl);
rate = rate_n_flags_from_tbl(priv, tbl, rate_idx, use_green);
tbl->current_rate = rate;
rs_set_expected_tpt_table(lq_sta, tbl);
rs_fill_link_cmd(NULL, lq_sta, rate);
priv->stations[lq_sta->lq.sta_id].lq = &lq_sta->lq;
iwl_send_lq_cmd(priv, ctx, &lq_sta->lq, CMD_SYNC, true);
}
static void rs_get_rate(void *priv_r, struct ieee80211_sta *sta, void *priv_sta,
struct ieee80211_tx_rate_control *txrc)
{
struct sk_buff *skb = txrc->skb;
struct ieee80211_supported_band *sband = txrc->sband;
struct iwl_priv *priv __maybe_unused = (struct iwl_priv *)priv_r;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct iwl_lq_sta *lq_sta = priv_sta;
int rate_idx;
IWL_DEBUG_RATE_LIMIT(priv, "rate scale calculate new rate for skb\n");
/* Get max rate if user set max rate */
if (lq_sta) {
lq_sta->max_rate_idx = txrc->max_rate_idx;
if ((sband->band == IEEE80211_BAND_5GHZ) &&
(lq_sta->max_rate_idx != -1))
lq_sta->max_rate_idx += IWL_FIRST_OFDM_RATE;
if ((lq_sta->max_rate_idx < 0) ||
(lq_sta->max_rate_idx >= IWL_RATE_COUNT))
lq_sta->max_rate_idx = -1;
}
/* Treat uninitialized rate scaling data same as non-existing. */
if (lq_sta && !lq_sta->drv) {
IWL_DEBUG_RATE(priv, "Rate scaling not initialized yet.\n");
priv_sta = NULL;
}
/* Send management frames and NO_ACK data using lowest rate. */
if (rate_control_send_low(sta, priv_sta, txrc))
return;
rate_idx = lq_sta->last_txrate_idx;
if (lq_sta->last_rate_n_flags & RATE_MCS_HT_MSK) {
rate_idx -= IWL_FIRST_OFDM_RATE;
/* 6M and 9M shared same MCS index */
rate_idx = (rate_idx > 0) ? (rate_idx - 1) : 0;
if (rs_extract_rate(lq_sta->last_rate_n_flags) >=
IWL_RATE_MIMO3_6M_PLCP)
rate_idx = rate_idx + (2 * MCS_INDEX_PER_STREAM);
else if (rs_extract_rate(lq_sta->last_rate_n_flags) >=
IWL_RATE_MIMO2_6M_PLCP)
rate_idx = rate_idx + MCS_INDEX_PER_STREAM;
info->control.rates[0].flags = IEEE80211_TX_RC_MCS;
if (lq_sta->last_rate_n_flags & RATE_MCS_SGI_MSK)
info->control.rates[0].flags |= IEEE80211_TX_RC_SHORT_GI;
if (lq_sta->last_rate_n_flags & RATE_MCS_DUP_MSK)
info->control.rates[0].flags |= IEEE80211_TX_RC_DUP_DATA;
if (lq_sta->last_rate_n_flags & RATE_MCS_HT40_MSK)
info->control.rates[0].flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
if (lq_sta->last_rate_n_flags & RATE_MCS_GF_MSK)
info->control.rates[0].flags |= IEEE80211_TX_RC_GREEN_FIELD;
} else {
/* Check for invalid rates */
if ((rate_idx < 0) || (rate_idx >= IWL_RATE_COUNT_LEGACY) ||
((sband->band == IEEE80211_BAND_5GHZ) &&
(rate_idx < IWL_FIRST_OFDM_RATE)))
rate_idx = rate_lowest_index(sband, sta);
/* On valid 5 GHz rate, adjust index */
else if (sband->band == IEEE80211_BAND_5GHZ)
rate_idx -= IWL_FIRST_OFDM_RATE;
info->control.rates[0].flags = 0;
}
info->control.rates[0].idx = rate_idx;
}
static void *rs_alloc_sta(void *priv_rate, struct ieee80211_sta *sta,
gfp_t gfp)
{
struct iwl_station_priv *sta_priv = (struct iwl_station_priv *) sta->drv_priv;
struct iwl_priv *priv;
priv = (struct iwl_priv *)priv_rate;
