linux/drivers/infiniband/hw/cxgb4/cm.c

2770 lines
73 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <net/route.h>
#include "iw_cxgb4.h"
static char *states[] = {
"idle",
"listen",
"connecting",
"mpa_wait_req",
"mpa_req_sent",
"mpa_req_rcvd",
"mpa_rep_sent",
"fpdu_mode",
"aborting",
"closing",
"moribund",
"dead",
NULL,
};
static int dack_mode = 1;
module_param(dack_mode, int, 0644);
MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
int c4iw_max_read_depth = 8;
module_param(c4iw_max_read_depth, int, 0644);
MODULE_PARM_DESC(c4iw_max_read_depth, "Per-connection max ORD/IRD (default=8)");
static int enable_tcp_timestamps;
module_param(enable_tcp_timestamps, int, 0644);
MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
static int enable_tcp_sack;
module_param(enable_tcp_sack, int, 0644);
MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
static int enable_tcp_window_scaling = 1;
module_param(enable_tcp_window_scaling, int, 0644);
MODULE_PARM_DESC(enable_tcp_window_scaling,
"Enable tcp window scaling (default=1)");
int c4iw_debug;
module_param(c4iw_debug, int, 0644);
MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
static int peer2peer;
module_param(peer2peer, int, 0644);
MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
module_param(p2p_type, int, 0644);
MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
"1=RDMA_READ 0=RDMA_WRITE (default 1)");
static int ep_timeout_secs = 60;
module_param(ep_timeout_secs, int, 0644);
MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
"in seconds (default=60)");
static int mpa_rev = 1;
module_param(mpa_rev, int, 0644);
MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
"1 is RFC0544 spec compliant, 2 is IETF MPA Peer Connect Draft"
" compliant (default=1)");
static int markers_enabled;
module_param(markers_enabled, int, 0644);
MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
static int crc_enabled = 1;
module_param(crc_enabled, int, 0644);
MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
static int rcv_win = 256 * 1024;
module_param(rcv_win, int, 0644);
MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
static int snd_win = 128 * 1024;
module_param(snd_win, int, 0644);
MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
static struct workqueue_struct *workq;
static struct sk_buff_head rxq;
static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
static void ep_timeout(unsigned long arg);
static void connect_reply_upcall(struct c4iw_ep *ep, int status);
static LIST_HEAD(timeout_list);
static spinlock_t timeout_lock;
static void start_ep_timer(struct c4iw_ep *ep)
{
PDBG("%s ep %p\n", __func__, ep);
if (timer_pending(&ep->timer)) {
PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
del_timer_sync(&ep->timer);
} else
c4iw_get_ep(&ep->com);
ep->timer.expires = jiffies + ep_timeout_secs * HZ;
ep->timer.data = (unsigned long)ep;
ep->timer.function = ep_timeout;
add_timer(&ep->timer);
}
static void stop_ep_timer(struct c4iw_ep *ep)
{
PDBG("%s ep %p\n", __func__, ep);
if (!timer_pending(&ep->timer)) {
printk(KERN_ERR "%s timer stopped when its not running! "
"ep %p state %u\n", __func__, ep, ep->com.state);
WARN_ON(1);
return;
}
del_timer_sync(&ep->timer);
c4iw_put_ep(&ep->com);
}
static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
struct l2t_entry *l2e)
{
int error = 0;
if (c4iw_fatal_error(rdev)) {
kfree_skb(skb);
PDBG("%s - device in error state - dropping\n", __func__);
return -EIO;
}
error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
if (error < 0)
kfree_skb(skb);
return error < 0 ? error : 0;
}
int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
{
int error = 0;
if (c4iw_fatal_error(rdev)) {
kfree_skb(skb);
PDBG("%s - device in error state - dropping\n", __func__);
return -EIO;
}
error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
if (error < 0)
kfree_skb(skb);
return error < 0 ? error : 0;
}
static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
{
struct cpl_tid_release *req;
skb = get_skb(skb, sizeof *req, GFP_KERNEL);
if (!skb)
return;
req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
INIT_TP_WR(req, hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
c4iw_ofld_send(rdev, skb);
return;
}
static void set_emss(struct c4iw_ep *ep, u16 opt)
{
ep->emss = ep->com.dev->rdev.lldi.mtus[GET_TCPOPT_MSS(opt)] - 40;
ep->mss = ep->emss;
if (GET_TCPOPT_TSTAMP(opt))
ep->emss -= 12;
if (ep->emss < 128)
ep->emss = 128;
PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, GET_TCPOPT_MSS(opt),
ep->mss, ep->emss);
}
static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
{
enum c4iw_ep_state state;
mutex_lock(&epc->mutex);
state = epc->state;
mutex_unlock(&epc->mutex);
return state;
}
static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
{
epc->state = new;
}
static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
{
mutex_lock(&epc->mutex);
PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
__state_set(epc, new);
mutex_unlock(&epc->mutex);
return;
}
static void *alloc_ep(int size, gfp_t gfp)
{
struct c4iw_ep_common *epc;
epc = kzalloc(size, gfp);
if (epc) {
kref_init(&epc->kref);
mutex_init(&epc->mutex);
c4iw_init_wr_wait(&epc->wr_wait);
}
PDBG("%s alloc ep %p\n", __func__, epc);
return epc;
}
void _c4iw_free_ep(struct kref *kref)
{
struct c4iw_ep *ep;
ep = container_of(kref, struct c4iw_ep, com.kref);
PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
}
kfree(ep);
}
static void release_ep_resources(struct c4iw_ep *ep)
{
set_bit(RELEASE_RESOURCES, &ep->com.flags);
c4iw_put_ep(&ep->com);
}
static int status2errno(int status)
{
switch (status) {
case CPL_ERR_NONE:
return 0;
case CPL_ERR_CONN_RESET:
return -ECONNRESET;
case CPL_ERR_ARP_MISS:
return -EHOSTUNREACH;
case CPL_ERR_CONN_TIMEDOUT:
return -ETIMEDOUT;
case CPL_ERR_TCAM_FULL:
return -ENOMEM;
case CPL_ERR_CONN_EXIST:
return -EADDRINUSE;
default:
return -EIO;
}
}
/*
* Try and reuse skbs already allocated...
*/
static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
{
if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
skb_trim(skb, 0);
skb_get(skb);
skb_reset_transport_header(skb);
} else {
skb = alloc_skb(len, gfp);
}
return skb;
}
static struct rtable *find_route(struct c4iw_dev *dev, __be32 local_ip,
__be32 peer_ip, __be16 local_port,
__be16 peer_port, u8 tos)
{
struct rtable *rt;
struct flowi4 fl4;
rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
peer_port, local_port, IPPROTO_TCP,
tos, 0);
if (IS_ERR(rt))
return NULL;
return rt;
}
static void arp_failure_discard(void *handle, struct sk_buff *skb)
{
PDBG("%s c4iw_dev %p\n", __func__, handle);
kfree_skb(skb);
}
/*
* Handle an ARP failure for an active open.
*/
static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
{
printk(KERN_ERR MOD "ARP failure duing connect\n");
kfree_skb(skb);
}
/*
* Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
* and send it along.
