linux/drivers/net/ethernet/alteon/acenic.c

3202 lines
85 KiB
C
Raw Permalink Normal View History

/*
* acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
* and other Tigon based cards.
*
* Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
*
* Thanks to Alteon and 3Com for providing hardware and documentation
* enabling me to write this driver.
*
* A mailing list for discussing the use of this driver has been
* setup, please subscribe to the lists if you have any questions
* about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
* see how to subscribe.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Additional credits:
* Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
* dump support. The trace dump support has not been
* integrated yet however.
* Troy Benjegerdes: Big Endian (PPC) patches.
* Nate Stahl: Better out of memory handling and stats support.
* Aman Singla: Nasty race between interrupt handler and tx code dealing
* with 'testing the tx_ret_csm and setting tx_full'
* David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
* infrastructure and Sparc support
* Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
* driver under Linux/Sparc64
* Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
* ETHTOOL_GDRVINFO support
* Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
* handler and close() cleanup.
* Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
* memory mapped IO is enabled to
* make the driver work on RS/6000.
* Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
* where the driver would disable
* bus master mode if it had to disable
* write and invalidate.
* Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
* endian systems.
* Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
* rx producer index when
* flushing the Jumbo ring.
* Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
* driver init path.
* Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sockios.h>
#include <linux/firmware.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/prefetch.h>
#include <linux/if_vlan.h>
#ifdef SIOCETHTOOL
#include <linux/ethtool.h>
#endif
#include <net/sock.h>
#include <net/ip.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#define DRV_NAME "acenic"
#undef INDEX_DEBUG
#ifdef CONFIG_ACENIC_OMIT_TIGON_I
#define ACE_IS_TIGON_I(ap) 0
#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
#else
#define ACE_IS_TIGON_I(ap) (ap->version == 1)
#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
#endif
#ifndef PCI_VENDOR_ID_ALTEON
#define PCI_VENDOR_ID_ALTEON 0x12ae
#endif
#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
#endif
#ifndef PCI_DEVICE_ID_3COM_3C985
#define PCI_DEVICE_ID_3COM_3C985 0x0001
#endif
#ifndef PCI_VENDOR_ID_NETGEAR
#define PCI_VENDOR_ID_NETGEAR 0x1385
#define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
#endif
#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
#define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
#endif
/*
* Farallon used the DEC vendor ID by mistake and they seem not
* to care - stinky!
*/
#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
#endif
#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
#define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
#endif
#ifndef PCI_VENDOR_ID_SGI
#define PCI_VENDOR_ID_SGI 0x10a9
#endif
#ifndef PCI_DEVICE_ID_SGI_ACENIC
#define PCI_DEVICE_ID_SGI_ACENIC 0x0009
#endif
static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
/*
* Farallon used the DEC vendor ID on their cards incorrectly,
* then later Alteon's ID.
*/
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
{ }
};
MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
#define ace_sync_irq(irq) synchronize_irq(irq)
#ifndef offset_in_page
#define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
#endif
#define ACE_MAX_MOD_PARMS 8
#define BOARD_IDX_STATIC 0
#define BOARD_IDX_OVERFLOW -1
#include "acenic.h"
/*
* These must be defined before the firmware is included.
*/
#define MAX_TEXT_LEN 96*1024
#define MAX_RODATA_LEN 8*1024
#define MAX_DATA_LEN 2*1024
#ifndef tigon2FwReleaseLocal
#define tigon2FwReleaseLocal 0
#endif
/*
* This driver currently supports Tigon I and Tigon II based cards
* including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
* GA620. The driver should also work on the SGI, DEC and Farallon
* versions of the card, however I have not been able to test that
* myself.
*
* This card is really neat, it supports receive hardware checksumming
* and jumbo frames (up to 9000 bytes) and does a lot of work in the
* firmware. Also the programming interface is quite neat, except for
* the parts dealing with the i2c eeprom on the card ;-)
*
* Using jumbo frames:
*
* To enable jumbo frames, simply specify an mtu between 1500 and 9000
* bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
* by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
* interface number and <MTU> being the MTU value.
*
* Module parameters:
*
* When compiled as a loadable module, the driver allows for a number
* of module parameters to be specified. The driver supports the
* following module parameters:
*
* trace=<val> - Firmware trace level. This requires special traced
* firmware to replace the firmware supplied with
* the driver - for debugging purposes only.
*
* link=<val> - Link state. Normally you want to use the default link
* parameters set by the driver. This can be used to
* override these in case your switch doesn't negotiate
* the link properly. Valid values are:
* 0x0001 - Force half duplex link.
* 0x0002 - Do not negotiate line speed with the other end.
* 0x0010 - 10Mbit/sec link.
* 0x0020 - 100Mbit/sec link.
* 0x0040 - 1000Mbit/sec link.
* 0x0100 - Do not negotiate flow control.
* 0x0200 - Enable RX flow control Y
* 0x0400 - Enable TX flow control Y (Tigon II NICs only).
* Default value is 0x0270, ie. enable link+flow
* control negotiation. Negotiating the highest
* possible link speed with RX flow control enabled.
*
* When disabling link speed negotiation, only one link
* speed is allowed to be specified!
*
* tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
* to wait for more packets to arive before
* interrupting the host, from the time the first
* packet arrives.
*
* rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
* to wait for more packets to arive in the transmit ring,
* before interrupting the host, after transmitting the
* first packet in the ring.
*
* max_tx_desc=<val> - maximum number of transmit descriptors
* (packets) transmitted before interrupting the host.
*
* max_rx_desc=<val> - maximum number of receive descriptors
* (packets) received before interrupting the host.
*
* tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
* increments of the NIC's on board memory to be used for
* transmit and receive buffers. For the 1MB NIC app. 800KB
* is available, on the 1/2MB NIC app. 300KB is available.
* 68KB will always be available as a minimum for both
* directions. The default value is a 50/50 split.
* dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
* operations, default (1) is to always disable this as
* that is what Alteon does on NT. I have not been able
* to measure any real performance differences with
* this on my systems. Set <val>=0 if you want to
* enable these operations.
*
* If you use more than one NIC, specify the parameters for the
* individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
* run tracing on NIC #2 but not on NIC #1 and #3.
*
* TODO:
*
* - Proper multicast support.
* - NIC dump support.
* - More tuning parameters.
*
* The mini ring is not used under Linux and I am not sure it makes sense
* to actually use it.
*
* New interrupt handler strategy:
*
* The old interrupt handler worked using the traditional method of
* replacing an skbuff with a new one when a packet arrives. However
* the rx rings do not need to contain a static number of buffer
* descriptors, thus it makes sense to move the memory allocation out
* of the main interrupt handler and do it in a bottom half handler
* and only allocate new buffers when the number of buffers in the
* ring is below a certain threshold. In order to avoid starving the
* NIC under heavy load it is however necessary to force allocation
* when hitting a minimum threshold. The strategy for alloction is as
* follows:
*
* RX_LOW_BUF_THRES - allocate buffers in the bottom half
* RX_PANIC_LOW_THRES - we are very low on buffers, allocate
* the buffers in the interrupt handler
* RX_RING_THRES - maximum number of buffers in the rx ring
* RX_MINI_THRES - maximum number of buffers in the mini ring
* RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
*
* One advantagous side effect of this allocation approach is that the
* entire rx processing can be done without holding any spin lock
* since the rx rings and registers are totally independent of the tx
* ring and its registers. This of course includes the kmalloc's of
* new skb's. Thus start_xmit can run in parallel with rx processing
* and the memory allocation on SMP systems.
*
* Note that running the skb reallocation in a bottom half opens up
* another can of races which needs to be handled properly. In
* particular it can happen that the interrupt handler tries to run
* the reallocation while the bottom half is either running on another
* CPU or was interrupted on the same CPU. To get around this the
* driver uses bitops to prevent the reallocation routines from being
* reentered.
*
* TX handling can also be done without holding any spin lock, wheee
* this is fun! since tx_ret_csm is only written to by the interrupt
* handler. The case to be aware of is when shutting down the device
* and cleaning up where it is necessary to make sure that
* start_xmit() is not running while this is happening. Well DaveM
* informs me that this case is already protected against ... bye bye
* Mr. Spin Lock, it was nice to know you.