IWL_DEBUG_RATE(priv, "create station rate scale window\n");
return &sta_priv->lq_sta;
}
/*
* Called after adding a new station to initialize rate scaling
*/
void iwl_rs_rate_init(struct iwl_priv *priv, struct ieee80211_sta *sta, u8 sta_id)
{
int i, j;
struct ieee80211_hw *hw = priv->hw;
struct ieee80211_conf *conf = &priv->hw->conf;
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
struct iwl_station_priv *sta_priv;
struct iwl_lq_sta *lq_sta;
struct ieee80211_supported_band *sband;
sta_priv = (struct iwl_station_priv *) sta->drv_priv;
lq_sta = &sta_priv->lq_sta;
sband = hw->wiphy->bands[conf->channel->band];
lq_sta->lq.sta_id = sta_id;
for (j = 0; j < LQ_SIZE; j++)
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&lq_sta->lq_info[j].win[i]);
lq_sta->flush_timer = 0;
lq_sta->supp_rates = sta->supp_rates[sband->band];
for (j = 0; j < LQ_SIZE; j++)
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&lq_sta->lq_info[j].win[i]);
IWL_DEBUG_RATE(priv, "LQ: *** rate scale station global init for station %d ***\n",
sta_id);
/* TODO: what is a good starting rate for STA? About middle? Maybe not
* the lowest or the highest rate.. Could consider using RSSI from
* previous packets? Need to have IEEE 802.1X auth succeed immediately
* after assoc.. */
lq_sta->is_dup = 0;
lq_sta->max_rate_idx = -1;
lq_sta->missed_rate_counter = IWL_MISSED_RATE_MAX;
lq_sta->is_green = rs_use_green(sta);
lq_sta->active_legacy_rate = priv->active_rate & ~(0x1000);
lq_sta->band = priv->band;
/*
* active_siso_rate mask includes 9 MBits (bit 5), and CCK (bits 0-3),
* supp_rates[] does not; shift to convert format, force 9 MBits off.
*/
lq_sta->active_siso_rate = ht_cap->mcs.rx_mask[0] << 1;
lq_sta->active_siso_rate |= ht_cap->mcs.rx_mask[0] & 0x1;
lq_sta->active_siso_rate &= ~((u16)0x2);
lq_sta->active_siso_rate <<= IWL_FIRST_OFDM_RATE;
/* Same here */
lq_sta->active_mimo2_rate = ht_cap->mcs.rx_mask[1] << 1;
lq_sta->active_mimo2_rate |= ht_cap->mcs.rx_mask[1] & 0x1;
lq_sta->active_mimo2_rate &= ~((u16)0x2);
lq_sta->active_mimo2_rate <<= IWL_FIRST_OFDM_RATE;
lq_sta->active_mimo3_rate = ht_cap->mcs.rx_mask[2] << 1;
lq_sta->active_mimo3_rate |= ht_cap->mcs.rx_mask[2] & 0x1;
lq_sta->active_mimo3_rate &= ~((u16)0x2);
lq_sta->active_mimo3_rate <<= IWL_FIRST_OFDM_RATE;
IWL_DEBUG_RATE(priv, "SISO-RATE=%X MIMO2-RATE=%X MIMO3-RATE=%X\n",
lq_sta->active_siso_rate,
lq_sta->active_mimo2_rate,
lq_sta->active_mimo3_rate);
/* These values will be overridden later */
lq_sta->lq.general_params.single_stream_ant_msk =
first_antenna(priv->hw_params.valid_tx_ant);
lq_sta->lq.general_params.dual_stream_ant_msk =
priv->hw_params.valid_tx_ant &
~first_antenna(priv->hw_params.valid_tx_ant);
if (!lq_sta->lq.general_params.dual_stream_ant_msk) {
lq_sta->lq.general_params.dual_stream_ant_msk = ANT_AB;
} else if (num_of_ant(priv->hw_params.valid_tx_ant) == 2) {
lq_sta->lq.general_params.dual_stream_ant_msk =
priv->hw_params.valid_tx_ant;
}