*/
static void abort_arp_failure(void *handle, struct sk_buff *skb)
{
struct c4iw_rdev *rdev = handle;
struct cpl_abort_req *req = cplhdr(skb);
PDBG("%s rdev %p\n", __func__, rdev);
req->cmd = CPL_ABORT_NO_RST;
c4iw_ofld_send(rdev, skb);
}
static void send_flowc(struct c4iw_ep *ep, struct sk_buff *skb)
{
unsigned int flowclen = 80;
struct fw_flowc_wr *flowc;
int i;
skb = get_skb(skb, flowclen, GFP_KERNEL);
flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
flowc->op_to_nparams = cpu_to_be32(FW_WR_OP(FW_FLOWC_WR) |
FW_FLOWC_WR_NPARAMS(8));
flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flowclen,
16)) | FW_WR_FLOWID(ep->hwtid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
flowc->mnemval[0].val = cpu_to_be32(PCI_FUNC(ep->com.dev->rdev.lldi.pdev->devfn) << 8);
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
flowc->mnemval[6].val = cpu_to_be32(snd_win);
flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
flowc->mnemval[7].val = cpu_to_be32(ep->emss);
/* Pad WR to 16 byte boundary */
flowc->mnemval[8].mnemonic = 0;
flowc->mnemval[8].val = 0;
for (i = 0; i < 9; i++) {
flowc->mnemval[i].r4[0] = 0;
flowc->mnemval[i].r4[1] = 0;
flowc->mnemval[i].r4[2] = 0;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
c4iw_ofld_send(&ep->com.dev->rdev, skb);
}
static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp)
{
struct cpl_close_con_req *req;
struct sk_buff *skb;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
skb = get_skb(NULL, wrlen, gfp);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
INIT_TP_WR(req, ep->hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
ep->hwtid));
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
{
struct cpl_abort_req *req;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
skb = get_skb(skb, wrlen, gfp);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
__func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
t4_set_arp_err_handler(skb, &ep->com.dev->rdev, abort_arp_failure);
req = (struct cpl_abort_req *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
INIT_TP_WR(req, ep->hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
req->cmd = CPL_ABORT_SEND_RST;
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int send_connect(struct c4iw_ep *ep)
{
struct cpl_act_open_req *req;
struct sk_buff *skb;
u64 opt0;
u32 opt2;
unsigned int mtu_idx;
int wscale;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
__func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
wscale = compute_wscale(rcv_win);
opt0 = KEEP_ALIVE(1) |
DELACK(1) |
WND_SCALE(wscale) |
MSS_IDX(mtu_idx) |
L2T_IDX(ep->l2t->idx) |
TX_CHAN(ep->tx_chan) |
SMAC_SEL(ep->smac_idx) |
DSCP(ep->tos) |
ULP_MODE(ULP_MODE_TCPDDP) |
RCV_BUFSIZ(rcv_win>>10);
opt2 = RX_CHANNEL(0) |
RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
if (enable_tcp_timestamps)
opt2 |= TSTAMPS_EN(1);
if (enable_tcp_sack)
opt2 |= SACK_EN(1);
if (wscale && enable_tcp_window_scaling)
opt2 |= WND_SCALE_EN(1);
t4_set_arp_err_handler(skb, NULL, act_open_req_arp_failure);
req = (struct cpl_act_open_req *) skb_put(skb, wrlen);
INIT_TP_WR(req, 0);
OPCODE_TID(req) = cpu_to_be32(
MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ((ep->rss_qid<<14)|ep->atid)));
req->local_port = ep->com.local_addr.sin_port;
req->peer_port = ep->com.remote_addr.sin_port;
req->local_ip = ep->com.local_addr.sin_addr.s_addr;
req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
req->opt0 = cpu_to_be64(opt0);
req->params = 0;
req->opt2 = cpu_to_be32(opt2);
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static void send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
u8 mpa_rev_to_use)
{
int mpalen, wrlen;
struct fw_ofld_tx_data_wr *req;
struct mpa_message *mpa;
struct mpa_v2_conn_params mpa_v2_params;
PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
BUG_ON(skb_cloned(skb));
mpalen = sizeof(*mpa) + ep->plen;
if (mpa_rev_to_use == 2)
mpalen += sizeof(struct mpa_v2_conn_params);
wrlen = roundup(mpalen + sizeof *req, 16);
skb = get_skb(skb, wrlen, GFP_KERNEL);
if (!skb) {
connect_reply_upcall(ep, -ENOMEM);
return;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
memset(req, 0, wrlen);
req->op_to_immdlen = cpu_to_be32(
FW_WR_OP(FW_OFLD_TX_DATA_WR) |
FW_WR_COMPL(1) |
FW_WR_IMMDLEN(mpalen));
req->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID(ep->hwtid) |
FW_WR_LEN16(wrlen >> 4));
req->plen = cpu_to_be32(mpalen);
req->tunnel_to_proxy = cpu_to_be32(
FW_OFLD_TX_DATA_WR_FLUSH(1) |
FW_OFLD_TX_DATA_WR_SHOVE(1));
mpa = (struct mpa_message *)(req + 1);
memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
mpa->flags = (crc_enabled ? MPA_CRC : 0) |
(markers_enabled ? MPA_MARKERS : 0) |
(mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
mpa->private_data_size = htons(ep->plen);
mpa->revision = mpa_rev_to_use;
if (mpa_rev_to_use == 1)
ep->tried_with_mpa_v1 = 1;
if (mpa_rev_to_use == 2) {
mpa->private_data_size +=
htons(sizeof(struct mpa_v2_conn_params));
mpa_v2_params.ird = htons((u16)ep->ird);
mpa_v2_params.ord = htons((u16)ep->ord);
if (peer2peer) {
mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_WRITE_RTR);
else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_READ_RTR);
}
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params),
ep->mpa_pkt + sizeof(*mpa), ep->plen);
} else
if (ep->plen)
memcpy(mpa->private_data,
ep->mpa_pkt + sizeof(*mpa), ep->plen);
/*
* Reference the mpa skb. This ensures the data area
* will remain in memory until the hw acks the tx.
* Function fw4_ack() will deref it.
*/
skb_get(skb);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
BUG_ON(ep->mpa_skb);
ep->mpa_skb = skb;
c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
start_ep_timer(ep);
state_set(&ep->com, MPA_REQ_SENT);
ep->mpa_attr.initiator = 1;
return;
}
static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
{
int mpalen, wrlen;
struct fw_ofld_tx_data_wr *req;
struct mpa_message *mpa;
struct sk_buff *skb;
struct mpa_v2_conn_params mpa_v2_params;
PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
mpalen = sizeof(*mpa) + plen;
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
mpalen += sizeof(struct mpa_v2_conn_params);
wrlen = roundup(mpalen + sizeof *req, 16);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
memset(req, 0, wrlen);
req->op_to_immdlen = cpu_to_be32(
FW_WR_OP(FW_OFLD_TX_DATA_WR) |
FW_WR_COMPL(1) |
FW_WR_IMMDLEN(mpalen));
req->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID(ep->hwtid) |
FW_WR_LEN16(wrlen >> 4));
req->plen = cpu_to_be32(mpalen);
req->tunnel_to_proxy = cpu_to_be32(
FW_OFLD_TX_DATA_WR_FLUSH(1) |
FW_OFLD_TX_DATA_WR_SHOVE(1));
mpa = (struct mpa_message *)(req + 1);
memset(mpa, 0, sizeof(*mpa));
memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
mpa->flags = MPA_REJECT;
mpa->revision = mpa_rev;
mpa->private_data_size = htons(plen);
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpa->flags |= MPA_ENHANCED_RDMA_CONN;
mpa->private_data_size +=
htons(sizeof(struct mpa_v2_conn_params));
mpa_v2_params.ird = htons(((u16)ep->ird) |
(peer2peer ? MPA_V2_PEER2PEER_MODEL :
0));
mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
(p2p_type ==
FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
MPA_V2_RDMA_WRITE_RTR : p2p_type ==
FW_RI_INIT_P2PTYPE_READ_REQ ?
MPA_V2_RDMA_READ_RTR : 0) : 0));
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params), pdata, plen);
} else
if (plen)
memcpy(mpa->private_data, pdata, plen);
/*
* Reference the mpa skb again. This ensures the data area
* will remain in memory until the hw acks the tx.
* Function fw4_ack() will deref it.
*/
skb_get(skb);
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
BUG_ON(ep->mpa_skb);
ep->mpa_skb = skb;
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
{
int mpalen, wrlen;
struct fw_ofld_tx_data_wr *req;
struct mpa_message *mpa;
struct sk_buff *skb;
struct mpa_v2_conn_params mpa_v2_params;
PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
mpalen = sizeof(*mpa) + plen;
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
mpalen += sizeof(struct mpa_v2_conn_params);
wrlen = roundup(mpalen + sizeof *req, 16);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
req->op_to_immdlen = cpu_to_be32(
FW_WR_OP(FW_OFLD_TX_DATA_WR) |
FW_WR_COMPL(1) |
FW_WR_IMMDLEN(mpalen));
req->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID(ep->hwtid) |
FW_WR_LEN16(wrlen >> 4));
req->plen = cpu_to_be32(mpalen);
req->tunnel_to_proxy = cpu_to_be32(
FW_OFLD_TX_DATA_WR_FLUSH(1) |
FW_OFLD_TX_DATA_WR_SHOVE(1));
mpa = (struct mpa_message *)(req + 1);
memset(mpa, 0, sizeof(*mpa));
memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
(markers_enabled ? MPA_MARKERS : 0);
mpa->revision = ep->mpa_attr.version;
mpa->private_data_size = htons(plen);
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpa->flags |= MPA_ENHANCED_RDMA_CONN;
mpa->private_data_size +=
htons(sizeof(struct mpa_v2_conn_params));
mpa_v2_params.ird = htons((u16)ep->ird);
mpa_v2_params.ord = htons((u16)ep->ord);
if (peer2peer && (ep->mpa_attr.p2p_type !=
FW_RI_INIT_P2PTYPE_DISABLED)) {
mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_WRITE_RTR);
else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_READ_RTR);
}
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params), pdata, plen);
} else
if (plen)
memcpy(mpa->private_data, pdata, plen);
/*
* Reference the mpa skb. This ensures the data area
* will remain in memory until the hw acks the tx.
