linux/arch/x86/kernel/tsc_64.c

349 lines
7.9 KiB
C
Raw Normal View History

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/time.h>
#include <linux/acpi.h>
#include <linux/cpufreq.h>
#include <linux/acpi_pmtmr.h>
#include <asm/hpet.h>
#include <asm/timex.h>
#include <asm/timer.h>
static int notsc __initdata = 0;
unsigned int cpu_khz; /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int tsc_khz;
EXPORT_SYMBOL(tsc_khz);
/* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
*
* We can use khz divisor instead of mhz to keep a better precision, since
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
DEFINE_PER_CPU(unsigned long, cyc2ns);
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
{
unsigned long flags, prev_scale, *scale;
unsigned long long tsc_now, ns_now;
local_irq_save(flags);
sched_clock_idle_sleep_event();
scale = &per_cpu(cyc2ns, cpu);
rdtscll(tsc_now);
ns_now = __cycles_2_ns(tsc_now);
prev_scale = *scale;
if (cpu_khz)
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
sched_clock_idle_wakeup_event(0);
local_irq_restore(flags);
}
unsigned long long native_sched_clock(void)
{
unsigned long a = 0;
/* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
* which means it is not completely exact and may not be monotonous
* between CPUs. But the errors should be too small to matter for
* scheduling purposes.
*/
rdtscll(a);
return cycles_2_ns(a);
}
/* We need to define a real function for sched_clock, to override the
weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif
static int tsc_unstable;
inline int check_tsc_unstable(void)
{
return tsc_unstable;
}
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
* changes.
*
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
* not that important because current Opteron setups do not support
* scaling on SMP anyroads.
*
* Should fix up last_tsc too. Currently gettimeofday in the
* first tick after the change will be slightly wrong.
*/
static unsigned int ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long *lpj, dummy;
if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
return 0;
lpj = &dummy;
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
#ifdef CONFIG_SMP
lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#else
lpj = &boot_cpu_data.loops_per_jiffy;
#endif
if (!ref_freq) {
ref_freq = freq->old;
loops_per_jiffy_ref = *lpj;
tsc_khz_ref = tsc_khz;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
(val == CPUFREQ_RESUMECHANGE)) {
*lpj =
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
mark_tsc_unstable("cpufreq changes");
}
preempt_disable();
set_cyc2ns_scale(tsc_khz_ref, smp_processor_id());
preempt_enable();
return 0;
}
static struct notifier_block time_cpufreq_notifier_block = {
.notifier_call = time_cpufreq_notifier
};
static int __init cpufreq_tsc(void)
{
cpufreq_register_notifier(&time_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
core_initcall(cpufreq_tsc);
#endif
#define MAX_RETRIES 5
#define SMI_TRESHOLD 50000
/*
* Read TSC and the reference counters. Take care of SMI disturbance
*/
static unsigned long __init tsc_read_refs(unsigned long *pm,
unsigned long *hpet)
{
unsigned long t1, t2;
int i;
for (i = 0; i < MAX_RETRIES; i++) {
t1 = get_cycles();
if (hpet)
*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
else
*pm = acpi_pm_read_early();
t2 = get_cycles();
if ((t2 - t1) < SMI_TRESHOLD)
return t2;
}
return ULONG_MAX;
}
/**
* tsc_calibrate - calibrate the tsc on boot
*/
void __init tsc_calibrate(void)
{
unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
int hpet = is_hpet_enabled(), cpu;
local_irq_save(flags);
tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
outb(0xb0, 0x43);
outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
tr1 = get_cycles();
while ((inb(0x61) & 0x20) == 0);
tr2 = get_cycles();
tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
local_irq_restore(flags);
/*
* Preset the result with the raw and inaccurate PIT
* calibration value
*/
tsc_khz = (tr2 - tr1) / 50;
/* hpet or pmtimer available ? */
if (!hpet && !pm1 && !pm2) {
printk(KERN_INFO "TSC calibrated against PIT\n");
return;
}
/* Check, whether the sampling was disturbed by an SMI */
if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
printk(KERN_WARNING "TSC calibration disturbed by SMI, "
"using PIT calibration result\n");
return;
}
tsc2 = (tsc2 - tsc1) * 1000000L;
if (hpet) {
printk(KERN_INFO "TSC calibrated against HPET\n");
if (hpet2 < hpet1)
hpet2 += 0x100000000;
hpet2 -= hpet1;
tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
} else {
printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
if (pm2 < pm1)
pm2 += ACPI_PM_OVRRUN;
pm2 -= pm1;
tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
}
tsc_khz = tsc2 / tsc1;
for_each_possible_cpu(cpu)
set_cyc2ns_scale(tsc_khz, cpu);
}
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.