*
* TX interrupts are now partly disabled so the NIC will only generate
* TX interrupts for the number of coal ticks, not for the number of
* TX packets in the queue. This should reduce the number of TX only,
* ie. when no RX processing is done, interrupts seen.
*/
/*
* Threshold values for RX buffer allocation - the low water marks for
* when to start refilling the rings are set to 75% of the ring
* sizes. It seems to make sense to refill the rings entirely from the
* intrrupt handler once it gets below the panic threshold, that way
* we don't risk that the refilling is moved to another CPU when the
* one running the interrupt handler just got the slab code hot in its
* cache.
*/
#define RX_RING_SIZE 72
#define RX_MINI_SIZE 64
#define RX_JUMBO_SIZE 48
#define RX_PANIC_STD_THRES 16
#define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
#define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
#define RX_PANIC_MINI_THRES 12
#define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
#define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
#define RX_PANIC_JUMBO_THRES 6
#define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
#define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
/*
* Size of the mini ring entries, basically these just should be big
* enough to take TCP ACKs
*/
#define ACE_MINI_SIZE 100
#define ACE_MINI_BUFSIZE ACE_MINI_SIZE
#define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
#define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
/*
* There seems to be a magic difference in the effect between 995 and 996
* but little difference between 900 and 995 ... no idea why.
*
* There is now a default set of tuning parameters which is set, depending
* on whether or not the user enables Jumbo frames. It's assumed that if
* Jumbo frames are enabled, the user wants optimal tuning for that case.
*/
#define DEF_TX_COAL 400 /* 996 */
#define DEF_TX_MAX_DESC 60 /* was 40 */
#define DEF_RX_COAL 120 /* 1000 */
#define DEF_RX_MAX_DESC 25
#define DEF_TX_RATIO 21 /* 24 */
#define DEF_JUMBO_TX_COAL 20
#define DEF_JUMBO_TX_MAX_DESC 60
#define DEF_JUMBO_RX_COAL 30
#define DEF_JUMBO_RX_MAX_DESC 6
#define DEF_JUMBO_TX_RATIO 21
#if tigon2FwReleaseLocal < 20001118
/*
* Standard firmware and early modifications duplicate
* IRQ load without this flag (coal timer is never reset).
* Note that with this flag tx_coal should be less than
* time to xmit full tx ring.
* 400usec is not so bad for tx ring size of 128.
*/
#define TX_COAL_INTS_ONLY 1 /* worth it */
#else
/*
* With modified firmware, this is not necessary, but still useful.
*/
#define TX_COAL_INTS_ONLY 1
#endif
#define DEF_TRACE 0
#define DEF_STAT (2 * TICKS_PER_SEC)
static int link_state[ACE_MAX_MOD_PARMS];
static int trace[ACE_MAX_MOD_PARMS];
static int tx_coal_tick[ACE_MAX_MOD_PARMS];
static int rx_coal_tick[ACE_MAX_MOD_PARMS];
static int max_tx_desc[ACE_MAX_MOD_PARMS];
static int max_rx_desc[ACE_MAX_MOD_PARMS];
static int tx_ratio[ACE_MAX_MOD_PARMS];
static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
#ifndef CONFIG_ACENIC_OMIT_TIGON_I
MODULE_FIRMWARE("acenic/tg1.bin");
#endif
MODULE_FIRMWARE("acenic/tg2.bin");
module_param_array_named(link, link_state, int, NULL, 0);
module_param_array(trace, int, NULL, 0);
module_param_array(tx_coal_tick, int, NULL, 0);
module_param_array(max_tx_desc, int, NULL, 0);
module_param_array(rx_coal_tick, int, NULL, 0);
module_param_array(max_rx_desc, int, NULL, 0);
module_param_array(tx_ratio, int, NULL, 0);
MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
static const char version[] =
"acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
" http://home.cern.ch/~jes/gige/acenic.html\n";
static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
static const struct ethtool_ops ace_ethtool_ops = {
.get_settings = ace_get_settings,
.set_settings = ace_set_settings,
.get_drvinfo = ace_get_drvinfo,
};
static void ace_watchdog(struct net_device *dev);
static const struct net_device_ops ace_netdev_ops = {
.ndo_open = ace_open,
.ndo_stop = ace_close,
.ndo_tx_timeout = ace_watchdog,
.ndo_get_stats = ace_get_stats,
.ndo_start_xmit = ace_start_xmit,
.ndo_set_rx_mode = ace_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = ace_set_mac_addr,
.ndo_change_mtu = ace_change_mtu,
};
static int acenic_probe_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct net_device *dev;
struct ace_private *ap;
static int boards_found;
dev = alloc_etherdev(sizeof(struct ace_private));
if (dev == NULL)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
ap = netdev_priv(dev);
ap->pdev = pdev;
ap->name = pci_name(pdev);
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
dev->watchdog_timeo = 5*HZ;
dev->netdev_ops = &ace_netdev_ops;
SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
/* we only display this string ONCE */
if (!boards_found)
printk(version);
if (pci_enable_device(pdev))
goto fail_free_netdev;
/*
* Enable master mode before we start playing with the
* pci_command word since pci_set_master() will modify
* it.
*/
pci_set_master(pdev);
pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
/* OpenFirmware on Mac's does not set this - DOH.. */
if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
"access - was not enabled by BIOS/Firmware\n",
ap->name);
ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
pci_write_config_word(ap->pdev, PCI_COMMAND,
ap->pci_command);
wmb();
}
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
if (ap->pci_latency <= 0x40) {
ap->pci_latency = 0x40;
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
}
/*
* Remap the regs into kernel space - this is abuse of
* dev->base_addr since it was means for I/O port
* addresses but who gives a damn.
*/
dev->base_addr = pci_resource_start(pdev, 0);
ap->regs = ioremap(dev->base_addr, 0x4000);
if (!ap->regs) {
printk(KERN_ERR "%s: Unable to map I/O register, "
"AceNIC %i will be disabled.\n",
ap->name, boards_found);
goto fail_free_netdev;
}
switch(pdev->vendor) {
case PCI_VENDOR_ID_ALTEON:
if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
printk(KERN_INFO "%s: Farallon PN9100-T ",
ap->name);
} else {
printk(KERN_INFO "%s: Alteon AceNIC ",
ap->name);
}
break;
case PCI_VENDOR_ID_3COM:
printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
break;
case PCI_VENDOR_ID_NETGEAR:
printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
break;
case PCI_VENDOR_ID_DEC:
if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
printk(KERN_INFO "%s: Farallon PN9000-SX ",
ap->name);
break;
}
case PCI_VENDOR_ID_SGI:
printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
break;
default:
printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
break;
}
printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
printk("irq %d\n", pdev->irq);
#ifdef CONFIG_ACENIC_OMIT_TIGON_I
if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
printk(KERN_ERR "%s: Driver compiled without Tigon I"
" support - NIC disabled\n", dev->name);
goto fail_uninit;
}
#endif
if (ace_allocate_descriptors(dev))
goto fail_free_netdev;
#ifdef MODULE
if (boards_found >= ACE_MAX_MOD_PARMS)
ap->board_idx = BOARD_IDX_OVERFLOW;
else
ap->board_idx = boards_found;
#else
ap->board_idx = BOARD_IDX_STATIC;
#endif
if (ace_init(dev))
goto fail_free_netdev;
if (register_netdev(dev)) {
printk(KERN_ERR "acenic: device registration failed\n");
goto fail_uninit;
}
ap->name = dev->name;
if (ap->pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
pci_set_drvdata(pdev, dev);
boards_found++;
return 0;
fail_uninit:
ace_init_cleanup(dev);
fail_free_netdev:
free_netdev(dev);
return -ENODEV;
}
static void acenic_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
short i;
unregister_netdev(dev);
writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
if (ap->version >= 2)
writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
/*
* This clears any pending interrupts
*/
writel(1, &regs->Mb0Lo);
readl(&regs->CpuCtrl); /* flush */
/*
* Make sure no other CPUs are processing interrupts
* on the card before the buffers are being released.
* Otherwise one might experience some `interesting'
* effects.
*
* Then release the RX buffers - jumbo buffers were
* already released in ace_close().