* Function fw4_ack() will deref it.
*/
skb_get(skb);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
ep->mpa_skb = skb;
state_set(&ep->com, MPA_REP_SENT);
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_act_establish *req = cplhdr(skb);
unsigned int tid = GET_TID(req);
unsigned int atid = GET_TID_TID(ntohl(req->tos_atid));
struct tid_info *t = dev->rdev.lldi.tids;
ep = lookup_atid(t, atid);
PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
dst_confirm(ep->dst);
/* setup the hwtid for this connection */
ep->hwtid = tid;
cxgb4_insert_tid(t, ep, tid);
ep->snd_seq = be32_to_cpu(req->snd_isn);
ep->rcv_seq = be32_to_cpu(req->rcv_isn);
set_emss(ep, ntohs(req->tcp_opt));
/* dealloc the atid */
cxgb4_free_atid(t, atid);
/* start MPA negotiation */
send_flowc(ep, NULL);
if (ep->retry_with_mpa_v1)
send_mpa_req(ep, skb, 1);
else
send_mpa_req(ep, skb, mpa_rev);
return 0;
}
static void close_complete_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CLOSE;
if (ep->com.cm_id) {
PDBG("close complete delivered ep %p cm_id %p tid %u\n",
ep, ep->com.cm_id, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
ep->com.cm_id->rem_ref(ep->com.cm_id);
ep->com.cm_id = NULL;
ep->com.qp = NULL;
}
}
static int abort_connection(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
{
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
close_complete_upcall(ep);
state_set(&ep->com, ABORTING);
return send_abort(ep, skb, gfp);
}
static void peer_close_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_DISCONNECT;
if (ep->com.cm_id) {
PDBG("peer close delivered ep %p cm_id %p tid %u\n",
ep, ep->com.cm_id, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
}
}
static void peer_abort_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CLOSE;
event.status = -ECONNRESET;
if (ep->com.cm_id) {
PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
ep->com.cm_id, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
ep->com.cm_id->rem_ref(ep->com.cm_id);
ep->com.cm_id = NULL;
ep->com.qp = NULL;
}
}
static void connect_reply_upcall(struct c4iw_ep *ep, int status)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CONNECT_REPLY;
event.status = status;
event.local_addr = ep->com.local_addr;
event.remote_addr = ep->com.remote_addr;
if ((status == 0) || (status == -ECONNREFUSED)) {
if (!ep->tried_with_mpa_v1) {
/* this means MPA_v2 is used */
event.private_data_len = ep->plen -
sizeof(struct mpa_v2_conn_params);
event.private_data = ep->mpa_pkt +
sizeof(struct mpa_message) +
sizeof(struct mpa_v2_conn_params);
} else {
/* this means MPA_v1 is used */
event.private_data_len = ep->plen;
event.private_data = ep->mpa_pkt +
sizeof(struct mpa_message);
}
}
PDBG("%s ep %p tid %u status %d\n", __func__, ep,
ep->hwtid, status);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
if (status < 0) {
ep->com.cm_id->rem_ref(ep->com.cm_id);
ep->com.cm_id = NULL;
ep->com.qp = NULL;
}
}
static void connect_request_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CONNECT_REQUEST;
event.local_addr = ep->com.local_addr;
event.remote_addr = ep->com.remote_addr;
event.provider_data = ep;
if (!ep->tried_with_mpa_v1) {
/* this means MPA_v2 is used */
event.ord = ep->ord;
event.ird = ep->ird;
event.private_data_len = ep->plen -
sizeof(struct mpa_v2_conn_params);
event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
sizeof(struct mpa_v2_conn_params);
} else {
/* this means MPA_v1 is used. Send max supported */
event.ord = c4iw_max_read_depth;
event.ird = c4iw_max_read_depth;
event.private_data_len = ep->plen;
event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
}
if (state_read(&ep->parent_ep->com) != DEAD) {
c4iw_get_ep(&ep->com);
ep->parent_ep->com.cm_id->event_handler(
ep->parent_ep->com.cm_id,
&event);
}
c4iw_put_ep(&ep->parent_ep->com);
ep->parent_ep = NULL;
}
static void established_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_ESTABLISHED;
event.ird = ep->ird;
event.ord = ep->ord;
if (ep->com.cm_id) {
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
}
}
static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
{
struct cpl_rx_data_ack *req;
struct sk_buff *skb;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
return 0;
}
req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
INIT_TP_WR(req, ep->hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
ep->hwtid));
req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK(1) |
F_RX_DACK_CHANGE |
V_RX_DACK_MODE(dack_mode));
set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
c4iw_ofld_send(&ep->com.dev->rdev, skb);
return credits;
}
static void process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
{
struct mpa_message *mpa;
struct mpa_v2_conn_params *mpa_v2_params;
u16 plen;
u16 resp_ird, resp_ord;
u8 rtr_mismatch = 0, insuff_ird = 0;
struct c4iw_qp_attributes attrs;
enum c4iw_qp_attr_mask mask;
int err;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
/*
* Stop mpa timer. If it expired, then the state has
* changed and we bail since ep_timeout already aborted
* the connection.
*/
stop_ep_timer(ep);
if (state_read(&ep->com) != MPA_REQ_SENT)
return;
/*
* If we get more than the supported amount of private data
* then we must fail this connection.
*/
if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
err = -EINVAL;
goto err;
}
/*
* copy the new data into our accumulation buffer.
*/
skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
skb->len);
ep->mpa_pkt_len += skb->len;
/*
* if we don't even have the mpa message, then bail.
*/
if (ep->mpa_pkt_len < sizeof(*mpa))
return;
mpa = (struct mpa_message *) ep->mpa_pkt;
/* Validate MPA header. */
if (mpa->revision > mpa_rev) {
printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
" Received = %d\n", __func__, mpa_rev, mpa->revision);
err = -EPROTO;
goto err;
}
if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
err = -EPROTO;
goto err;
}
plen = ntohs(mpa->private_data_size);
/*
* Fail if there's too much private data.
*/
if (plen > MPA_MAX_PRIVATE_DATA) {
err = -EPROTO;
goto err;
}
/*
* If plen does not account for pkt size
*/
if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
err = -EPROTO;
goto err;
}
ep->plen = (u8) plen;
/*
* If we don't have all the pdata yet, then bail.
* We'll continue process when more data arrives.
*/
if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
return;
if (mpa->flags & MPA_REJECT) {
err = -ECONNREFUSED;
goto err;
}
/*
* If we get here we have accumulated the entire mpa
* start reply message including private data. And
* the MPA header is valid.
*/
state_set(&ep->com, FPDU_MODE);
ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
ep->mpa_attr.recv_marker_enabled = markers_enabled;
ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
ep->mpa_attr.version = mpa->revision;
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
if (mpa->revision == 2) {
ep->mpa_attr.enhanced_rdma_conn =
mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
if (ep->mpa_attr.enhanced_rdma_conn) {
mpa_v2_params = (struct mpa_v2_conn_params *)
(ep->mpa_pkt + sizeof(*mpa));
resp_ird = ntohs(mpa_v2_params->ird) &
MPA_V2_IRD_ORD_MASK;
resp_ord = ntohs(mpa_v2_params->ord) &
MPA_V2_IRD_ORD_MASK;
/*
* This is a double-check. Ideally, below checks are
* not required since ird/ord stuff has been taken
* care of in c4iw_accept_cr
*/
if ((ep->ird < resp_ord) || (ep->ord > resp_ird)) {
err = -ENOMEM;
ep->ird = resp_ord;
ep->ord = resp_ird;
insuff_ird = 1;
}
if (ntohs(mpa_v2_params->ird) &
MPA_V2_PEER2PEER_MODEL) {
if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_WRITE_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_RDMA_WRITE;
else if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_READ_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_READ_REQ;
}
}
} else if (mpa->revision == 1)
if (peer2peer)
ep->mpa_attr.p2p_type = p2p_type;
PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
"xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
"%d\n", __func__, ep->mpa_attr.crc_enabled,
ep->mpa_attr.recv_marker_enabled,
ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
ep->mpa_attr.p2p_type, p2p_type);
/*
* If responder's RTR does not match with that of initiator, assign
* FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
* generated when moving QP to RTS state.