/* as default allow aggregation for all tids */
lq_sta->tx_agg_tid_en = IWL_AGG_ALL_TID;
lq_sta->drv = priv;
/* Set last_txrate_idx to lowest rate */
lq_sta->last_txrate_idx = rate_lowest_index(sband, sta);
if (sband->band == IEEE80211_BAND_5GHZ)
lq_sta->last_txrate_idx += IWL_FIRST_OFDM_RATE;
lq_sta->is_agg = 0;
priv->dbg_fixed_rate = 0;
#ifdef CONFIG_MAC80211_DEBUGFS
lq_sta->dbg_fixed_rate = 0;
#endif
rs_initialize_lq(priv, conf, sta, lq_sta);
}
static void rs_fill_link_cmd(struct iwl_priv *priv,
struct iwl_lq_sta *lq_sta, u32 new_rate)
{
struct iwl_scale_tbl_info tbl_type;
int index = 0;
int rate_idx;
int repeat_rate = 0;
u8 ant_toggle_cnt = 0;
u8 use_ht_possible = 1;
u8 valid_tx_ant = 0;
struct iwl_station_priv *sta_priv =
container_of(lq_sta, struct iwl_station_priv, lq_sta);
struct iwl_link_quality_cmd *lq_cmd = &lq_sta->lq;
/* Override starting rate (index 0) if needed for debug purposes */
rs_dbgfs_set_mcs(lq_sta, &new_rate, index);
/* Interpret new_rate (rate_n_flags) */
rs_get_tbl_info_from_mcs(new_rate, lq_sta->band,
&tbl_type, &rate_idx);
if (priv && priv->bt_full_concurrent) {
/* 1x1 only */
tbl_type.ant_type =
first_antenna(priv->hw_params.valid_tx_ant);
}
/* How many times should we repeat the initial rate? */
if (is_legacy(tbl_type.lq_type)) {
ant_toggle_cnt = 1;
repeat_rate = IWL_NUMBER_TRY;
} else {
repeat_rate = min(IWL_HT_NUMBER_TRY,
LINK_QUAL_AGG_DISABLE_START_DEF - 1);
}
lq_cmd->general_params.mimo_delimiter =
is_mimo(tbl_type.lq_type) ? 1 : 0;
/* Fill 1st table entry (index 0) */
lq_cmd->rs_table[index].rate_n_flags = cpu_to_le32(new_rate);
if (num_of_ant(tbl_type.ant_type) == 1) {
lq_cmd->general_params.single_stream_ant_msk =
tbl_type.ant_type;
} else if (num_of_ant(tbl_type.ant_type) == 2) {
lq_cmd->general_params.dual_stream_ant_msk =
tbl_type.ant_type;
} /* otherwise we don't modify the existing value */
index++;
repeat_rate--;
if (priv) {
if (priv->bt_full_concurrent)
valid_tx_ant = ANT_A;
else
valid_tx_ant = priv->hw_params.valid_tx_ant;
}
/* Fill rest of rate table */
while (index < LINK_QUAL_MAX_RETRY_NUM) {
/* Repeat initial/next rate.
* For legacy IWL_NUMBER_TRY == 1, this loop will not execute.
* For HT IWL_HT_NUMBER_TRY == 3, this executes twice. */
while (repeat_rate > 0 && (index < LINK_QUAL_MAX_RETRY_NUM)) {
if (is_legacy(tbl_type.lq_type)) {
if (ant_toggle_cnt < NUM_TRY_BEFORE_ANT_TOGGLE)
ant_toggle_cnt++;
else if (priv &&
rs_toggle_antenna(valid_tx_ant,
&new_rate, &tbl_type))
ant_toggle_cnt = 1;
}
/* Override next rate if needed for debug purposes */
rs_dbgfs_set_mcs(lq_sta, &new_rate, index);
/* Fill next table entry */
lq_cmd->rs_table[index].rate_n_flags =
cpu_to_le32(new_rate);
repeat_rate--;
index++;
}
rs_get_tbl_info_from_mcs(new_rate, lq_sta->band, &tbl_type,
&rate_idx);
if (priv && priv->bt_full_concurrent) {
/* 1x1 only */
tbl_type.ant_type =
first_antenna(priv->hw_params.valid_tx_ant);
}
/* Indicate to uCode which entries might be MIMO.