*/
ace_sync_irq(dev->irq);
for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
if (skb) {
struct ring_info *ringp;
dma_addr_t mapping;
ringp = &ap->skb->rx_std_skbuff[i];
mapping = dma_unmap_addr(ringp, mapping);
pci_unmap_page(ap->pdev, mapping,
ACE_STD_BUFSIZE,
PCI_DMA_FROMDEVICE);
ap->rx_std_ring[i].size = 0;
ap->skb->rx_std_skbuff[i].skb = NULL;
dev_kfree_skb(skb);
}
}
if (ap->version >= 2) {
for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
if (skb) {
struct ring_info *ringp;
dma_addr_t mapping;
ringp = &ap->skb->rx_mini_skbuff[i];
mapping = dma_unmap_addr(ringp,mapping);
pci_unmap_page(ap->pdev, mapping,
ACE_MINI_BUFSIZE,
PCI_DMA_FROMDEVICE);
ap->rx_mini_ring[i].size = 0;
ap->skb->rx_mini_skbuff[i].skb = NULL;
dev_kfree_skb(skb);
}
}
}
for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
if (skb) {
struct ring_info *ringp;
dma_addr_t mapping;
ringp = &ap->skb->rx_jumbo_skbuff[i];
mapping = dma_unmap_addr(ringp, mapping);
pci_unmap_page(ap->pdev, mapping,
ACE_JUMBO_BUFSIZE,
PCI_DMA_FROMDEVICE);
ap->rx_jumbo_ring[i].size = 0;
ap->skb->rx_jumbo_skbuff[i].skb = NULL;
dev_kfree_skb(skb);
}
}
ace_init_cleanup(dev);
free_netdev(dev);
}
static struct pci_driver acenic_pci_driver = {
.name = "acenic",
.id_table = acenic_pci_tbl,
.probe = acenic_probe_one,
.remove = acenic_remove_one,
};
static int __init acenic_init(void)
{
return pci_register_driver(&acenic_pci_driver);
}
static void __exit acenic_exit(void)
{
pci_unregister_driver(&acenic_pci_driver);
}
module_init(acenic_init);
module_exit(acenic_exit);
static void ace_free_descriptors(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
int size;
if (ap->rx_std_ring != NULL) {
size = (sizeof(struct rx_desc) *
(RX_STD_RING_ENTRIES +
RX_JUMBO_RING_ENTRIES +
RX_MINI_RING_ENTRIES +
RX_RETURN_RING_ENTRIES));
pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
ap->rx_ring_base_dma);
ap->rx_std_ring = NULL;
ap->rx_jumbo_ring = NULL;
ap->rx_mini_ring = NULL;
ap->rx_return_ring = NULL;
}
if (ap->evt_ring != NULL) {
size = (sizeof(struct event) * EVT_RING_ENTRIES);
pci_free_consistent(ap->pdev, size, ap->evt_ring,
ap->evt_ring_dma);
ap->evt_ring = NULL;
}
if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
pci_free_consistent(ap->pdev, size, ap->tx_ring,
ap->tx_ring_dma);
}
ap->tx_ring = NULL;
if (ap->evt_prd != NULL) {
pci_free_consistent(ap->pdev, sizeof(u32),
(void *)ap->evt_prd, ap->evt_prd_dma);
ap->evt_prd = NULL;
}
if (ap->rx_ret_prd != NULL) {
pci_free_consistent(ap->pdev, sizeof(u32),
(void *)ap->rx_ret_prd,
ap->rx_ret_prd_dma);
ap->rx_ret_prd = NULL;
}
if (ap->tx_csm != NULL) {
pci_free_consistent(ap->pdev, sizeof(u32),
(void *)ap->tx_csm, ap->tx_csm_dma);
ap->tx_csm = NULL;
}
}
static int ace_allocate_descriptors(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
int size;
size = (sizeof(struct rx_desc) *
(RX_STD_RING_ENTRIES +
RX_JUMBO_RING_ENTRIES +
RX_MINI_RING_ENTRIES +
RX_RETURN_RING_ENTRIES));
ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
&ap->rx_ring_base_dma);
if (ap->rx_std_ring == NULL)
goto fail;
ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
size = (sizeof(struct event) * EVT_RING_ENTRIES);
ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
if (ap->evt_ring == NULL)
goto fail;
/*
* Only allocate a host TX ring for the Tigon II, the Tigon I
* has to use PCI registers for this ;-(
*/
if (!ACE_IS_TIGON_I(ap)) {
size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
&ap->tx_ring_dma);
if (ap->tx_ring == NULL)
goto fail;
}
ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
&ap->evt_prd_dma);
if (ap->evt_prd == NULL)
goto fail;
ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
&ap->rx_ret_prd_dma);
if (ap->rx_ret_prd == NULL)
goto fail;
ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
&ap->tx_csm_dma);
if (ap->tx_csm == NULL)
goto fail;
return 0;
fail:
/* Clean up. */
ace_init_cleanup(dev);
return 1;
}
/*
* Generic cleanup handling data allocated during init. Used when the
* module is unloaded or if an error occurs during initialization
*/
static void ace_init_cleanup(struct net_device *dev)
{
struct ace_private *ap;
ap = netdev_priv(dev);
ace_free_descriptors(dev);
if (ap->info)
pci_free_consistent(ap->pdev, sizeof(struct ace_info),
ap->info, ap->info_dma);
kfree(ap->skb);
kfree(ap->trace_buf);
if (dev->irq)
free_irq(dev->irq, dev);
iounmap(ap->regs);
}
/*
* Commands are considered to be slow.
*/
static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
{
u32 idx;
idx = readl(&regs->CmdPrd);
writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
idx = (idx + 1) % CMD_RING_ENTRIES;
writel(idx, &regs->CmdPrd);
}
static int ace_init(struct net_device *dev)
{
struct ace_private *ap;
struct ace_regs __iomem *regs;
struct ace_info *info = NULL;
struct pci_dev *pdev;
unsigned long myjif;
u64 tmp_ptr;
u32 tig_ver, mac1, mac2, tmp, pci_state;
int board_idx, ecode = 0;
short i;
unsigned char cache_size;
ap = netdev_priv(dev);
regs = ap->regs;
board_idx = ap->board_idx;
/*
* aman@sgi.com - its useful to do a NIC reset here to
* address the `Firmware not running' problem subsequent
* to any crashes involving the NIC
*/
writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
readl(&regs->HostCtrl); /* PCI write posting */
udelay(5);
/*
* Don't access any other registers before this point!
*/
#ifdef __BIG_ENDIAN
/*
* This will most likely need BYTE_SWAP once we switch
* to using __raw_writel()
*/
writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
&regs->HostCtrl);
#else
writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
&regs->HostCtrl);
#endif
readl(&regs->HostCtrl); /* PCI write posting */
/*
* Stop the NIC CPU and clear pending interrupts
*/
writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
readl(&regs->CpuCtrl); /* PCI write posting */
writel(0, &regs->Mb0Lo);
tig_ver = readl(&regs->HostCtrl) >> 28;
switch(tig_ver){
#ifndef CONFIG_ACENIC_OMIT_TIGON_I
case 4:
case 5:
printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
tig_ver, ap->firmware_major, ap->firmware_minor,
ap->firmware_fix);
writel(0, &regs->LocalCtrl);
ap->version = 1;
ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
break;
#endif
case 6:
printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
tig_ver, ap->firmware_major, ap->firmware_minor,
ap->firmware_fix);
writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
readl(&regs->CpuBCtrl); /* PCI write posting */
/*
* The SRAM bank size does _not_ indicate the amount
* of memory on the card, it controls the _bank_ size!
* Ie. a 1MB AceNIC will have two banks of 512KB.
*/
writel(SRAM_BANK_512K, &regs->LocalCtrl);
writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
ap->version = 2;
ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
break;
default:
printk(KERN_WARNING " Unsupported Tigon version detected "
"(%i)\n", tig_ver);
ecode = -ENODEV;
goto init_error;
}
/*
* ModeStat _must_ be set after the SRAM settings as this change
* seems to corrupt the ModeStat and possible other registers.
* The SRAM settings survive resets and setting it to the same
* value a second time works as well. This is what caused the
* `Firmware not running' problem on the Tigon II.