* A TERM message will be sent after QP has moved to RTS state
*/
if ((ep->mpa_attr.version == 2) &&
(ep->mpa_attr.p2p_type != p2p_type)) {
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
rtr_mismatch = 1;
}
attrs.mpa_attr = ep->mpa_attr;
attrs.max_ird = ep->ird;
attrs.max_ord = ep->ord;
attrs.llp_stream_handle = ep;
attrs.next_state = C4IW_QP_STATE_RTS;
mask = C4IW_QP_ATTR_NEXT_STATE |
C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
/* bind QP and TID with INIT_WR */
err = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, mask, &attrs, 1);
if (err)
goto err;
/*
* If responder's RTR requirement did not match with what initiator
* supports, generate TERM message
*/
if (rtr_mismatch) {
printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
attrs.layer_etype = LAYER_MPA | DDP_LLP;
attrs.ecode = MPA_NOMATCH_RTR;
attrs.next_state = C4IW_QP_STATE_TERMINATE;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
err = -ENOMEM;
goto out;
}
/*
* Generate TERM if initiator IRD is not sufficient for responder
* provided ORD. Currently, we do the same behaviour even when
* responder provided IRD is also not sufficient as regards to
* initiator ORD.
*/
if (insuff_ird) {
printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
__func__);
attrs.layer_etype = LAYER_MPA | DDP_LLP;
attrs.ecode = MPA_INSUFF_IRD;
attrs.next_state = C4IW_QP_STATE_TERMINATE;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
err = -ENOMEM;
goto out;
}
goto out;
err:
state_set(&ep->com, ABORTING);
send_abort(ep, skb, GFP_KERNEL);
out:
connect_reply_upcall(ep, err);
return;
}
static void process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
{
struct mpa_message *mpa;
struct mpa_v2_conn_params *mpa_v2_params;
u16 plen;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
if (state_read(&ep->com) != MPA_REQ_WAIT)
return;
/*
* If we get more than the supported amount of private data
* then we must fail this connection.
*/
if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
stop_ep_timer(ep);
abort_connection(ep, skb, GFP_KERNEL);
return;
}
PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
/*
* Copy the new data into our accumulation buffer.
*/
skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
skb->len);
ep->mpa_pkt_len += skb->len;
/*
* If we don't even have the mpa message, then bail.
* We'll continue process when more data arrives.
*/
if (ep->mpa_pkt_len < sizeof(*mpa))
return;
PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
stop_ep_timer(ep);
mpa = (struct mpa_message *) ep->mpa_pkt;
/*
* Validate MPA Header.
*/
if (mpa->revision > mpa_rev) {
printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
" Received = %d\n", __func__, mpa_rev, mpa->revision);
abort_connection(ep, skb, GFP_KERNEL);
return;
}
if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
abort_connection(ep, skb, GFP_KERNEL);
return;
}
plen = ntohs(mpa->private_data_size);
/*
* Fail if there's too much private data.
*/
if (plen > MPA_MAX_PRIVATE_DATA) {
abort_connection(ep, skb, GFP_KERNEL);
return;
}
/*
* If plen does not account for pkt size
*/
if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
abort_connection(ep, skb, GFP_KERNEL);
return;
}
ep->plen = (u8) plen;
/*
* If we don't have all the pdata yet, then bail.
*/
if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
return;
/*
* If we get here we have accumulated the entire mpa
* start reply message including private data.
*/
ep->mpa_attr.initiator = 0;
ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
ep->mpa_attr.recv_marker_enabled = markers_enabled;
ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
ep->mpa_attr.version = mpa->revision;
if (mpa->revision == 1)
ep->tried_with_mpa_v1 = 1;
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
if (mpa->revision == 2) {
ep->mpa_attr.enhanced_rdma_conn =
mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
if (ep->mpa_attr.enhanced_rdma_conn) {
mpa_v2_params = (struct mpa_v2_conn_params *)
(ep->mpa_pkt + sizeof(*mpa));
ep->ird = ntohs(mpa_v2_params->ird) &
MPA_V2_IRD_ORD_MASK;
ep->ord = ntohs(mpa_v2_params->ord) &
MPA_V2_IRD_ORD_MASK;
if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
if (peer2peer) {
if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_WRITE_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_RDMA_WRITE;
else if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_READ_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_READ_REQ;
}
}
} else if (mpa->revision == 1)
if (peer2peer)
ep->mpa_attr.p2p_type = p2p_type;
PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
"xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
ep->mpa_attr.p2p_type);
state_set(&ep->com, MPA_REQ_RCVD);
/* drive upcall */
connect_request_upcall(ep);
return;
}
static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_rx_data *hdr = cplhdr(skb);
unsigned int dlen = ntohs(hdr->len);
unsigned int tid = GET_TID(hdr);
struct tid_info *t = dev->rdev.lldi.tids;
ep = lookup_tid(t, tid);
PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
skb_pull(skb, sizeof(*hdr));
skb_trim(skb, dlen);
ep->rcv_seq += dlen;
BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
/* update RX credits */
update_rx_credits(ep, dlen);
switch (state_read(&ep->com)) {
case MPA_REQ_SENT:
process_mpa_reply(ep, skb);
break;
case MPA_REQ_WAIT:
process_mpa_request(ep, skb);
break;
case MPA_REP_SENT:
break;
default:
printk(KERN_ERR MOD "%s Unexpected streaming data."
" ep %p state %d tid %u\n",
__func__, ep, state_read(&ep->com), ep->hwtid);
/*
* The ep will timeout and inform the ULP of the failure.
* See ep_timeout().
