linux/arch/um/kernel/exec.c

87 lines
1.9 KiB
C
Raw Normal View History

/*
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Licensed under the GPL
*/
#include "linux/stddef.h"
#include "linux/fs.h"
#include "linux/ptrace.h"
#include "linux/sched.h"
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include "linux/slab.h"
#include "asm/current.h"
#include "asm/processor.h"
#include "asm/uaccess.h"
uml: fix stub address calculations The calculation of CONFIG_STUB_CODE and CONFIG_STUB_DATA didn't take into account anything but 3G/1G and 2G/2G, leaving the other vmsplits out in the cold. I'd rather not duplicate the four known host vmsplit cases for each of these symbols. I'd also like to calculate them based on the highest userspace address. The Kconfig language seems not to allow calculation of hex constants, so I moved this to as-layout.h. CONFIG_STUB_CODE, CONFIG_STUB_DATA, and CONFIG_STUB_START are now gone. In their place are STUB_CODE, STUB_DATA, and STUB_START in as-layout.h. i386 and x86_64 seem to differ as to whether an unadorned constant is an int or a long, so I cast them to unsigned long so they can be printed consistently. However, they are also used in stub.S, where C types don't work so well. So, there are ASM_ versions of these constants for use in stub.S. I also ifdef-ed the non-asm-friendly portion of as-layout.h. With this in place, most of the rest of this patch is changing CONFIG_STUB_* to STUB_*, except in stub.S, where they are changed to ASM_STUB_*. defconfig has the old symbols deleted. I also print these addresses out in case there is any problem mapping them on the host. The two stub.S files had some trailing whitespace, so that is cleaned up here. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:27:33 +00:00
#include "as-layout.h"
#include "mem_user.h"
#include "skas.h"
#include "os.h"
#include "internal.h"
void flush_thread(void)
{
void *data = NULL;
int ret;
arch_flush_thread(&current->thread.arch);
uml: cover stubs with a VMA Give the stubs a VMA. This allows the removal of a truly nasty kludge to make sure that mm->nr_ptes was correct in exit_mmap. The underlying problem was always that the stubs, which have ptes, and thus allocated a page table, weren't covered by a VMA. This patch fixes that by using install_special_mapping in arch_dup_mmap and activate_context to create the VMA. The stubs have to be moved, since shift_arg_pages seems to assume that the stack is the only VMA present at that point during exec, and uses vma_adjust to fiddle its VMA. However, that extends the stub VMA by the amount removed from the stack VMA. To avoid this problem, the stubs were moved to a different fixed location at the start of the address space. The init_stub_pte calls were moved from init_new_context to arch_dup_mmap because I was occasionally seeing arch_dup_mmap not being called, causing exit_mmap to die. Rather than figure out what was really happening, I decided it was cleaner to just move the calls so that there's no doubt that both the pte and VMA creation happen, no matter what. arch_exit_mmap is used to clear the stub ptes at exit time. The STUB_* constants in as-layout.h no longer depend on UM_TASK_SIZE, that that definition is removed, along with the comments complaining about gcc. Because the stubs are no longer at the top of the address space, some care is needed while flushing TLBs. update_pte_range checks for addresses in the stub range and skips them. flush_thread now issues two unmaps, one for the range before STUB_START and one for the range after STUB_END. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:31:01 +00:00
ret = unmap(&current->mm->context.id, 0, STUB_START, 0, &data);
ret = ret || unmap(&current->mm->context.id, STUB_END,
host_task_size - STUB_END, 1, &data);
if (ret) {
printk(KERN_ERR "flush_thread - clearing address space failed, "
"err = %d\n", ret);
force_sig(SIGKILL, current);
}
__switch_mm(&current->mm->context.id);
}
void start_thread(struct pt_regs *regs, unsigned long eip, unsigned long esp)
{
PT_REGS_IP(regs) = eip;
PT_REGS_SP(regs) = esp;
}
static long execve1(const char *file,
const char __user *const __user *argv,
const char __user *const __user *env)
{
long error;
error = do_execve(file, argv, env, &current->thread.regs);
if (error == 0) {
task_lock(current);
current->ptrace &= ~PT_DTRACE;
#ifdef SUBARCH_EXECVE1
SUBARCH_EXECVE1(&current->thread.regs.regs);
#endif
task_unlock(current);
}
return error;
}
long um_execve(const char *file, const char __user *const __user *argv, const char __user *const __user *env)
{
long err;
err = execve1(file, argv, env);
if (!err)
UML_LONGJMP(current->thread.exec_buf, 1);
return err;
}
long sys_execve(const char __user *file, const char __user *const __user *argv,
const char __user *const __user *env)
{
long error;
char *filename;
filename = getname(file);
error = PTR_ERR(filename);
if (IS_ERR(filename)) goto out;
error = execve1(filename, argv, env);
putname(filename);
out:
return error;
}