2005-04-16 22:20:36 +00:00
|
|
|
#ifndef __PPC_PCI_H
|
|
|
|
#define __PPC_PCI_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/scatterlist.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/pci-bridge.h>
|
|
|
|
#include <asm-generic/pci-dma-compat.h>
|
|
|
|
|
|
|
|
struct pci_dev;
|
|
|
|
|
|
|
|
/* Values for the `which' argument to sys_pciconfig_iobase syscall. */
|
|
|
|
#define IOBASE_BRIDGE_NUMBER 0
|
|
|
|
#define IOBASE_MEMORY 1
|
|
|
|
#define IOBASE_IO 2
|
|
|
|
#define IOBASE_ISA_IO 3
|
|
|
|
#define IOBASE_ISA_MEM 4
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set this to 1 if you want the kernel to re-assign all PCI
|
|
|
|
* bus numbers
|
|
|
|
*/
|
2005-10-20 10:57:05 +00:00
|
|
|
extern int pci_assign_all_buses;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-10-20 10:57:05 +00:00
|
|
|
#define pcibios_assign_all_busses() (pci_assign_all_buses)
|
2005-04-16 22:20:36 +00:00
|
|
|
#define pcibios_scan_all_fns(a, b) 0
|
|
|
|
|
|
|
|
#define PCIBIOS_MIN_IO 0x1000
|
|
|
|
#define PCIBIOS_MIN_MEM 0x10000000
|
|
|
|
|
|
|
|
extern inline void pcibios_set_master(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
/* No special bus mastering setup handling */
|
|
|
|
}
|
|
|
|
|
2005-04-01 05:07:31 +00:00
|
|
|
extern inline void pcibios_penalize_isa_irq(int irq, int active)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
/* We don't do dynamic PCI IRQ allocation */
|
|
|
|
}
|
|
|
|
|
|
|
|
extern unsigned long pci_resource_to_bus(struct pci_dev *pdev, struct resource *res);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The PCI bus bridge can translate addresses issued by the processor(s)
|
|
|
|
* into a different address on the PCI bus. On 32-bit cpus, we assume
|
|
|
|
* this mapping is 1-1, but on 64-bit systems it often isn't.
|
|
|
|
*
|
|
|
|
* Obsolete ! Drivers should now use pci_resource_to_bus
|
|
|
|
*/
|
|
|
|
extern unsigned long phys_to_bus(unsigned long pa);
|
|
|
|
extern unsigned long pci_phys_to_bus(unsigned long pa, int busnr);
|
|
|
|
extern unsigned long pci_bus_to_phys(unsigned int ba, int busnr);
|
|
|
|
|
|
|
|
/* The PCI address space does equal the physical memory
|
|
|
|
* address space. The networking and block device layers use
|
|
|
|
* this boolean for bounce buffer decisions.
|
|
|
|
*/
|
|
|
|
#define PCI_DMA_BUS_IS_PHYS (1)
|
|
|
|
|
[POWERPC] Define pci_unmap_addr() et al. when CONFIG_NOT_COHERENT_CACHE=y
The current PowerPC code makes pci_unmap_addr(), pci_unmap_addr_set(),
and friends trivial for all 32-bit kernels. This is reasonable, since
for those kernels it is true that pci_unmap_single() does not need the
DMA address from the original DMA mapping -- in fact, it is a NOP.
However, I recently tried the tg3 driver on a PowerPC 440SPe machine,
which runs a 32-bit kernel and has non-cache-coherent PCI DMA. I
found that the tg3 driver crashed in pci_dma_sync_single_for_cpu(),
since for non-coherent systems, that function must invalidate the
cache for the DMA address range requested, and therefore it does use
the address passed in. tg3 uses a DMA address it stashes away with
pci_unmap_addr_set() and retrieves with pci_unmap_addr(). Of course,
since pci_unmap_addr() is defined to (0) right now, this doesn't work.
It seems to me that the tg3 driver is using pci_unmap_addr() in a
legitimate way -- I wouldn't want to have to teach all drivers that
they should use pci_unmap_addr() if they only need the address for
unmapping functions, but if they want the pci_dma_sync functions, then
they have to store the DMA address without the helper macros.
The right fix therefore seems to be in the definition of the macros in
<asm/pci.h> -- we should use the trivial versions only for 32-bit
kernels for coherent systems, and the real versions for both 64-bit
kernels and non-coherent systems.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-12-06 23:15:38 +00:00
|
|
|
#ifdef CONFIG_NOT_COHERENT_CACHE
|
|
|
|
/*
|
|
|
|
* pci_unmap_{page,single} are NOPs but pci_dma_sync_single_for_cpu()
|
|
|
|
* and so on are not, so...