*/
break;
}
return 0;
}
static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
int release = 0;
unsigned int tid = GET_TID(rpl);
struct tid_info *t = dev->rdev.lldi.tids;
ep = lookup_tid(t, tid);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
BUG_ON(!ep);
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case ABORTING:
__state_set(&ep->com, DEAD);
release = 1;
break;
default:
printk(KERN_ERR "%s ep %p state %d\n",
__func__, ep, ep->com.state);
break;
}
mutex_unlock(&ep->com.mutex);
if (release)
release_ep_resources(ep);
return 0;
}
/*
* Return whether a failed active open has allocated a TID
*/
static inline int act_open_has_tid(int status)
{
return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
status != CPL_ERR_ARP_MISS;
}
static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_act_open_rpl *rpl = cplhdr(skb);
unsigned int atid = GET_TID_TID(GET_AOPEN_ATID(
ntohl(rpl->atid_status)));
struct tid_info *t = dev->rdev.lldi.tids;
int status = GET_AOPEN_STATUS(ntohl(rpl->atid_status));
ep = lookup_atid(t, atid);
PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
status, status2errno(status));
if (status == CPL_ERR_RTX_NEG_ADVICE) {
printk(KERN_WARNING MOD "Connection problems for atid %u\n",
atid);
return 0;
}
connect_reply_upcall(ep, status2errno(status));
state_set(&ep->com, DEAD);
if (status && act_open_has_tid(status))
cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
cxgb4_free_atid(t, atid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
c4iw_put_ep(&ep->com);
return 0;
}
static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_pass_open_rpl *rpl = cplhdr(skb);
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int stid = GET_TID(rpl);
struct c4iw_listen_ep *ep = lookup_stid(t, stid);
if (!ep) {
printk(KERN_ERR MOD "stid %d lookup failure!\n", stid);
return 0;
}
PDBG("%s ep %p status %d error %d\n", __func__, ep,
rpl->status, status2errno(rpl->status));
c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
return 0;
}
static int listen_stop(struct c4iw_listen_ep *ep)
{
struct sk_buff *skb;
struct cpl_close_listsvr_req *req;
PDBG("%s ep %p\n", __func__, ep);
skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
return -ENOMEM;
}
req = (struct cpl_close_listsvr_req *) skb_put(skb, sizeof(*req));
INIT_TP_WR(req, 0);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ,
ep->stid));
req->reply_ctrl = cpu_to_be16(
QUEUENO(ep->com.dev->rdev.lldi.rxq_ids[0]));
set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
return c4iw_ofld_send(&ep->com.dev->rdev, skb);
}
static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int stid = GET_TID(rpl);
struct c4iw_listen_ep *ep = lookup_stid(t, stid);
PDBG("%s ep %p\n", __func__, ep);
c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
return 0;
}
static void accept_cr(struct c4iw_ep *ep, __be32 peer_ip, struct sk_buff *skb,
struct cpl_pass_accept_req *req)
{
struct cpl_pass_accept_rpl *rpl;
unsigned int mtu_idx;
u64 opt0;
u32 opt2;
int wscale;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
BUG_ON(skb_cloned(skb));
skb_trim(skb, sizeof(*rpl));
skb_get(skb);
cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
wscale = compute_wscale(rcv_win);
opt0 = KEEP_ALIVE(1) |
DELACK(1) |
WND_SCALE(wscale) |
MSS_IDX(mtu_idx) |
L2T_IDX(ep->l2t->idx) |
TX_CHAN(ep->tx_chan) |
SMAC_SEL(ep->smac_idx) |
DSCP(ep->tos) |
ULP_MODE(ULP_MODE_TCPDDP) |
RCV_BUFSIZ(rcv_win>>10);
opt2 = RX_CHANNEL(0) |
RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
if (enable_tcp_timestamps && req->tcpopt.tstamp)
opt2 |= TSTAMPS_EN(1);
if (enable_tcp_sack && req->tcpopt.sack)
opt2 |= SACK_EN(1);
if (wscale && enable_tcp_window_scaling)
opt2 |= WND_SCALE_EN(1);
rpl = cplhdr(skb);
INIT_TP_WR(rpl, ep->hwtid);
OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
ep->hwtid));
rpl->opt0 = cpu_to_be64(opt0);
rpl->opt2 = cpu_to_be32(opt2);
set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
return;
}
static void reject_cr(struct c4iw_dev *dev, u32 hwtid, __be32 peer_ip,
struct sk_buff *skb)
{
PDBG("%s c4iw_dev %p tid %u peer_ip %x\n", __func__, dev, hwtid,
peer_ip);
BUG_ON(skb_cloned(skb));
skb_trim(skb, sizeof(struct cpl_tid_release));
skb_get(skb);
release_tid(&dev->rdev, hwtid, skb);
return;
}
static void get_4tuple(struct cpl_pass_accept_req *req,
__be32 *local_ip, __be32 *peer_ip,
__be16 *local_port, __be16 *peer_port)
{
int eth_len = G_ETH_HDR_LEN(be32_to_cpu(req->hdr_len));
int ip_len = G_IP_HDR_LEN(be32_to_cpu(req->hdr_len));
struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
struct tcphdr *tcp = (struct tcphdr *)
((u8 *)(req + 1) + eth_len + ip_len);
PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
ntohs(tcp->dest));
*peer_ip = ip->saddr;
*local_ip = ip->daddr;
*peer_port = tcp->source;
*local_port = tcp->dest;
return;
}
static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *child_ep, *parent_ep;
struct cpl_pass_accept_req *req = cplhdr(skb);
unsigned int stid = GET_POPEN_TID(ntohl(req->tos_stid));
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int hwtid = GET_TID(req);
struct neighbour *neigh;
struct dst_entry *dst;
struct l2t_entry *l2t;
struct rtable *rt;
__be32 local_ip, peer_ip;
__be16 local_port, peer_port;
struct net_device *pdev;
u32 tx_chan, smac_idx;
u16 rss_qid;
u32 mtu;
int step;
int txq_idx, ctrlq_idx;
parent_ep = lookup_stid(t, stid);
PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
get_4tuple(req, &local_ip, &peer_ip, &local_port, &peer_port);
if (state_read(&parent_ep->com) != LISTEN) {
printk(KERN_ERR "%s - listening ep not in LISTEN\n",
__func__);
goto reject;
}
/* Find output route */
rt = find_route(dev, local_ip, peer_ip, local_port, peer_port,
GET_POPEN_TOS(ntohl(req->tos_stid)));
if (!rt) {
printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
__func__);
goto reject;
}
dst = &rt->dst;
neigh = dst_get_neighbour(dst);
if (neigh->dev->flags & IFF_LOOPBACK) {
pdev = ip_dev_find(&init_net, peer_ip);
BUG_ON(!pdev);
l2t = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, pdev, 0);
mtu = pdev->mtu;
tx_chan = cxgb4_port_chan(pdev);
smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1;
step = dev->rdev.lldi.ntxq / dev->rdev.lldi.nchan;
txq_idx = cxgb4_port_idx(pdev) * step;
ctrlq_idx = cxgb4_port_idx(pdev);
step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
rss_qid = dev->rdev.lldi.rxq_ids[cxgb4_port_idx(pdev) * step];
dev_put(pdev);
} else {
l2t = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, neigh->dev, 0);
mtu = dst_mtu(dst);
tx_chan = cxgb4_port_chan(neigh->dev);
smac_idx = (cxgb4_port_viid(neigh->dev) & 0x7F) << 1;
step = dev->rdev.lldi.ntxq / dev->rdev.lldi.nchan;
txq_idx = cxgb4_port_idx(neigh->dev) * step;
ctrlq_idx = cxgb4_port_idx(neigh->dev);
step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
rss_qid = dev->rdev.lldi.rxq_ids[
cxgb4_port_idx(neigh->dev) * step];
}
if (!l2t) {
printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
__func__);
dst_release(dst);
goto reject;
}
child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
if (!child_ep) {
printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
__func__);
cxgb4_l2t_release(l2t);
dst_release(dst);
goto reject;
}
state_set(&child_ep->com, CONNECTING);
child_ep->com.dev = dev;
child_ep->com.cm_id = NULL;
child_ep->com.local_addr.sin_family = PF_INET;
child_ep->com.local_addr.sin_port = local_port;
child_ep->com.local_addr.sin_addr.s_addr = local_ip;
child_ep->com.remote_addr.sin_family = PF_INET;
child_ep->com.remote_addr.sin_port = peer_port;
child_ep->com.remote_addr.sin_addr.s_addr = peer_ip;
c4iw_get_ep(&parent_ep->com);
child_ep->parent_ep = parent_ep;
child_ep->tos = GET_POPEN_TOS(ntohl(req->tos_stid));
child_ep->l2t = l2t;
child_ep->dst = dst;
child_ep->hwtid = hwtid;
child_ep->tx_chan = tx_chan;
child_ep->smac_idx = smac_idx;
child_ep->rss_qid = rss_qid;
child_ep->mtu = mtu;
child_ep->txq_idx = txq_idx;
child_ep->ctrlq_idx = ctrlq_idx;
PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
tx_chan, smac_idx, rss_qid);
init_timer(&child_ep->timer);
cxgb4_insert_tid(t, child_ep, hwtid);
accept_cr(child_ep, peer_ip, skb, req);
goto out;
reject:
reject_cr(dev, hwtid, peer_ip, skb);
out:
return 0;
}
static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_pass_establish *req = cplhdr(skb);
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int tid = GET_TID(req);
ep = lookup_tid(t, tid);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
ep->snd_seq = be32_to_cpu(req->snd_isn);
ep->rcv_seq = be32_to_cpu(req->rcv_isn);
set_emss(ep, ntohs(req->tcp_opt));
dst_confirm(ep->dst);
state_set(&ep->com, MPA_REQ_WAIT);
start_ep_timer(ep);
send_flowc(ep, skb);
return 0;
}
static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_peer_close *hdr = cplhdr(skb);
struct c4iw_ep *ep;
struct c4iw_qp_attributes attrs;
int disconnect = 1;
int release = 0;
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int tid = GET_TID(hdr);
int ret;
ep = lookup_tid(t, tid);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
dst_confirm(ep->dst);
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case MPA_REQ_WAIT:
__state_set(&ep->com, CLOSING);
break;
case MPA_REQ_SENT:
__state_set(&ep->com, CLOSING);
connect_reply_upcall(ep, -ECONNRESET);
break;
case MPA_REQ_RCVD:
/*
* We're gonna mark this puppy DEAD, but keep
* the reference on it until the ULP accepts or
* rejects the CR. Also wake up anyone waiting
* in rdma connection migration (see c4iw_accept_cr()).