*/
#ifdef __BIG_ENDIAN
writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
#else
writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
#endif
readl(&regs->ModeStat); /* PCI write posting */
mac1 = 0;
for(i = 0; i < 4; i++) {
int t;
mac1 = mac1 << 8;
t = read_eeprom_byte(dev, 0x8c+i);
if (t < 0) {
ecode = -EIO;
goto init_error;
} else
mac1 |= (t & 0xff);
}
mac2 = 0;
for(i = 4; i < 8; i++) {
int t;
mac2 = mac2 << 8;
t = read_eeprom_byte(dev, 0x8c+i);
if (t < 0) {
ecode = -EIO;
goto init_error;
} else
mac2 |= (t & 0xff);
}
writel(mac1, &regs->MacAddrHi);
writel(mac2, &regs->MacAddrLo);
dev->dev_addr[0] = (mac1 >> 8) & 0xff;
dev->dev_addr[1] = mac1 & 0xff;
dev->dev_addr[2] = (mac2 >> 24) & 0xff;
dev->dev_addr[3] = (mac2 >> 16) & 0xff;
dev->dev_addr[4] = (mac2 >> 8) & 0xff;
dev->dev_addr[5] = mac2 & 0xff;
printk("MAC: %pM\n", dev->dev_addr);
/*
* Looks like this is necessary to deal with on all architectures,
* even this %$#%$# N440BX Intel based thing doesn't get it right.
* Ie. having two NICs in the machine, one will have the cache
* line set at boot time, the other will not.
*/
pdev = ap->pdev;
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
cache_size <<= 2;
if (cache_size != SMP_CACHE_BYTES) {
printk(KERN_INFO " PCI cache line size set incorrectly "
"(%i bytes) by BIOS/FW, ", cache_size);
if (cache_size > SMP_CACHE_BYTES)
printk("expecting %i\n", SMP_CACHE_BYTES);
else {
printk("correcting to %i\n", SMP_CACHE_BYTES);
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
SMP_CACHE_BYTES >> 2);
}
}
pci_state = readl(&regs->PciState);
printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
"latency: %i clks\n",
(pci_state & PCI_32BIT) ? 32 : 64,
(pci_state & PCI_66MHZ) ? 66 : 33,
ap->pci_latency);
/*
* Set the max DMA transfer size. Seems that for most systems
* the performance is better when no MAX parameter is
* set. However for systems enabling PCI write and invalidate,
* DMA writes must be set to the L1 cache line size to get
* optimal performance.
*
* The default is now to turn the PCI write and invalidate off
* - that is what Alteon does for NT.
*/
tmp = READ_CMD_MEM | WRITE_CMD_MEM;
if (ap->version >= 2) {
tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
/*
* Tuning parameters only supported for 8 cards
*/
if (board_idx == BOARD_IDX_OVERFLOW ||
dis_pci_mem_inval[board_idx]) {
if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
pci_write_config_word(pdev, PCI_COMMAND,
ap->pci_command);
printk(KERN_INFO " Disabling PCI memory "
"write and invalidate\n");
}
} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
printk(KERN_INFO " PCI memory write & invalidate "
"enabled by BIOS, enabling counter measures\n");
switch(SMP_CACHE_BYTES) {
case 16:
tmp |= DMA_WRITE_MAX_16;
break;
case 32:
tmp |= DMA_WRITE_MAX_32;
break;
case 64:
tmp |= DMA_WRITE_MAX_64;
break;
case 128:
tmp |= DMA_WRITE_MAX_128;
break;
default:
printk(KERN_INFO " Cache line size %i not "
"supported, PCI write and invalidate "
"disabled\n", SMP_CACHE_BYTES);
ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
pci_write_config_word(pdev, PCI_COMMAND,
ap->pci_command);
}
}
}
#ifdef __sparc__
/*
* On this platform, we know what the best dma settings
* are. We use 64-byte maximum bursts, because if we
* burst larger than the cache line size (or even cross
* a 64byte boundary in a single burst) the UltraSparc
* PCI controller will disconnect at 64-byte multiples.
*
* Read-multiple will be properly enabled above, and when
* set will give the PCI controller proper hints about
* prefetching.
*/
tmp &= ~DMA_READ_WRITE_MASK;
tmp |= DMA_READ_MAX_64;
tmp |= DMA_WRITE_MAX_64;
#endif
#ifdef __alpha__
tmp &= ~DMA_READ_WRITE_MASK;
tmp |= DMA_READ_MAX_128;
/*
* All the docs say MUST NOT. Well, I did.
* Nothing terrible happens, if we load wrong size.
* Bit w&i still works better!
*/
tmp |= DMA_WRITE_MAX_128;
#endif
writel(tmp, &regs->PciState);
#if 0
/*
* The Host PCI bus controller driver has to set FBB.
* If all devices on that PCI bus support FBB, then the controller
* can enable FBB support in the Host PCI Bus controller (or on
* the PCI-PCI bridge if that applies).
* -ggg
*/
/*
* I have received reports from people having problems when this
* bit is enabled.
*/
if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
ap->pci_command |= PCI_COMMAND_FAST_BACK;
pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
}
#endif
/*
* Configure DMA attributes.
*/
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
ap->pci_using_dac = 1;
} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
ap->pci_using_dac = 0;
} else {
ecode = -ENODEV;
goto init_error;
}
/*
* Initialize the generic info block and the command+event rings
* and the control blocks for the transmit and receive rings
* as they need to be setup once and for all.
*/
if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
&ap->info_dma))) {
ecode = -EAGAIN;
goto init_error;
}
ap->info = info;
/*
* Get the memory for the skb rings.
*/
if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
ecode = -EAGAIN;
goto init_error;
}
ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
DRV_NAME, dev);
if (ecode) {
printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
DRV_NAME, pdev->irq);
goto init_error;
} else
dev->irq = pdev->irq;
#ifdef INDEX_DEBUG
spin_lock_init(&ap->debug_lock);
ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
ap->last_std_rx = 0;
ap->last_mini_rx = 0;
#endif
memset(ap->info, 0, sizeof(struct ace_info));
memset(ap->skb, 0, sizeof(struct ace_skb));
ecode = ace_load_firmware(dev);
if (ecode)
goto init_error;
ap->fw_running = 0;
tmp_ptr = ap->info_dma;
writel(tmp_ptr >> 32, &regs->InfoPtrHi);
writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
info->evt_ctrl.flags = 0;
*(ap->evt_prd) = 0;
wmb();
set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
writel(0, &regs->EvtCsm);
set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
info->cmd_ctrl.flags = 0;
info->cmd_ctrl.max_len = 0;
for (i = 0; i < CMD_RING_ENTRIES; i++)
writel(0, &regs->CmdRng[i]);
writel(0, &regs->CmdPrd);
writel(0, &regs->CmdCsm);
tmp_ptr = ap->info_dma;
tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
info->rx_std_ctrl.flags =
RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
memset(ap->rx_std_ring, 0,
RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
for (i = 0; i < RX_STD_RING_ENTRIES; i++)
ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
ap->rx_std_skbprd = 0;
atomic_set(&ap->cur_rx_bufs, 0);
set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
(ap->rx_ring_base_dma +
(sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
info->rx_jumbo_ctrl.max_len = 0;
info->rx_jumbo_ctrl.flags =
RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
memset(ap->rx_jumbo_ring, 0,
RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
ap->rx_jumbo_skbprd = 0;
atomic_set(&ap->cur_jumbo_bufs, 0);
memset(ap->rx_mini_ring, 0,
RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
if (ap->version >= 2) {
set_aceaddr(&info->rx_mini_ctrl.rngptr,
(ap->rx_ring_base_dma +
(sizeof(struct rx_desc) *
(RX_STD_RING_ENTRIES +
RX_JUMBO_RING_ENTRIES))));
info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
info->rx_mini_ctrl.flags =
RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
ap->rx_mini_ring[i].flags =
BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
} else {
set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
info->rx_mini_ctrl.max_len = 0;
}
ap->rx_mini_skbprd = 0;
atomic_set(&ap->cur_mini_bufs, 0);
set_aceaddr(&info->rx_return_ctrl.rngptr,
(ap->rx_ring_base_dma +
(sizeof(struct rx_desc) *
(RX_STD_RING_ENTRIES +
RX_JUMBO_RING_ENTRIES +
RX_MINI_RING_ENTRIES))));
info->rx_return_ctrl.flags = 0;
info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
memset(ap->rx_return_ring, 0,
RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
*(ap->rx_ret_prd) = 0;
writel(TX_RING_BASE, &regs->WinBase);
if (ACE_IS_TIGON_I(ap)) {