* If initial rate was MIMO, this will finally end up
* as (IWL_HT_NUMBER_TRY * 2), after 2nd pass, otherwise 0. */
if (is_mimo(tbl_type.lq_type))
lq_cmd->general_params.mimo_delimiter = index;
/* Get next rate */
new_rate = rs_get_lower_rate(lq_sta, &tbl_type, rate_idx,
use_ht_possible);
/* How many times should we repeat the next rate? */
if (is_legacy(tbl_type.lq_type)) {
if (ant_toggle_cnt < NUM_TRY_BEFORE_ANT_TOGGLE)
ant_toggle_cnt++;
else if (priv &&
rs_toggle_antenna(valid_tx_ant,
&new_rate, &tbl_type))
ant_toggle_cnt = 1;
repeat_rate = IWL_NUMBER_TRY;
} else {
repeat_rate = IWL_HT_NUMBER_TRY;
}
/* Don't allow HT rates after next pass.
* rs_get_lower_rate() will change type to LQ_A or LQ_G. */
use_ht_possible = 0;
/* Override next rate if needed for debug purposes */
rs_dbgfs_set_mcs(lq_sta, &new_rate, index);
/* Fill next table entry */
lq_cmd->rs_table[index].rate_n_flags = cpu_to_le32(new_rate);
index++;
repeat_rate--;
}
lq_cmd->agg_params.agg_frame_cnt_limit =
sta_priv->max_agg_bufsize ?: LINK_QUAL_AGG_FRAME_LIMIT_DEF;
lq_cmd->agg_params.agg_dis_start_th = LINK_QUAL_AGG_DISABLE_START_DEF;
lq_cmd->agg_params.agg_time_limit =
cpu_to_le16(LINK_QUAL_AGG_TIME_LIMIT_DEF);
/*
* overwrite if needed, pass aggregation time limit
* to uCode in uSec
*/
if (priv && priv->cfg->bt_params &&
priv->cfg->bt_params->agg_time_limit &&
priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)
lq_cmd->agg_params.agg_time_limit =
cpu_to_le16(priv->cfg->bt_params->agg_time_limit);
}
static void *rs_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
return hw->priv;
}
/* rate scale requires free function to be implemented */
static void rs_free(void *priv_rate)
{
return;
}
static void rs_free_sta(void *priv_r, struct ieee80211_sta *sta,
void *priv_sta)
{
struct iwl_priv *priv __maybe_unused = priv_r;
IWL_DEBUG_RATE(priv, "enter\n");
IWL_DEBUG_RATE(priv, "leave\n");
}
#ifdef CONFIG_MAC80211_DEBUGFS
static int open_file_generic(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static void rs_dbgfs_set_mcs(struct iwl_lq_sta *lq_sta,
u32 *rate_n_flags, int index)
{
struct iwl_priv *priv;
u8 valid_tx_ant;
u8 ant_sel_tx;
priv = lq_sta->drv;
valid_tx_ant = priv->hw_params.valid_tx_ant;
if (lq_sta->dbg_fixed_rate) {
ant_sel_tx =
((lq_sta->dbg_fixed_rate & RATE_MCS_ANT_ABC_MSK)
>> RATE_MCS_ANT_POS);
if ((valid_tx_ant & ant_sel_tx) == ant_sel_tx) {
*rate_n_flags = lq_sta->dbg_fixed_rate;
IWL_DEBUG_RATE(priv, "Fixed rate ON\n");
} else {
lq_sta->dbg_fixed_rate = 0;
priv->dbg_fixed_rate = 0;
IWL_ERR(priv,
"Invalid antenna selection 0x%X, Valid is 0x%X\n",
ant_sel_tx, valid_tx_ant);
IWL_DEBUG_RATE(priv, "Fixed rate OFF\n");
}
} else {
IWL_DEBUG_RATE(priv, "Fixed rate OFF\n");
}
}
static ssize_t rs_sta_dbgfs_scale_table_write(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_priv *priv;
char buf[64];
size_t buf_size;
u32 parsed_rate;
priv = lq_sta->drv;
memset(buf, 0, sizeof(buf));
buf_size = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
if (sscanf(buf, "%x", &parsed_rate) == 1)
priv->dbg_fixed_rate = lq_sta->dbg_fixed_rate = parsed_rate;
else
priv->dbg_fixed_rate = lq_sta->dbg_fixed_rate = 0;
rs_program_fix_rate(priv, lq_sta);
return count;
}