*/
__state_set(&ep->com, CLOSING);
PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
break;
case MPA_REP_SENT:
__state_set(&ep->com, CLOSING);
PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
break;
case FPDU_MODE:
start_ep_timer(ep);
__state_set(&ep->com, CLOSING);
attrs.next_state = C4IW_QP_STATE_CLOSING;
ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
if (ret != -ECONNRESET) {
peer_close_upcall(ep);
disconnect = 1;
}
break;
case ABORTING:
disconnect = 0;
break;
case CLOSING:
__state_set(&ep->com, MORIBUND);
disconnect = 0;
break;
case MORIBUND:
stop_ep_timer(ep);
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_IDLE;
c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
}
close_complete_upcall(ep);
__state_set(&ep->com, DEAD);
release = 1;
disconnect = 0;
break;
case DEAD:
disconnect = 0;
break;
default:
BUG_ON(1);
}
mutex_unlock(&ep->com.mutex);
if (disconnect)
c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
if (release)
release_ep_resources(ep);
return 0;
}
/*
* Returns whether an ABORT_REQ_RSS message is a negative advice.
*/
static int is_neg_adv_abort(unsigned int status)
{
return status == CPL_ERR_RTX_NEG_ADVICE ||
status == CPL_ERR_PERSIST_NEG_ADVICE;
}
static int c4iw_reconnect(struct c4iw_ep *ep)
{
int err = 0;
struct rtable *rt;
struct net_device *pdev;
struct neighbour *neigh;
int step;
PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
init_timer(&ep->timer);
/*
* Allocate an active TID to initiate a TCP connection.
*/
ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
if (ep->atid == -1) {
printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
err = -ENOMEM;
goto fail2;
}
/* find a route */
rt = find_route(ep->com.dev,
ep->com.cm_id->local_addr.sin_addr.s_addr,
ep->com.cm_id->remote_addr.sin_addr.s_addr,
ep->com.cm_id->local_addr.sin_port,
ep->com.cm_id->remote_addr.sin_port, 0);
if (!rt) {
printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
err = -EHOSTUNREACH;
goto fail3;
}
ep->dst = &rt->dst;
neigh = dst_get_neighbour(ep->dst);
/* get a l2t entry */
if (neigh->dev->flags & IFF_LOOPBACK) {
PDBG("%s LOOPBACK\n", __func__);
pdev = ip_dev_find(&init_net,
ep->com.cm_id->remote_addr.sin_addr.s_addr);
ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t,
neigh, pdev, 0);
ep->mtu = pdev->mtu;
ep->tx_chan = cxgb4_port_chan(pdev);
ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1;
step = ep->com.dev->rdev.lldi.ntxq /
ep->com.dev->rdev.lldi.nchan;
ep->txq_idx = cxgb4_port_idx(pdev) * step;
step = ep->com.dev->rdev.lldi.nrxq /
ep->com.dev->rdev.lldi.nchan;
ep->ctrlq_idx = cxgb4_port_idx(pdev);
ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[
cxgb4_port_idx(pdev) * step];
dev_put(pdev);
} else {
ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t,
neigh, neigh->dev, 0);
ep->mtu = dst_mtu(ep->dst);
ep->tx_chan = cxgb4_port_chan(neigh->dev);
ep->smac_idx = (cxgb4_port_viid(neigh->dev) & 0x7F) << 1;
step = ep->com.dev->rdev.lldi.ntxq /
ep->com.dev->rdev.lldi.nchan;
ep->txq_idx = cxgb4_port_idx(neigh->dev) * step;
ep->ctrlq_idx = cxgb4_port_idx(neigh->dev);
step = ep->com.dev->rdev.lldi.nrxq /
ep->com.dev->rdev.lldi.nchan;
ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[
cxgb4_port_idx(neigh->dev) * step];
}
if (!ep->l2t) {
printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
err = -ENOMEM;
goto fail4;
}
PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
ep->l2t->idx);
state_set(&ep->com, CONNECTING);
ep->tos = 0;
/* send connect request to rnic */
err = send_connect(ep);
if (!err)
goto out;
cxgb4_l2t_release(ep->l2t);
fail4:
dst_release(ep->dst);
fail3:
cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
fail2:
/*
* remember to send notification to upper layer.
* We are in here so the upper layer is not aware that this is
* re-connect attempt and so, upper layer is still waiting for
* response of 1st connect request.
*/
connect_reply_upcall(ep, -ECONNRESET);
c4iw_put_ep(&ep->com);
out:
return err;
}
static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_abort_req_rss *req = cplhdr(skb);
struct c4iw_ep *ep;
struct cpl_abort_rpl *rpl;
struct sk_buff *rpl_skb;
struct c4iw_qp_attributes attrs;
int ret;
int release = 0;
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int tid = GET_TID(req);
ep = lookup_tid(t, tid);
if (is_neg_adv_abort(req->status)) {
PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep,
ep->hwtid);
return 0;
}
PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
ep->com.state);
/*
* Wake up any threads in rdma_init() or rdma_fini().
* However, this is not needed if com state is just
* MPA_REQ_SENT
*/
if (ep->com.state != MPA_REQ_SENT)
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case CONNECTING:
break;
case MPA_REQ_WAIT:
stop_ep_timer(ep);
break;
case MPA_REQ_SENT:
stop_ep_timer(ep);
if (mpa_rev == 2 && ep->tried_with_mpa_v1)
connect_reply_upcall(ep, -ECONNRESET);
else {
/*
* we just don't send notification upwards because we
* want to retry with mpa_v1 without upper layers even
* knowing it.
*
* do some housekeeping so as to re-initiate the
* connection
*/
PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
mpa_rev);
ep->retry_with_mpa_v1 = 1;
}
break;
case MPA_REP_SENT:
break;
case MPA_REQ_RCVD:
break;
case MORIBUND:
case CLOSING:
stop_ep_timer(ep);
/*FALLTHROUGH*/
case FPDU_MODE:
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_ERROR;
ret = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
if (ret)
printk(KERN_ERR MOD
"%s - qp <- error failed!\n",
__func__);
}
peer_abort_upcall(ep);
break;
case ABORTING:
break;
case DEAD:
PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
mutex_unlock(&ep->com.mutex);
return 0;
default:
BUG_ON(1);
break;
}
dst_confirm(ep->dst);
if (ep->com.state != ABORTING) {
__state_set(&ep->com, DEAD);
/* we don't release if we want to retry with mpa_v1 */
if (!ep->retry_with_mpa_v1)
release = 1;
}
mutex_unlock(&ep->com.mutex);
rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
if (!rpl_skb) {
printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
__func__);
release = 1;
goto out;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
INIT_TP_WR(rpl, ep->hwtid);
OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
rpl->cmd = CPL_ABORT_NO_RST;
c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
out:
if (release)
release_ep_resources(ep);
/* retry with mpa-v1 */
if (ep && ep->retry_with_mpa_v1) {
cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
c4iw_reconnect(ep);
}
return 0;
}
static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct c4iw_qp_attributes attrs;
struct cpl_close_con_rpl *rpl = cplhdr(skb);
int release = 0;
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int tid = GET_TID(rpl);
ep = lookup_tid(t, tid);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
BUG_ON(!ep);
/* The cm_id may be null if we failed to connect */
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case CLOSING:
__state_set(&ep->com, MORIBUND);
break;
case MORIBUND:
stop_ep_timer(ep);
if ((ep->com.cm_id) && (ep->com.qp)) {
attrs.next_state = C4IW_QP_STATE_IDLE;
c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
}
close_complete_upcall(ep);
__state_set(&ep->com, DEAD);
release = 1;
break;
case ABORTING:
case DEAD:
break;
default:
BUG_ON(1);
break;
}
mutex_unlock(&ep->com.mutex);
if (release)
release_ep_resources(ep);
return 0;
}
static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_rdma_terminate *rpl = cplhdr(skb);
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int tid = GET_TID(rpl);
struct c4iw_ep *ep;
struct c4iw_qp_attributes attrs;
ep = lookup_tid(t, tid);
BUG_ON(!ep);
if (ep && ep->com.qp) {
printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
ep->com.qp->wq.sq.qid);
attrs.next_state = C4IW_QP_STATE_TERMINATE;
c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
} else
printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
return 0;
}
/*
* Upcall from the adapter indicating data has been transmitted.
* For us its just the single MPA request or reply. We can now free
* the skb holding the mpa message.