ap->tx_ring = (__force struct tx_desc *) regs->Window;
for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
* sizeof(struct tx_desc)) / sizeof(u32); i++)
writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
} else {
memset(ap->tx_ring, 0,
MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
}
info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
/*
* The Tigon I does not like having the TX ring in host memory ;-(
*/
if (!ACE_IS_TIGON_I(ap))
tmp |= RCB_FLG_TX_HOST_RING;
#if TX_COAL_INTS_ONLY
tmp |= RCB_FLG_COAL_INT_ONLY;
#endif
info->tx_ctrl.flags = tmp;
set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
/*
* Potential item for tuning parameter
*/
#if 0 /* NO */
writel(DMA_THRESH_16W, &regs->DmaReadCfg);
writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
#else
writel(DMA_THRESH_8W, &regs->DmaReadCfg);
writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
#endif
writel(0, &regs->MaskInt);
writel(1, &regs->IfIdx);
#if 0
/*
* McKinley boxes do not like us fiddling with AssistState
* this early
*/
writel(1, &regs->AssistState);
#endif
writel(DEF_STAT, &regs->TuneStatTicks);
writel(DEF_TRACE, &regs->TuneTrace);
ace_set_rxtx_parms(dev, 0);
if (board_idx == BOARD_IDX_OVERFLOW) {
printk(KERN_WARNING "%s: more than %i NICs detected, "
"ignoring module parameters!\n",
ap->name, ACE_MAX_MOD_PARMS);
} else if (board_idx >= 0) {
if (tx_coal_tick[board_idx])
writel(tx_coal_tick[board_idx],
&regs->TuneTxCoalTicks);
if (max_tx_desc[board_idx])
writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
if (rx_coal_tick[board_idx])
writel(rx_coal_tick[board_idx],
&regs->TuneRxCoalTicks);
if (max_rx_desc[board_idx])
writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
if (trace[board_idx])
writel(trace[board_idx], &regs->TuneTrace);
if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
writel(tx_ratio[board_idx], &regs->TxBufRat);
}
/*
* Default link parameters
*/
tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
if(ap->version >= 2)
tmp |= LNK_TX_FLOW_CTL_Y;
/*
* Override link default parameters
*/
if ((board_idx >= 0) && link_state[board_idx]) {
int option = link_state[board_idx];
tmp = LNK_ENABLE;
if (option & 0x01) {
printk(KERN_INFO "%s: Setting half duplex link\n",
ap->name);
tmp &= ~LNK_FULL_DUPLEX;
}
if (option & 0x02)
tmp &= ~LNK_NEGOTIATE;
if (option & 0x10)
tmp |= LNK_10MB;
if (option & 0x20)
tmp |= LNK_100MB;
if (option & 0x40)
tmp |= LNK_1000MB;
if ((option & 0x70) == 0) {
printk(KERN_WARNING "%s: No media speed specified, "
"forcing auto negotiation\n", ap->name);
tmp |= LNK_NEGOTIATE | LNK_1000MB |
LNK_100MB | LNK_10MB;
}
if ((option & 0x100) == 0)
tmp |= LNK_NEG_FCTL;
else
printk(KERN_INFO "%s: Disabling flow control "
"negotiation\n", ap->name);
if (option & 0x200)
tmp |= LNK_RX_FLOW_CTL_Y;
if ((option & 0x400) && (ap->version >= 2)) {
printk(KERN_INFO "%s: Enabling TX flow control\n",
ap->name);
tmp |= LNK_TX_FLOW_CTL_Y;
}
}
ap->link = tmp;
writel(tmp, &regs->TuneLink);
if (ap->version >= 2)
writel(tmp, &regs->TuneFastLink);
writel(ap->firmware_start, &regs->Pc);
writel(0, &regs->Mb0Lo);
/*
* Set tx_csm before we start receiving interrupts, otherwise
* the interrupt handler might think it is supposed to process
* tx ints before we are up and running, which may cause a null
* pointer access in the int handler.
*/
ap->cur_rx = 0;
ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
wmb();
ace_set_txprd(regs, ap, 0);
writel(0, &regs->RxRetCsm);
/*
* Enable DMA engine now.
* If we do this sooner, Mckinley box pukes.
* I assume it's because Tigon II DMA engine wants to check
* *something* even before the CPU is started.
*/
writel(1, &regs->AssistState); /* enable DMA */
/*
* Start the NIC CPU
*/
writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
readl(&regs->CpuCtrl);
/*
* Wait for the firmware to spin up - max 3 seconds.
*/
myjif = jiffies + 3 * HZ;
while (time_before(jiffies, myjif) && !ap->fw_running)
cpu_relax();
if (!ap->fw_running) {
printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
ace_dump_trace(ap);
writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
readl(&regs->CpuCtrl);
/* aman@sgi.com - account for badly behaving firmware/NIC:
* - have observed that the NIC may continue to generate
* interrupts for some reason; attempt to stop it - halt
* second CPU for Tigon II cards, and also clear Mb0
* - if we're a module, we'll fail to load if this was
* the only GbE card in the system => if the kernel does
* see an interrupt from the NIC, code to handle it is
* gone and OOps! - so free_irq also
*/
if (ap->version >= 2)
writel(readl(&regs->CpuBCtrl) | CPU_HALT,
&regs->CpuBCtrl);
writel(0, &regs->Mb0Lo);
readl(&regs->Mb0Lo);
ecode = -EBUSY;
goto init_error;
}
/*
* We load the ring here as there seem to be no way to tell the
* firmware to wipe the ring without re-initializing it.
*/
if (!test_and_set_bit(0, &ap->std_refill_busy))
ace_load_std_rx_ring(dev, RX_RING_SIZE);
else
printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
ap->name);
if (ap->version >= 2) {
if (!test_and_set_bit(0, &ap->mini_refill_busy))
ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
else
printk(KERN_ERR "%s: Someone is busy refilling "
"the RX mini ring\n", ap->name);
}
return 0;
init_error:
ace_init_cleanup(dev);
return ecode;
}
static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
int board_idx = ap->board_idx;
if (board_idx >= 0) {
if (!jumbo) {
if (!tx_coal_tick[board_idx])
writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
if (!max_tx_desc[board_idx])
writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
if (!rx_coal_tick[board_idx])
writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
if (!max_rx_desc[board_idx])
writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
if (!tx_ratio[board_idx])
writel(DEF_TX_RATIO, &regs->TxBufRat);
} else {
if (!tx_coal_tick[board_idx])
writel(DEF_JUMBO_TX_COAL,
&regs->TuneTxCoalTicks);
if (!max_tx_desc[board_idx])
writel(DEF_JUMBO_TX_MAX_DESC,
&regs->TuneMaxTxDesc);
if (!rx_coal_tick[board_idx])
writel(DEF_JUMBO_RX_COAL,
&regs->TuneRxCoalTicks);
if (!max_rx_desc[board_idx])
writel(DEF_JUMBO_RX_MAX_DESC,
&regs->TuneMaxRxDesc);
if (!tx_ratio[board_idx])
writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
}
}
}
static void ace_watchdog(struct net_device *data)
{
struct net_device *dev = data;
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
/*
* We haven't received a stats update event for more than 2.5
* seconds and there is data in the transmit queue, thus we
* assume the card is stuck.
*/
if (*ap->tx_csm != ap->tx_ret_csm) {
printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
dev->name, (unsigned int)readl(&regs->HostCtrl));
/* This can happen due to ieee flow control. */
} else {
printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
dev->name);
#if 0
netif_wake_queue(dev);
#endif
}
}
static void ace_tasklet(unsigned long arg)
{
struct net_device *dev = (struct net_device *) arg;
struct ace_private *ap = netdev_priv(dev);
int cur_size;
cur_size = atomic_read(&ap->cur_rx_bufs);
if ((cur_size < RX_LOW_STD_THRES) &&
!test_and_set_bit(0, &ap->std_refill_busy)) {
#ifdef DEBUG
printk("refilling buffers (current %i)\n", cur_size);
#endif
ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
}
if (ap->version >= 2) {
cur_size = atomic_read(&ap->cur_mini_bufs);
if ((cur_size < RX_LOW_MINI_THRES) &&
!test_and_set_bit(0, &ap->mini_refill_busy)) {
#ifdef DEBUG
printk("refilling mini buffers (current %i)\n",
cur_size);
#endif
ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
}
}
cur_size = atomic_read(&ap->cur_jumbo_bufs);
if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
!test_and_set_bit(0, &ap->jumbo_refill_busy)) {
#ifdef DEBUG
printk("refilling jumbo buffers (current %i)\n", cur_size);
#endif
ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
}
ap->tasklet_pending = 0;
}
/*
* Copy the contents of the NIC's trace buffer to kernel memory.