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) \
|
|
|
|
dma_addr_t ADDR_NAME;
|
|
|
|
#define DECLARE_PCI_UNMAP_LEN(LEN_NAME) \
|
|
|
|
__u32 LEN_NAME;
|
|
|
|
#define pci_unmap_addr(PTR, ADDR_NAME) \
|
|
|
|
((PTR)->ADDR_NAME)
|
|
|
|
#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) \
|
|
|
|
(((PTR)->ADDR_NAME) = (VAL))
|
|
|
|
#define pci_unmap_len(PTR, LEN_NAME) \
|
|
|
|
((PTR)->LEN_NAME)
|
|
|
|
#define pci_unmap_len_set(PTR, LEN_NAME, VAL) \
|
|
|
|
(((PTR)->LEN_NAME) = (VAL))
|
|
|
|
|
|
|
|
#else /* coherent */
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* pci_unmap_{page,single} is a nop so... */
|
|
|
|
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME)
|
|
|
|
#define DECLARE_PCI_UNMAP_LEN(LEN_NAME)
|
|
|
|
#define pci_unmap_addr(PTR, ADDR_NAME) (0)
|
|
|
|
#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
|
|
|
|
#define pci_unmap_len(PTR, LEN_NAME) (0)
|
|
|
|
#define pci_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
|
|
|
|
|
[POWERPC] Define pci_unmap_addr() et al. when CONFIG_NOT_COHERENT_CACHE=y
The current PowerPC code makes pci_unmap_addr(), pci_unmap_addr_set(),
and friends trivial for all 32-bit kernels. This is reasonable, since
for those kernels it is true that pci_unmap_single() does not need the
DMA address from the original DMA mapping -- in fact, it is a NOP.
However, I recently tried the tg3 driver on a PowerPC 440SPe machine,
which runs a 32-bit kernel and has non-cache-coherent PCI DMA. I
found that the tg3 driver crashed in pci_dma_sync_single_for_cpu(),
since for non-coherent systems, that function must invalidate the
cache for the DMA address range requested, and therefore it does use
the address passed in. tg3 uses a DMA address it stashes away with
pci_unmap_addr_set() and retrieves with pci_unmap_addr(). Of course,
since pci_unmap_addr() is defined to (0) right now, this doesn't work.
It seems to me that the tg3 driver is using pci_unmap_addr() in a
legitimate way -- I wouldn't want to have to teach all drivers that
they should use pci_unmap_addr() if they only need the address for
unmapping functions, but if they want the pci_dma_sync functions, then
they have to store the DMA address without the helper macros.
The right fix therefore seems to be in the definition of the macros in
<asm/pci.h> -- we should use the trivial versions only for 32-bit
kernels for coherent systems, and the real versions for both 64-bit
kernels and non-coherent systems.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-12-06 23:15:38 +00:00
|
|
|
#endif /* CONFIG_NOT_COHERENT_CACHE */
|
|
|
|
|
2005-06-07 06:07:46 +00:00
|
|
|
#ifdef CONFIG_PCI
|
2005-06-02 19:55:50 +00:00
|
|
|
static inline void pci_dma_burst_advice(struct pci_dev *pdev,
|
|
|
|
enum pci_dma_burst_strategy *strat,
|
|
|
|
unsigned long *strategy_parameter)
|
|
|
|
{
|
|
|
|
*strat = PCI_DMA_BURST_INFINITY;
|
|
|
|
*strategy_parameter = ~0UL;
|
|
|
|
}
|
2005-06-07 06:07:46 +00:00
|
|
|
#endif
|
2005-06-02 19:55:50 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Return the index of the PCI controller for device PDEV. */
|
|
|
|
#define pci_domain_nr(bus) ((struct pci_controller *)(bus)->sysdata)->index
|
|
|
|
|
|
|
|
/* Set the name of the bus as it appears in /proc/bus/pci */
|
|
|
|
static inline int pci_proc_domain(struct pci_bus *bus)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Map a range of PCI memory or I/O space for a device into user space */
|
|
|
|
int pci_mmap_page_range(struct pci_dev *pdev, struct vm_area_struct *vma,
|
|
|
|
enum pci_mmap_state mmap_state, int write_combine);
|
|
|
|
|
|
|
|
/* Tell drivers/pci/proc.c that we have pci_mmap_page_range() */
|
|
|
|
#define HAVE_PCI_MMAP 1
|
|
|
|
|
|
|
|
extern void
|
|
|
|
pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
|
|
|
|
struct resource *res);
|
|
|
|
|
2005-08-05 01:06:21 +00:00
|
|
|
extern void
|
|
|
|
pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res,
|
|
|
|
struct pci_bus_region *region);
|
|
|
|
|
2005-08-08 20:19:08 +00:00
|
|
|
static inline struct resource *
|
|
|
|
pcibios_select_root(struct pci_dev *pdev, struct resource *res)
|
|
|
|
{
|
|
|
|
struct resource *root = NULL;
|
|
|
|
|
|
|
|
if (res->flags & IORESOURCE_IO)
|
|
|
|
root = &ioport_resource;
|
|
|
|
if (res->flags & IORESOURCE_MEM)
|
|
|
|
root = &iomem_resource;
|
|
|
|
|
|
|
|
return root;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct file;
|
|
|
|
extern pgprot_t pci_phys_mem_access_prot(struct file *file,
|
2005-10-29 00:46:18 +00:00
|
|
|
unsigned long pfn,
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long size,
|
|
|
|
pgprot_t prot);
|
|
|
|
|
2005-05-13 07:44:10 +00:00
|
|
|
#define HAVE_ARCH_PCI_RESOURCE_TO_USER
|
|
|
|
extern void pci_resource_to_user(const struct pci_dev *dev, int bar,
|
|
|
|
const struct resource *rsrc,
|
2006-06-13 00:06:02 +00:00
|
|
|
resource_size_t *start, resource_size_t *end);
|
2005-05-13 07:44:10 +00:00
|
|
|
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
|
|
#endif /* __PPC_PCI_H */
|