*/
static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_fw4_ack *hdr = cplhdr(skb);
u8 credits = hdr->credits;
unsigned int tid = GET_TID(hdr);
struct tid_info *t = dev->rdev.lldi.tids;
ep = lookup_tid(t, tid);
PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
if (credits == 0) {
PDBG("%s 0 credit ack ep %p tid %u state %u\n",
__func__, ep, ep->hwtid, state_read(&ep->com));
return 0;
}
dst_confirm(ep->dst);
if (ep->mpa_skb) {
PDBG("%s last streaming msg ack ep %p tid %u state %u "
"initiator %u freeing skb\n", __func__, ep, ep->hwtid,
state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
kfree_skb(ep->mpa_skb);
ep->mpa_skb = NULL;
}
return 0;
}
int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
{
int err;
struct c4iw_ep *ep = to_ep(cm_id);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
if (state_read(&ep->com) == DEAD) {
c4iw_put_ep(&ep->com);
return -ECONNRESET;
}
BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
if (mpa_rev == 0)
abort_connection(ep, NULL, GFP_KERNEL);
else {
err = send_mpa_reject(ep, pdata, pdata_len);
err = c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
}
c4iw_put_ep(&ep->com);
return 0;
}
int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
int err;
struct c4iw_qp_attributes attrs;
enum c4iw_qp_attr_mask mask;
struct c4iw_ep *ep = to_ep(cm_id);
struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
if (state_read(&ep->com) == DEAD) {
err = -ECONNRESET;
goto err;
}
BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
BUG_ON(!qp);
if ((conn_param->ord > c4iw_max_read_depth) ||
(conn_param->ird > c4iw_max_read_depth)) {
abort_connection(ep, NULL, GFP_KERNEL);
err = -EINVAL;
goto err;
}
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
if (conn_param->ord > ep->ird) {
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
send_mpa_reject(ep, conn_param->private_data,
conn_param->private_data_len);
abort_connection(ep, NULL, GFP_KERNEL);
err = -ENOMEM;
goto err;
}
if (conn_param->ird > ep->ord) {
if (!ep->ord)
conn_param->ird = 1;
else {
abort_connection(ep, NULL, GFP_KERNEL);
err = -ENOMEM;
goto err;
}
}
}
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
if (ep->mpa_attr.version != 2)
if (peer2peer && ep->ird == 0)
ep->ird = 1;
PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
cm_id->add_ref(cm_id);
ep->com.cm_id = cm_id;
ep->com.qp = qp;
/* bind QP to EP and move to RTS */
attrs.mpa_attr = ep->mpa_attr;
attrs.max_ird = ep->ird;
attrs.max_ord = ep->ord;
attrs.llp_stream_handle = ep;
attrs.next_state = C4IW_QP_STATE_RTS;
/* bind QP and TID with INIT_WR */
mask = C4IW_QP_ATTR_NEXT_STATE |
C4IW_QP_ATTR_LLP_STREAM_HANDLE |
C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_MAX_IRD |
C4IW_QP_ATTR_MAX_ORD;
err = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, mask, &attrs, 1);
if (err)
goto err1;
err = send_mpa_reply(ep, conn_param->private_data,
conn_param->private_data_len);
if (err)
goto err1;
state_set(&ep->com, FPDU_MODE);
established_upcall(ep);
c4iw_put_ep(&ep->com);
return 0;
err1:
ep->com.cm_id = NULL;
ep->com.qp = NULL;
cm_id->rem_ref(cm_id);
err:
c4iw_put_ep(&ep->com);
return err;
}
int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
int err = 0;
struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
struct c4iw_ep *ep;
struct rtable *rt;
struct net_device *pdev;
struct neighbour *neigh;
int step;
if ((conn_param->ord > c4iw_max_read_depth) ||
(conn_param->ird > c4iw_max_read_depth)) {
err = -EINVAL;
goto out;
}
ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
if (!ep) {
printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
err = -ENOMEM;
goto out;
}
init_timer(&ep->timer);
ep->plen = conn_param->private_data_len;
if (ep->plen)
memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
conn_param->private_data, ep->plen);
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
if (peer2peer && ep->ord == 0)
ep->ord = 1;
cm_id->add_ref(cm_id);
ep->com.dev = dev;
ep->com.cm_id = cm_id;
ep->com.qp = get_qhp(dev, conn_param->qpn);
BUG_ON(!ep->com.qp);
PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
ep->com.qp, cm_id);
/*
* Allocate an active TID to initiate a TCP connection.
*/
ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
if (ep->atid == -1) {
printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
err = -ENOMEM;
goto fail2;
}
PDBG("%s saddr 0x%x sport 0x%x raddr 0x%x rport 0x%x\n", __func__,
ntohl(cm_id->local_addr.sin_addr.s_addr),
ntohs(cm_id->local_addr.sin_port),
ntohl(cm_id->remote_addr.sin_addr.s_addr),
ntohs(cm_id->remote_addr.sin_port));
/* find a route */
rt = find_route(dev,
cm_id->local_addr.sin_addr.s_addr,
cm_id->remote_addr.sin_addr.s_addr,
cm_id->local_addr.sin_port,
cm_id->remote_addr.sin_port, 0);
if (!rt) {
printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
err = -EHOSTUNREACH;
goto fail3;
}
ep->dst = &rt->dst;
neigh = dst_get_neighbour(ep->dst);
/* get a l2t entry */
if (neigh->dev->flags & IFF_LOOPBACK) {
PDBG("%s LOOPBACK\n", __func__);
pdev = ip_dev_find(&init_net,
cm_id->remote_addr.sin_addr.s_addr);
ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t,
neigh, pdev, 0);
ep->mtu = pdev->mtu;
ep->tx_chan = cxgb4_port_chan(pdev);
ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1;
step = ep->com.dev->rdev.lldi.ntxq /
ep->com.dev->rdev.lldi.nchan;
ep->txq_idx = cxgb4_port_idx(pdev) * step;
step = ep->com.dev->rdev.lldi.nrxq /
ep->com.dev->rdev.lldi.nchan;
ep->ctrlq_idx = cxgb4_port_idx(pdev);
ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[
cxgb4_port_idx(pdev) * step];
dev_put(pdev);
} else {
ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t,
neigh, neigh->dev, 0);
ep->mtu = dst_mtu(ep->dst);
ep->tx_chan = cxgb4_port_chan(neigh->dev);
ep->smac_idx = (cxgb4_port_viid(neigh->dev) & 0x7F) << 1;
step = ep->com.dev->rdev.lldi.ntxq /
ep->com.dev->rdev.lldi.nchan;
ep->txq_idx = cxgb4_port_idx(neigh->dev) * step;
ep->ctrlq_idx = cxgb4_port_idx(neigh->dev);
step = ep->com.dev->rdev.lldi.nrxq /
ep->com.dev->rdev.lldi.nchan;
ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[
cxgb4_port_idx(neigh->dev) * step];
ep->retry_with_mpa_v1 = 0;
ep->tried_with_mpa_v1 = 0;
}
if (!ep->l2t) {
printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
err = -ENOMEM;
goto fail4;
}
PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
ep->l2t->idx);
state_set(&ep->com, CONNECTING);
ep->tos = 0;
ep->com.local_addr = cm_id->local_addr;
ep->com.remote_addr = cm_id->remote_addr;
/* send connect request to rnic */
err = send_connect(ep);
if (!err)
goto out;
cxgb4_l2t_release(ep->l2t);
fail4:
dst_release(ep->dst);
fail3:
cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
fail2:
cm_id->rem_ref(cm_id);
c4iw_put_ep(&ep->com);
out:
return err;
}
int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
{
int err = 0;
struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
struct c4iw_listen_ep *ep;
might_sleep();
ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
if (!ep) {
printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
err = -ENOMEM;
goto fail1;
}
PDBG("%s ep %p\n", __func__, ep);
cm_id->add_ref(cm_id);
ep->com.cm_id = cm_id;
ep->com.dev = dev;
ep->backlog = backlog;
ep->com.local_addr = cm_id->local_addr;
/*
* Allocate a server TID.