*/
static void ace_dump_trace(struct ace_private *ap)
{
#if 0
if (!ap->trace_buf)
if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
return;
#endif
}
/*
* Load the standard rx ring.
*
* Loading rings is safe without holding the spin lock since this is
* done only before the device is enabled, thus no interrupts are
* generated and by the interrupt handler/tasklet handler.
*/
static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
short i, idx;
prefetchw(&ap->cur_rx_bufs);
idx = ap->rx_std_skbprd;
for (i = 0; i < nr_bufs; i++) {
struct sk_buff *skb;
struct rx_desc *rd;
dma_addr_t mapping;
skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
if (!skb)
break;
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
offset_in_page(skb->data),
ACE_STD_BUFSIZE,
PCI_DMA_FROMDEVICE);
ap->skb->rx_std_skbuff[idx].skb = skb;
dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
mapping, mapping);
rd = &ap->rx_std_ring[idx];
set_aceaddr(&rd->addr, mapping);
rd->size = ACE_STD_BUFSIZE;
rd->idx = idx;
idx = (idx + 1) % RX_STD_RING_ENTRIES;
}
if (!i)
goto error_out;
atomic_add(i, &ap->cur_rx_bufs);
ap->rx_std_skbprd = idx;
if (ACE_IS_TIGON_I(ap)) {
struct cmd cmd;
cmd.evt = C_SET_RX_PRD_IDX;
cmd.code = 0;
cmd.idx = ap->rx_std_skbprd;
ace_issue_cmd(regs, &cmd);
} else {
writel(idx, &regs->RxStdPrd);
wmb();
}
out:
clear_bit(0, &ap->std_refill_busy);
return;
error_out:
printk(KERN_INFO "Out of memory when allocating "
"standard receive buffers\n");
goto out;
}
static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
short i, idx;
prefetchw(&ap->cur_mini_bufs);
idx = ap->rx_mini_skbprd;
for (i = 0; i < nr_bufs; i++) {
struct sk_buff *skb;
struct rx_desc *rd;
dma_addr_t mapping;
skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
if (!skb)
break;
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
offset_in_page(skb->data),
ACE_MINI_BUFSIZE,
PCI_DMA_FROMDEVICE);
ap->skb->rx_mini_skbuff[idx].skb = skb;
dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
mapping, mapping);
rd = &ap->rx_mini_ring[idx];
set_aceaddr(&rd->addr, mapping);
rd->size = ACE_MINI_BUFSIZE;
rd->idx = idx;
idx = (idx + 1) % RX_MINI_RING_ENTRIES;
}
if (!i)
goto error_out;
atomic_add(i, &ap->cur_mini_bufs);
ap->rx_mini_skbprd = idx;
writel(idx, &regs->RxMiniPrd);
wmb();
out:
clear_bit(0, &ap->mini_refill_busy);
return;
error_out:
printk(KERN_INFO "Out of memory when allocating "
"mini receive buffers\n");
goto out;
}
/*
* Load the jumbo rx ring, this may happen at any time if the MTU
* is changed to a value > 1500.
*/
static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
short i, idx;
idx = ap->rx_jumbo_skbprd;
for (i = 0; i < nr_bufs; i++) {
struct sk_buff *skb;
struct rx_desc *rd;
dma_addr_t mapping;
skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
if (!skb)
break;
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
offset_in_page(skb->data),
ACE_JUMBO_BUFSIZE,
PCI_DMA_FROMDEVICE);
ap->skb->rx_jumbo_skbuff[idx].skb = skb;
dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
mapping, mapping);
rd = &ap->rx_jumbo_ring[idx];
set_aceaddr(&rd->addr, mapping);
rd->size = ACE_JUMBO_BUFSIZE;
rd->idx = idx;
idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
}
if (!i)
goto error_out;
atomic_add(i, &ap->cur_jumbo_bufs);
ap->rx_jumbo_skbprd = idx;
if (ACE_IS_TIGON_I(ap)) {
struct cmd cmd;
cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
cmd.code = 0;
cmd.idx = ap->rx_jumbo_skbprd;
ace_issue_cmd(regs, &cmd);
} else {
writel(idx, &regs->RxJumboPrd);
wmb();
}
out:
clear_bit(0, &ap->jumbo_refill_busy);
return;
error_out:
if (net_ratelimit())
printk(KERN_INFO "Out of memory when allocating "
"jumbo receive buffers\n");
goto out;
}
/*
* All events are considered to be slow (RX/TX ints do not generate
* events) and are handled here, outside the main interrupt handler,
* to reduce the size of the handler.
*/
static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
{
struct ace_private *ap;
ap = netdev_priv(dev);
while (evtcsm != evtprd) {
switch (ap->evt_ring[evtcsm].evt) {
case E_FW_RUNNING:
printk(KERN_INFO "%s: Firmware up and running\n",
ap->name);
ap->fw_running = 1;
wmb();
break;
case E_STATS_UPDATED:
break;
case E_LNK_STATE:
{
u16 code = ap->evt_ring[evtcsm].code;
switch (code) {
case E_C_LINK_UP:
{
u32 state = readl(&ap->regs->GigLnkState);
printk(KERN_WARNING "%s: Optical link UP "
"(%s Duplex, Flow Control: %s%s)\n",
ap->name,
state & LNK_FULL_DUPLEX ? "Full":"Half",
state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
break;
}
case E_C_LINK_DOWN:
printk(KERN_WARNING "%s: Optical link DOWN\n",
ap->name);
break;
case E_C_LINK_10_100:
printk(KERN_WARNING "%s: 10/100BaseT link "
"UP\n", ap->name);
break;
default:
printk(KERN_ERR "%s: Unknown optical link "
"state %02x\n", ap->name, code);
}
break;
}
case E_ERROR:
switch(ap->evt_ring[evtcsm].code) {
case E_C_ERR_INVAL_CMD:
printk(KERN_ERR "%s: invalid command error\n",
ap->name);
break;
case E_C_ERR_UNIMP_CMD:
printk(KERN_ERR "%s: unimplemented command "
"error\n", ap->name);
break;
case E_C_ERR_BAD_CFG:
printk(KERN_ERR "%s: bad config error\n",
ap->name);
break;
default:
printk(KERN_ERR "%s: unknown error %02x\n",
ap->name, ap->evt_ring[evtcsm].code);
}
break;
case E_RESET_JUMBO_RNG:
{
int i;
for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
if (ap->skb->rx_jumbo_skbuff[i].skb) {
ap->rx_jumbo_ring[i].size = 0;
set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
ap->skb->rx_jumbo_skbuff[i].skb = NULL;
}
}
if (ACE_IS_TIGON_I(ap)) {
struct cmd cmd;
cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(ap->regs, &cmd);
} else {
writel(0, &((ap->regs)->RxJumboPrd));
wmb();
}
ap->jumbo = 0;
ap->rx_jumbo_skbprd = 0;
printk(KERN_INFO "%s: Jumbo ring flushed\n",
ap->name);
clear_bit(0, &ap->jumbo_refill_busy);
break;
}
default:
printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
ap->name, ap->evt_ring[evtcsm].evt);
}
evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
}
return evtcsm;
}
static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
{
struct ace_private *ap = netdev_priv(dev);
u32 idx;
int mini_count = 0, std_count = 0;
idx = rxretcsm;
prefetchw(&ap->cur_rx_bufs);
prefetchw(&ap->cur_mini_bufs);
while (idx != rxretprd) {
struct ring_info *rip;
struct sk_buff *skb;
struct rx_desc *rxdesc, *retdesc;
u32 skbidx;
int bd_flags, desc_type, mapsize;
u16 csum;
/* make sure the rx descriptor isn't read before rxretprd */
if (idx == rxretcsm)
rmb();
retdesc = &ap->rx_return_ring[idx];
skbidx = retdesc->idx;
bd_flags = retdesc->flags;
desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
switch(desc_type) {
/*
* Normal frames do not have any flags set
*
* Mini and normal frames arrive frequently,
* so use a local counter to avoid doing
* atomic operations for each packet arriving.