static ssize_t rs_sta_dbgfs_scale_table_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
char *buff;
int desc = 0;
int i = 0;
int index = 0;
ssize_t ret;
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_priv *priv;
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
priv = lq_sta->drv;
buff = kmalloc(1024, GFP_KERNEL);
if (!buff)
return -ENOMEM;
desc += sprintf(buff+desc, "sta_id %d\n", lq_sta->lq.sta_id);
desc += sprintf(buff+desc, "failed=%d success=%d rate=0%X\n",
lq_sta->total_failed, lq_sta->total_success,
lq_sta->active_legacy_rate);
desc += sprintf(buff+desc, "fixed rate 0x%X\n",
priv->dbg_fixed_rate);
desc += sprintf(buff+desc, "valid_tx_ant %s%s%s\n",
(priv->hw_params.valid_tx_ant & ANT_A) ? "ANT_A," : "",
(priv->hw_params.valid_tx_ant & ANT_B) ? "ANT_B," : "",
(priv->hw_params.valid_tx_ant & ANT_C) ? "ANT_C" : "");
desc += sprintf(buff+desc, "lq type %s\n",
(is_legacy(tbl->lq_type)) ? "legacy" : "HT");
if (is_Ht(tbl->lq_type)) {
desc += sprintf(buff+desc, " %s",
(is_siso(tbl->lq_type)) ? "SISO" :
((is_mimo2(tbl->lq_type)) ? "MIMO2" : "MIMO3"));
desc += sprintf(buff+desc, " %s",
(tbl->is_ht40) ? "40MHz" : "20MHz");
desc += sprintf(buff+desc, " %s %s %s\n", (tbl->is_SGI) ? "SGI" : "",
(lq_sta->is_green) ? "GF enabled" : "",
(lq_sta->is_agg) ? "AGG on" : "");
}
desc += sprintf(buff+desc, "last tx rate=0x%X\n",
lq_sta->last_rate_n_flags);
desc += sprintf(buff+desc, "general:"
"flags=0x%X mimo-d=%d s-ant0x%x d-ant=0x%x\n",
lq_sta->lq.general_params.flags,
lq_sta->lq.general_params.mimo_delimiter,
lq_sta->lq.general_params.single_stream_ant_msk,
lq_sta->lq.general_params.dual_stream_ant_msk);
desc += sprintf(buff+desc, "agg:"
"time_limit=%d dist_start_th=%d frame_cnt_limit=%d\n",
le16_to_cpu(lq_sta->lq.agg_params.agg_time_limit),
lq_sta->lq.agg_params.agg_dis_start_th,
lq_sta->lq.agg_params.agg_frame_cnt_limit);
desc += sprintf(buff+desc,
"Start idx [0]=0x%x [1]=0x%x [2]=0x%x [3]=0x%x\n",
lq_sta->lq.general_params.start_rate_index[0],
lq_sta->lq.general_params.start_rate_index[1],
lq_sta->lq.general_params.start_rate_index[2],
lq_sta->lq.general_params.start_rate_index[3]);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
index = iwl_hwrate_to_plcp_idx(
le32_to_cpu(lq_sta->lq.rs_table[i].rate_n_flags));
if (is_legacy(tbl->lq_type)) {
desc += sprintf(buff+desc, " rate[%d] 0x%X %smbps\n",
i, le32_to_cpu(lq_sta->lq.rs_table[i].rate_n_flags),
iwl_rate_mcs[index].mbps);
} else {
desc += sprintf(buff+desc, " rate[%d] 0x%X %smbps (%s)\n",
i, le32_to_cpu(lq_sta->lq.rs_table[i].rate_n_flags),
iwl_rate_mcs[index].mbps, iwl_rate_mcs[index].mcs);
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc);
kfree(buff);
return ret;
}
static const struct file_operations rs_sta_dbgfs_scale_table_ops = {
.write = rs_sta_dbgfs_scale_table_write,
.read = rs_sta_dbgfs_scale_table_read,
.open = open_file_generic,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = default_llseek,
};
static ssize_t rs_sta_dbgfs_stats_table_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
char *buff;
int desc = 0;
int i, j;
ssize_t ret;
struct iwl_lq_sta *lq_sta = file->private_data;
buff = kmalloc(1024, GFP_KERNEL);
if (!buff)
return -ENOMEM;
for (i = 0; i < LQ_SIZE; i++) {
desc += sprintf(buff+desc,
"%s type=%d SGI=%d HT40=%d DUP=%d GF=%d\n"
