linux/drivers/acpi/Makefile

69 lines
1.8 KiB
Makefile
Raw Normal View History

#
# Makefile for the Linux ACPI interpreter
#
ccflags-y := -Os
ccflags-$(CONFIG_ACPI_DEBUG) += -DACPI_DEBUG_OUTPUT
#
# ACPI Boot-Time Table Parsing
#
obj-y += tables.o
obj-$(CONFIG_X86) += blacklist.o
#
# ACPI Core Subsystem (Interpreter)
#
obj-y += acpi.o \
acpica/
# All the builtin files are in the "acpi." module_param namespace.
acpi-y += osl.o utils.o reboot.o
PCI: PCIe AER: honor ACPI HEST FIRMWARE FIRST mode Feedback from Hidetoshi Seto and Kenji Kaneshige incorporated. This correctly handles PCI-X bridges, PCIe root ports and endpoints, and prints debug messages when invalid/reserved types are found in the HEST. PCI devices not in domain/segment 0 are not represented in HEST, thus will be ignored. Today, the PCIe Advanced Error Reporting (AER) driver attaches itself to every PCIe root port for which BIOS reports it should, via ACPI _OSC. However, _OSC alone is insufficient for newer BIOSes. Part of ACPI 4.0 is the new APEI (ACPI Platform Error Interfaces) which is a way for OS and BIOS to handshake over which errors for which components each will handle. One table in ACPI 4.0 is the Hardware Error Source Table (HEST), where BIOS can define that errors for certain PCIe devices (or all devices), should be handled by BIOS ("Firmware First mode"), rather than be handled by the OS. Dell PowerEdge 11G server BIOS defines Firmware First mode in HEST, so that it may manage such errors, log them to the System Event Log, and possibly take other actions. The aer driver should honor this, and not attach itself to devices noted as such. Furthermore, Kenji Kaneshige reminded us to disallow changing the AER registers when respecting Firmware First mode. Platform firmware is expected to manage these, and if changes to them are allowed, it could break that firmware's behavior. The HEST parsing code may be replaced in the future by a more feature-rich implementation. This patch provides the minimum needed to prevent breakage until that implementation is available. Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Matt Domsch <Matt_Domsch@dell.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-11-02 17:51:24 +00:00
acpi-y += hest.o
# sleep related files
acpi-y += wakeup.o
acpi-y += sleep.o
acpi-$(CONFIG_ACPI_SLEEP) += proc.o
#
# ACPI Bus and Device Drivers
#
acpi-y += bus.o glue.o
acpi-y += scan.o
acpi-y += processor_pdc.o
acpi-y += ec.o
acpi-$(CONFIG_ACPI_DOCK) += dock.o
acpi-y += pci_root.o pci_link.o pci_irq.o pci_bind.o
acpi-y += power.o
acpi-y += system.o event.o
acpi-$(CONFIG_ACPI_DEBUG) += debug.o
acpi-$(CONFIG_ACPI_NUMA) += numa.o
acpi-$(CONFIG_ACPI_PROCFS_POWER) += cm_sbs.o
ifdef CONFIG_ACPI_VIDEO
acpi-y += video_detect.o
endif
# These are (potentially) separate modules
obj-$(CONFIG_ACPI_AC) += ac.o
obj-$(CONFIG_ACPI_BUTTON) += button.o
obj-$(CONFIG_ACPI_FAN) += fan.o
obj-$(CONFIG_ACPI_VIDEO) += video.o
obj-$(CONFIG_ACPI_PCI_SLOT) += pci_slot.o
obj-$(CONFIG_ACPI_PROCESSOR) += processor.o
obj-$(CONFIG_ACPI_CONTAINER) += container.o
obj-$(CONFIG_ACPI_THERMAL) += thermal.o
obj-$(CONFIG_ACPI_HOTPLUG_MEMORY) += acpi_memhotplug.o
obj-$(CONFIG_ACPI_BATTERY) += battery.o
obj-$(CONFIG_ACPI_SBS) += sbshc.o
obj-$(CONFIG_ACPI_SBS) += sbs.o
obj-$(CONFIG_ACPI_POWER_METER) += power_meter.o
# processor has its own "processor." module_param namespace
processor-y := processor_driver.o processor_throttling.o
processor-y += processor_idle.o processor_thermal.o
processor-$(CONFIG_CPU_FREQ) += processor_perflib.o
ACPI: create Processor Aggregator Device driver ACPI 4.0 created the logical "processor aggregator device" as a mechinism for platforms to ask the OS to force otherwise busy processors to enter (power saving) idle. The intent is to lower power consumption to ride-out transient electrical and thermal emergencies, rather than powering off the server. On platforms that can save more power/performance via P-states, the platform will first exhaust P-states before forcing idle. However, the relative benefit of P-states vs. idle states is platform dependent, and thus this driver need not know or care about it. This driver does not use the kernel's CPU hot-plug mechanism because after the transient emergency is over, the system must be returned to its normal state, and hotplug would permanently break both cpusets and binding. So to force idle, the driver creates a power saving thread. The scheduler will migrate the thread to the preferred CPU. The thread has max priority and has SCHED_RR policy, so it can occupy one CPU. To save power, the thread will invoke the deep C-state entry instructions. To avoid starvation, the thread will sleep 5% of the time time for every second (current RT scheduler has threshold to avoid starvation, but if other CPUs are idle, the CPU can borrow CPU timer from other, which makes the mechanism not work here) Vaidyanathan Srinivasan has proposed scheduler enhancements to allow injecting idle time into the system. This driver doesn't depend on those enhancements, but could cut over to them when they are available. Peter Z. does not favor upstreaming this driver until the those scheduler enhancements are in place. However, we favor upstreaming this driver now because it is useful now, and can be enhanced over time. Signed-off-by: Shaohua Li <shaohua.li@intel.com> NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Len Brown <len.brown@intel.com>
2009-07-27 22:11:02 +00:00
obj-$(CONFIG_ACPI_PROCESSOR_AGGREGATOR) += acpi_pad.o