*/
ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, PF_INET, ep);
if (ep->stid == -1) {
printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
err = -ENOMEM;
goto fail2;
}
state_set(&ep->com, LISTEN);
c4iw_init_wr_wait(&ep->com.wr_wait);
err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], ep->stid,
ep->com.local_addr.sin_addr.s_addr,
ep->com.local_addr.sin_port,
ep->com.dev->rdev.lldi.rxq_ids[0]);
if (err)
goto fail3;
/* wait for pass_open_rpl */
err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 0, 0,
__func__);
if (!err) {
cm_id->provider_data = ep;
goto out;
}
fail3:
cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET);
fail2:
cm_id->rem_ref(cm_id);
c4iw_put_ep(&ep->com);
fail1:
out:
return err;
}
int c4iw_destroy_listen(struct iw_cm_id *cm_id)
{
int err;
struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
PDBG("%s ep %p\n", __func__, ep);
might_sleep();
state_set(&ep->com, DEAD);
c4iw_init_wr_wait(&ep->com.wr_wait);
err = listen_stop(ep);
if (err)
goto done;
err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 0, 0,
__func__);
cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET);
done:
cm_id->rem_ref(cm_id);
c4iw_put_ep(&ep->com);
return err;
}
int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
{
int ret = 0;
int close = 0;
int fatal = 0;
struct c4iw_rdev *rdev;
mutex_lock(&ep->com.mutex);
PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
states[ep->com.state], abrupt);
rdev = &ep->com.dev->rdev;
if (c4iw_fatal_error(rdev)) {
fatal = 1;
close_complete_upcall(ep);
ep->com.state = DEAD;
}
switch (ep->com.state) {
case MPA_REQ_WAIT:
case MPA_REQ_SENT:
case MPA_REQ_RCVD:
case MPA_REP_SENT:
case FPDU_MODE:
close = 1;
if (abrupt)
ep->com.state = ABORTING;
else {
ep->com.state = CLOSING;
start_ep_timer(ep);
}
set_bit(CLOSE_SENT, &ep->com.flags);
break;
case CLOSING:
if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
close = 1;
if (abrupt) {
stop_ep_timer(ep);
ep->com.state = ABORTING;
} else
ep->com.state = MORIBUND;
}
break;
case MORIBUND:
case ABORTING:
case DEAD:
PDBG("%s ignoring disconnect ep %p state %u\n",
__func__, ep, ep->com.state);
break;
default:
BUG();
break;
}
if (close) {
if (abrupt) {
close_complete_upcall(ep);
ret = send_abort(ep, NULL, gfp);
} else
ret = send_halfclose(ep, gfp);
if (ret)
fatal = 1;
}
mutex_unlock(&ep->com.mutex);
if (fatal)
release_ep_resources(ep);
return ret;
}
static int async_event(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_fw6_msg *rpl = cplhdr(skb);
c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
return 0;
}
/*
* These are the real handlers that are called from a
* work queue.
*/
static c4iw_handler_func work_handlers[NUM_CPL_CMDS] = {
[CPL_ACT_ESTABLISH] = act_establish,
[CPL_ACT_OPEN_RPL] = act_open_rpl,
[CPL_RX_DATA] = rx_data,
[CPL_ABORT_RPL_RSS] = abort_rpl,
[CPL_ABORT_RPL] = abort_rpl,
[CPL_PASS_OPEN_RPL] = pass_open_rpl,
[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
[CPL_PASS_ESTABLISH] = pass_establish,
[CPL_PEER_CLOSE] = peer_close,
[CPL_ABORT_REQ_RSS] = peer_abort,
[CPL_CLOSE_CON_RPL] = close_con_rpl,
[CPL_RDMA_TERMINATE] = terminate,
[CPL_FW4_ACK] = fw4_ack,
[CPL_FW6_MSG] = async_event
};
static void process_timeout(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs;
int abort = 1;
mutex_lock(&ep->com.mutex);
PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
ep->com.state);
switch (ep->com.state) {
case MPA_REQ_SENT:
__state_set(&ep->com, ABORTING);
connect_reply_upcall(ep, -ETIMEDOUT);
break;
case MPA_REQ_WAIT:
__state_set(&ep->com, ABORTING);
break;
case CLOSING:
case MORIBUND:
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_ERROR;
c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
}
__state_set(&ep->com, ABORTING);
break;
default:
printk(KERN_ERR "%s unexpected state ep %p tid %u state %u\n",
__func__, ep, ep->hwtid, ep->com.state);
WARN_ON(1);
abort = 0;
}
mutex_unlock(&ep->com.mutex);
if (abort)
abort_connection(ep, NULL, GFP_KERNEL);
c4iw_put_ep(&ep->com);
}
static void process_timedout_eps(void)
{
struct c4iw_ep *ep;
spin_lock_irq(&timeout_lock);
while (!list_empty(&timeout_list)) {
struct list_head *tmp;
tmp = timeout_list.next;
list_del(tmp);
spin_unlock_irq(&timeout_lock);
ep = list_entry(tmp, struct c4iw_ep, entry);
process_timeout(ep);
spin_lock_irq(&timeout_lock);
}
spin_unlock_irq(&timeout_lock);
}
static void process_work(struct work_struct *work)
{
struct sk_buff *skb = NULL;
struct c4iw_dev *dev;
struct cpl_act_establish *rpl;
unsigned int opcode;
int ret;
while ((skb = skb_dequeue(&rxq))) {
rpl = cplhdr(skb);
dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
opcode = rpl->ot.opcode;
BUG_ON(!work_handlers[opcode]);
ret = work_handlers[opcode](dev, skb);
if (!ret)
kfree_skb(skb);
}
process_timedout_eps();
}
static DECLARE_WORK(skb_work, process_work);
static void ep_timeout(unsigned long arg)
{
struct c4iw_ep *ep = (struct c4iw_ep *)arg;
spin_lock(&timeout_lock);
list_add_tail(&ep->entry, &timeout_list);
spin_unlock(&timeout_lock);
queue_work(workq, &skb_work);
}
/*
* All the CM events are handled on a work queue to have a safe context.
*/
static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
{
/*
* Save dev in the skb->cb area.
*/
*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
/*
* Queue the skb and schedule the worker thread.
*/
skb_queue_tail(&rxq, skb);
queue_work(workq, &skb_work);
return 0;
}
static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
if (rpl->status != CPL_ERR_NONE) {
printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
"for tid %u\n", rpl->status, GET_TID(rpl));
}
kfree_skb(skb);
return 0;
}
static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_fw6_msg *rpl = cplhdr(skb);
struct c4iw_wr_wait *wr_waitp;
int ret;
PDBG("%s type %u\n", __func__, rpl->type);
switch (rpl->type) {
case 1:
ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
if (wr_waitp)
c4iw_wake_up(wr_waitp, ret ? -ret : 0);
kfree_skb(skb);
break;
case 2:
sched(dev, skb);
break;
default:
printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
rpl->type);
kfree_skb(skb);
break;
}
return 0;
}
static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_abort_req_rss *req = cplhdr(skb);
struct c4iw_ep *ep;
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int tid = GET_TID(req);
ep = lookup_tid(t, tid);
if (is_neg_adv_abort(req->status)) {
PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep,
ep->hwtid);
kfree_skb(skb);
return 0;
}
PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
ep->com.state);
/*
* Wake up any threads in rdma_init() or rdma_fini().
* However, this is not needed if com state is just
* MPA_REQ_SENT
*/
if (ep->com.state != MPA_REQ_SENT)
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
sched(dev, skb);
return 0;
}
/*
* Most upcalls from the T4 Core go to sched() to
* schedule the processing on a work queue.
*/
c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
[CPL_ACT_ESTABLISH] = sched,
[CPL_ACT_OPEN_RPL] = sched,
[CPL_RX_DATA] = sched,
[CPL_ABORT_RPL_RSS] = sched,
[CPL_ABORT_RPL] = sched,
[CPL_PASS_OPEN_RPL] = sched,
[CPL_CLOSE_LISTSRV_RPL] = sched,
[CPL_PASS_ACCEPT_REQ] = sched,
[CPL_PASS_ESTABLISH] = sched,
[CPL_PEER_CLOSE] = sched,
[CPL_CLOSE_CON_RPL] = sched,
[CPL_ABORT_REQ_RSS] = peer_abort_intr,
[CPL_RDMA_TERMINATE] = sched,
[CPL_FW4_ACK] = sched,
[CPL_SET_TCB_RPL] = set_tcb_rpl,
[CPL_FW6_MSG] = fw6_msg
};
int __init c4iw_cm_init(void)
{
spin_lock_init(&timeout_lock);
skb_queue_head_init(&rxq);
workq = create_singlethread_workqueue("iw_cxgb4");
if (!workq)
return -ENOMEM;
return 0;
}
void __exit c4iw_cm_term(void)
{
WARN_ON(!list_empty(&timeout_list));
flush_workqueue(workq);
destroy_workqueue(workq);
}