*/
case 0:
rip = &ap->skb->rx_std_skbuff[skbidx];
mapsize = ACE_STD_BUFSIZE;
rxdesc = &ap->rx_std_ring[skbidx];
std_count++;
break;
case BD_FLG_JUMBO:
rip = &ap->skb->rx_jumbo_skbuff[skbidx];
mapsize = ACE_JUMBO_BUFSIZE;
rxdesc = &ap->rx_jumbo_ring[skbidx];
atomic_dec(&ap->cur_jumbo_bufs);
break;
case BD_FLG_MINI:
rip = &ap->skb->rx_mini_skbuff[skbidx];
mapsize = ACE_MINI_BUFSIZE;
rxdesc = &ap->rx_mini_ring[skbidx];
mini_count++;
break;
default:
printk(KERN_INFO "%s: unknown frame type (0x%02x) "
"returned by NIC\n", dev->name,
retdesc->flags);
goto error;
}
skb = rip->skb;
rip->skb = NULL;
pci_unmap_page(ap->pdev,
dma_unmap_addr(rip, mapping),
mapsize,
PCI_DMA_FROMDEVICE);
skb_put(skb, retdesc->size);
/*
* Fly baby, fly!
*/
csum = retdesc->tcp_udp_csum;
skb->protocol = eth_type_trans(skb, dev);
/*
* Instead of forcing the poor tigon mips cpu to calculate
* pseudo hdr checksum, we do this ourselves.
*/
if (bd_flags & BD_FLG_TCP_UDP_SUM) {
skb->csum = htons(csum);
skb->ip_summed = CHECKSUM_COMPLETE;
} else {
skb_checksum_none_assert(skb);
}
/* send it up */
if ((bd_flags & BD_FLG_VLAN_TAG))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += retdesc->size;
idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
}
atomic_sub(std_count, &ap->cur_rx_bufs);
if (!ACE_IS_TIGON_I(ap))
atomic_sub(mini_count, &ap->cur_mini_bufs);
out:
/*
* According to the documentation RxRetCsm is obsolete with
* the 12.3.x Firmware - my Tigon I NICs seem to disagree!
*/
if (ACE_IS_TIGON_I(ap)) {
writel(idx, &ap->regs->RxRetCsm);
}
ap->cur_rx = idx;
return;
error:
idx = rxretprd;
goto out;
}
static inline void ace_tx_int(struct net_device *dev,
u32 txcsm, u32 idx)
{
struct ace_private *ap = netdev_priv(dev);
do {
struct sk_buff *skb;
struct tx_ring_info *info;
info = ap->skb->tx_skbuff + idx;
skb = info->skb;
if (dma_unmap_len(info, maplen)) {
pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
dma_unmap_len(info, maplen),
PCI_DMA_TODEVICE);
dma_unmap_len_set(info, maplen, 0);
}
if (skb) {
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
dev_kfree_skb_irq(skb);
info->skb = NULL;
}
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
} while (idx != txcsm);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
wmb();
ap->tx_ret_csm = txcsm;
/* So... tx_ret_csm is advanced _after_ check for device wakeup.
*
* We could try to make it before. In this case we would get
* the following race condition: hard_start_xmit on other cpu
* enters after we advanced tx_ret_csm and fills space,
* which we have just freed, so that we make illegal device wakeup.
* There is no good way to workaround this (at entry
* to ace_start_xmit detects this condition and prevents
* ring corruption, but it is not a good workaround.)
*
* When tx_ret_csm is advanced after, we wake up device _only_
* if we really have some space in ring (though the core doing
* hard_start_xmit can see full ring for some period and has to
* synchronize.) Superb.
* BUT! We get another subtle race condition. hard_start_xmit
* may think that ring is full between wakeup and advancing
* tx_ret_csm and will stop device instantly! It is not so bad.
* We are guaranteed that there is something in ring, so that
* the next irq will resume transmission. To speedup this we could
* mark descriptor, which closes ring with BD_FLG_COAL_NOW
* (see ace_start_xmit).
*
* Well, this dilemma exists in all lock-free devices.
* We, following scheme used in drivers by Donald Becker,
* select the least dangerous.
* --ANK
*/
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t ace_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
u32 idx;
u32 txcsm, rxretcsm, rxretprd;
u32 evtcsm, evtprd;
/*
* In case of PCI shared interrupts or spurious interrupts,
* we want to make sure it is actually our interrupt before
* spending any time in here.
*/
if (!(readl(&regs->HostCtrl) & IN_INT))
return IRQ_NONE;
/*
* ACK intr now. Otherwise we will lose updates to rx_ret_prd,
* which happened _after_ rxretprd = *ap->rx_ret_prd; but before
* writel(0, &regs->Mb0Lo).
*
* "IRQ avoidance" recommended in docs applies to IRQs served
* threads and it is wrong even for that case.
*/
writel(0, &regs->Mb0Lo);
readl(&regs->Mb0Lo);
/*
* There is no conflict between transmit handling in
* start_xmit and receive processing, thus there is no reason
* to take a spin lock for RX handling. Wait until we start
* working on the other stuff - hey we don't need a spin lock
* anymore.
*/
rxretprd = *ap->rx_ret_prd;
rxretcsm = ap->cur_rx;
if (rxretprd != rxretcsm)
ace_rx_int(dev, rxretprd, rxretcsm);
txcsm = *ap->tx_csm;
idx = ap->tx_ret_csm;
if (txcsm != idx) {
/*
* If each skb takes only one descriptor this check degenerates
* to identity, because new space has just been opened.
* But if skbs are fragmented we must check that this index
* update releases enough of space, otherwise we just
* wait for device to make more work.
*/
if (!tx_ring_full(ap, txcsm, ap->tx_prd))
ace_tx_int(dev, txcsm, idx);
}
evtcsm = readl(&regs->EvtCsm);
evtprd = *ap->evt_prd;
if (evtcsm != evtprd) {
evtcsm = ace_handle_event(dev, evtcsm, evtprd);
writel(evtcsm, &regs->EvtCsm);
}
/*
* This has to go last in the interrupt handler and run with
* the spin lock released ... what lock?
*/
if (netif_running(dev)) {
int cur_size;
int run_tasklet = 0;
cur_size = atomic_read(&ap->cur_rx_bufs);
if (cur_size < RX_LOW_STD_THRES) {
if ((cur_size < RX_PANIC_STD_THRES) &&
!test_and_set_bit(0, &ap->std_refill_busy)) {
#ifdef DEBUG
printk("low on std buffers %i\n", cur_size);
#endif
ace_load_std_rx_ring(dev,
RX_RING_SIZE - cur_size);
} else
run_tasklet = 1;
}
if (!ACE_IS_TIGON_I(ap)) {
cur_size = atomic_read(&ap->cur_mini_bufs);
if (cur_size < RX_LOW_MINI_THRES) {
if ((cur_size < RX_PANIC_MINI_THRES) &&
!test_and_set_bit(0,
&ap->mini_refill_busy)) {
#ifdef DEBUG
printk("low on mini buffers %i\n",
cur_size);
#endif
ace_load_mini_rx_ring(dev,
RX_MINI_SIZE - cur_size);
} else
run_tasklet = 1;
}
}
if (ap->jumbo) {
cur_size = atomic_read(&ap->cur_jumbo_bufs);
if (cur_size < RX_LOW_JUMBO_THRES) {
if ((cur_size < RX_PANIC_JUMBO_THRES) &&
!test_and_set_bit(0,
&ap->jumbo_refill_busy)){
#ifdef DEBUG
printk("low on jumbo buffers %i\n",
cur_size);
#endif
ace_load_jumbo_rx_ring(dev,
RX_JUMBO_SIZE - cur_size);
} else
run_tasklet = 1;
}
}
if (run_tasklet && !ap->tasklet_pending) {
ap->tasklet_pending = 1;
tasklet_schedule(&ap->ace_tasklet);
}
}
return IRQ_HANDLED;
}
static int ace_open(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
struct cmd cmd;
if (!(ap->fw_running)) {
printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
return -EBUSY;
}
writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
cmd.evt = C_CLEAR_STATS;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
cmd.evt = C_HOST_STATE;
cmd.code = C_C_STACK_UP;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
if (ap->jumbo &&
!test_and_set_bit(0, &ap->jumbo_refill_busy))
ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
if (dev->flags & IFF_PROMISC) {
cmd.evt = C_SET_PROMISC_MODE;
cmd.code = C_C_PROMISC_ENABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
ap->promisc = 1;
}else
ap->promisc = 0;
ap->mcast_all = 0;
#if 0
cmd.evt = C_LNK_NEGOTIATION;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
#endif
netif_start_queue(dev);
/*
* Setup the bottom half rx ring refill handler
*/
tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
return 0;
}
static int ace_close(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
struct cmd cmd;
unsigned long flags;
short i;
/*
* Without (or before) releasing irq and stopping hardware, this
* is an absolute non-sense, by the way. It will be reset instantly
* by the first irq.