"rate=0x%X\n",
lq_sta->active_tbl == i ? "*" : "x",
lq_sta->lq_info[i].lq_type,
lq_sta->lq_info[i].is_SGI,
lq_sta->lq_info[i].is_ht40,
lq_sta->lq_info[i].is_dup,
lq_sta->is_green,
lq_sta->lq_info[i].current_rate);
for (j = 0; j < IWL_RATE_COUNT; j++) {
desc += sprintf(buff+desc,
"counter=%d success=%d %%=%d\n",
lq_sta->lq_info[i].win[j].counter,
lq_sta->lq_info[i].win[j].success_counter,
lq_sta->lq_info[i].win[j].success_ratio);
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc);
kfree(buff);
return ret;
}
static const struct file_operations rs_sta_dbgfs_stats_table_ops = {
.read = rs_sta_dbgfs_stats_table_read,
.open = open_file_generic,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = default_llseek,
};
static ssize_t rs_sta_dbgfs_rate_scale_data_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_scale_tbl_info *tbl = &lq_sta->lq_info[lq_sta->active_tbl];
char buff[120];
int desc = 0;
if (is_Ht(tbl->lq_type))
desc += sprintf(buff+desc,
"Bit Rate= %d Mb/s\n",
tbl->expected_tpt[lq_sta->last_txrate_idx]);
else
desc += sprintf(buff+desc,
"Bit Rate= %d Mb/s\n",
iwl_rates[lq_sta->last_txrate_idx].ieee >> 1);
return simple_read_from_buffer(user_buf, count, ppos, buff, desc);
}
static const struct file_operations rs_sta_dbgfs_rate_scale_data_ops = {
.read = rs_sta_dbgfs_rate_scale_data_read,
.open = open_file_generic,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = default_llseek,
};
static void rs_add_debugfs(void *priv, void *priv_sta,
struct dentry *dir)
{
struct iwl_lq_sta *lq_sta = priv_sta;
lq_sta->rs_sta_dbgfs_scale_table_file =
debugfs_create_file("rate_scale_table", S_IRUSR | S_IWUSR, dir,
lq_sta, &rs_sta_dbgfs_scale_table_ops);
lq_sta->rs_sta_dbgfs_stats_table_file =
debugfs_create_file("rate_stats_table", S_IRUSR, dir,
lq_sta, &rs_sta_dbgfs_stats_table_ops);
lq_sta->rs_sta_dbgfs_rate_scale_data_file =
debugfs_create_file("rate_scale_data", S_IRUSR, dir,
lq_sta, &rs_sta_dbgfs_rate_scale_data_ops);
lq_sta->rs_sta_dbgfs_tx_agg_tid_en_file =
debugfs_create_u8("tx_agg_tid_enable", S_IRUSR | S_IWUSR, dir,
&lq_sta->tx_agg_tid_en);
}
static void rs_remove_debugfs(void *priv, void *priv_sta)
{
struct iwl_lq_sta *lq_sta = priv_sta;
debugfs_remove(lq_sta->rs_sta_dbgfs_scale_table_file);
debugfs_remove(lq_sta->rs_sta_dbgfs_stats_table_file);
debugfs_remove(lq_sta->rs_sta_dbgfs_rate_scale_data_file);
debugfs_remove(lq_sta->rs_sta_dbgfs_tx_agg_tid_en_file);
}
#endif
/*
* Initialization of rate scaling information is done by driver after
* the station is added. Since mac80211 calls this function before a
* station is added we ignore it.
*/
static void rs_rate_init_stub(void *priv_r, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta)
{
}
static struct rate_control_ops rs_ops = {
.module = NULL,
.name = RS_NAME,
.tx_status = rs_tx_status,
.get_rate = rs_get_rate,
.rate_init = rs_rate_init_stub,
.alloc = rs_alloc,
.free = rs_free,
.alloc_sta = rs_alloc_sta,
.free_sta = rs_free_sta,
#ifdef CONFIG_MAC80211_DEBUGFS
.add_sta_debugfs = rs_add_debugfs,
.remove_sta_debugfs = rs_remove_debugfs,
#endif
};
int iwlagn_rate_control_register(void)
{
return ieee80211_rate_control_register(&rs_ops);
}
void iwlagn_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&rs_ops);
}