*/
__cpuinit int unsynchronized_tsc(void)
{
if (tsc_unstable)
return 1;
#ifdef CONFIG_SMP
if (apic_is_clustered_box())
return 1;
#endif
/* Most intel systems have synchronized TSCs except for
multi node systems */
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
#ifdef CONFIG_ACPI
/* But TSC doesn't tick in C3 so don't use it there */
if (acpi_gbl_FADT.header.length > 0 &&
acpi_gbl_FADT.C3latency < 1000)
return 1;
#endif
return 0;
}
/* Assume multi socket systems are not synchronized */
return num_present_cpus() > 1;
}
int __init notsc_setup(char *s)
{
notsc = 1;
return 1;
}
__setup("notsc", notsc_setup);
/* clock source code: */
static cycle_t read_tsc(void)
{
cycle_t ret = (cycle_t)get_cycles();
return ret;
}
static cycle_t __vsyscall_fn vread_tsc(void)
{
cycle_t ret = (cycle_t)vget_cycles();
return ret;
}
static struct clocksource clocksource_tsc = {
.name = "tsc",
.rating = 300,
.read = read_tsc,
.mask = CLOCKSOURCE_MASK(64),
.shift = 22,
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_MUST_VERIFY,
.vread = vread_tsc,
};
void mark_tsc_unstable(char *reason)
{
if (!tsc_unstable) {
tsc_unstable = 1;
printk("Marking TSC unstable due to %s\n", reason);
/* Change only the rating, when not registered */
if (clocksource_tsc.mult)
clocksource_change_rating(&clocksource_tsc, 0);
else
clocksource_tsc.rating = 0;
}
}
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
[PATCH] clocksource init adjustments (fix bug #7426) This patch resolves the issue found here: http://bugme.osdl.org/show_bug.cgi?id=7426 The basic summary is: Currently we register most of i386/x86_64 clocksources at module_init time. Then we enable clocksource selection at late_initcall time. This causes some problems for drivers that use gettimeofday for init calibration routines (specifically the es1968 driver in this case), where durring module_init, the only clocksource available is the low-res jiffies clocksource. This may cause slight calibration errors, due to the small sampling time used. It should be noted that drivers that require fine grained time may not function on architectures that do not have better then jiffies resolution timekeeping (there are a few). However, this does not discount the reasonable need for such fine-grained timekeeping at init time. Thus the solution here is to register clocksources earlier (ideally when the hardware is being initialized), and then we enable clocksource selection at fs_initcall (before device_initcall). This patch should probably get some testing time in -mm, since clocksource selection is one of the most important issues for correct timekeeping, and I've only been able to test this on a few of my own boxes. Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-05 08:30:50 +00:00
void __init init_tsc_clocksource(void)
{
if (!notsc) {
clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
clocksource_tsc.shift);
if (check_tsc_unstable())
clocksource_tsc.rating = 0;
[PATCH] clocksource init adjustments (fix bug #7426) This patch resolves the issue found here: http://bugme.osdl.org/show_bug.cgi?id=7426 The basic summary is: Currently we register most of i386/x86_64 clocksources at module_init time. Then we enable clocksource selection at late_initcall time. This causes some problems for drivers that use gettimeofday for init calibration routines (specifically the es1968 driver in this case), where durring module_init, the only clocksource available is the low-res jiffies clocksource. This may cause slight calibration errors, due to the small sampling time used. It should be noted that drivers that require fine grained time may not function on architectures that do not have better then jiffies resolution timekeeping (there are a few). However, this does not discount the reasonable need for such fine-grained timekeeping at init time. Thus the solution here is to register clocksources earlier (ideally when the hardware is being initialized), and then we enable clocksource selection at fs_initcall (before device_initcall). This patch should probably get some testing time in -mm, since clocksource selection is one of the most important issues for correct timekeeping, and I've only been able to test this on a few of my own boxes. Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-05 08:30:50 +00:00
clocksource_register(&clocksource_tsc);
}
}