*/
netif_stop_queue(dev);
if (ap->promisc) {
cmd.evt = C_SET_PROMISC_MODE;
cmd.code = C_C_PROMISC_DISABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
ap->promisc = 0;
}
cmd.evt = C_HOST_STATE;
cmd.code = C_C_STACK_DOWN;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
tasklet_kill(&ap->ace_tasklet);
/*
* Make sure one CPU is not processing packets while
* buffers are being released by another.
*/
local_irq_save(flags);
ace_mask_irq(dev);
for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
struct sk_buff *skb;
struct tx_ring_info *info;
info = ap->skb->tx_skbuff + i;
skb = info->skb;
if (dma_unmap_len(info, maplen)) {
if (ACE_IS_TIGON_I(ap)) {
/* NB: TIGON_1 is special, tx_ring is in io space */
struct tx_desc __iomem *tx;
tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
writel(0, &tx->addr.addrhi);
writel(0, &tx->addr.addrlo);
writel(0, &tx->flagsize);
} else
memset(ap->tx_ring + i, 0,
sizeof(struct tx_desc));
pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
dma_unmap_len(info, maplen),
PCI_DMA_TODEVICE);
dma_unmap_len_set(info, maplen, 0);
}
if (skb) {
dev_kfree_skb(skb);
info->skb = NULL;
}
}
if (ap->jumbo) {
cmd.evt = C_RESET_JUMBO_RNG;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
}
ace_unmask_irq(dev);
local_irq_restore(flags);
return 0;
}
static inline dma_addr_t
ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
struct sk_buff *tail, u32 idx)
{
dma_addr_t mapping;
struct tx_ring_info *info;
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
offset_in_page(skb->data),
skb->len, PCI_DMA_TODEVICE);
info = ap->skb->tx_skbuff + idx;
info->skb = tail;
dma_unmap_addr_set(info, mapping, mapping);
dma_unmap_len_set(info, maplen, skb->len);
return mapping;
}
static inline void
ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
u32 flagsize, u32 vlan_tag)
{
#if !USE_TX_COAL_NOW
flagsize &= ~BD_FLG_COAL_NOW;
#endif
if (ACE_IS_TIGON_I(ap)) {
struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
writel(addr >> 32, &io->addr.addrhi);
writel(addr & 0xffffffff, &io->addr.addrlo);
writel(flagsize, &io->flagsize);
writel(vlan_tag, &io->vlanres);
} else {
desc->addr.addrhi = addr >> 32;
desc->addr.addrlo = addr;
desc->flagsize = flagsize;
desc->vlanres = vlan_tag;
}
}
static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
struct tx_desc *desc;
u32 idx, flagsize;
unsigned long maxjiff = jiffies + 3*HZ;
restart:
idx = ap->tx_prd;
if (tx_ring_full(ap, ap->tx_ret_csm, idx))
goto overflow;
if (!skb_shinfo(skb)->nr_frags) {
dma_addr_t mapping;
u32 vlan_tag = 0;
mapping = ace_map_tx_skb(ap, skb, skb, idx);
flagsize = (skb->len << 16) | (BD_FLG_END);
if (skb->ip_summed == CHECKSUM_PARTIAL)
flagsize |= BD_FLG_TCP_UDP_SUM;
if (vlan_tx_tag_present(skb)) {
flagsize |= BD_FLG_VLAN_TAG;
vlan_tag = vlan_tx_tag_get(skb);
}
desc = ap->tx_ring + idx;
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
/* Look at ace_tx_int for explanations. */
if (tx_ring_full(ap, ap->tx_ret_csm, idx))
flagsize |= BD_FLG_COAL_NOW;
ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
} else {
dma_addr_t mapping;
u32 vlan_tag = 0;
int i, len = 0;
mapping = ace_map_tx_skb(ap, skb, NULL, idx);
flagsize = (skb_headlen(skb) << 16);
if (skb->ip_summed == CHECKSUM_PARTIAL)
flagsize |= BD_FLG_TCP_UDP_SUM;
if (vlan_tx_tag_present(skb)) {
flagsize |= BD_FLG_VLAN_TAG;
vlan_tag = vlan_tx_tag_get(skb);
}
ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
struct tx_ring_info *info;
len += skb_frag_size(frag);
info = ap->skb->tx_skbuff + idx;
desc = ap->tx_ring + idx;
mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
flagsize = skb_frag_size(frag) << 16;
if (skb->ip_summed == CHECKSUM_PARTIAL)
flagsize |= BD_FLG_TCP_UDP_SUM;
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
if (i == skb_shinfo(skb)->nr_frags - 1) {
flagsize |= BD_FLG_END;
if (tx_ring_full(ap, ap->tx_ret_csm, idx))
flagsize |= BD_FLG_COAL_NOW;
/*
* Only the last fragment frees
* the skb!
*/
info->skb = skb;
} else {
info->skb = NULL;
}
dma_unmap_addr_set(info, mapping, mapping);
dma_unmap_len_set(info, maplen, skb_frag_size(frag));
ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
}
}
wmb();
ap->tx_prd = idx;
ace_set_txprd(regs, ap, idx);
if (flagsize & BD_FLG_COAL_NOW) {
netif_stop_queue(dev);
/*
* A TX-descriptor producer (an IRQ) might have gotten
* between, making the ring free again. Since xmit is
* serialized, this is the only situation we have to
* re-test.
*/
if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
overflow:
/*
* This race condition is unavoidable with lock-free drivers.
* We wake up the queue _before_ tx_prd is advanced, so that we can
* enter hard_start_xmit too early, while tx ring still looks closed.
* This happens ~1-4 times per 100000 packets, so that we can allow
* to loop syncing to other CPU. Probably, we need an additional
* wmb() in ace_tx_intr as well.
*
* Note that this race is relieved by reserving one more entry
* in tx ring than it is necessary (see original non-SG driver).
* However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
* is already overkill.
*
* Alternative is to return with 1 not throttling queue. In this
* case loop becomes longer, no more useful effects.
*/
if (time_before(jiffies, maxjiff)) {
barrier();
cpu_relax();
goto restart;
}
/* The ring is stuck full. */
printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
return NETDEV_TX_BUSY;
}
static int ace_change_mtu(struct net_device *dev, int new_mtu)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
if (new_mtu > ACE_JUMBO_MTU)
return -EINVAL;
writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
dev->mtu = new_mtu;
if (new_mtu > ACE_STD_MTU) {
if (!(ap->jumbo)) {
printk(KERN_INFO "%s: Enabling Jumbo frame "
"support\n", dev->name);
ap->jumbo = 1;
if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
ace_set_rxtx_parms(dev, 1);
}
} else {
while (test_and_set_bit(0, &ap->jumbo_refill_busy));
ace_sync_irq(dev->irq);
ace_set_rxtx_parms(dev, 0);
if (ap->jumbo) {
struct cmd cmd;
cmd.evt = C_RESET_JUMBO_RNG;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
}
}
return 0;
}
static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
u32 link;
memset(ecmd, 0, sizeof(struct ethtool_cmd));
ecmd->supported =
(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_FIBRE);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_INTERNAL;
link = readl(&regs->GigLnkState);
if (link & LNK_1000MB)
ethtool_cmd_speed_set(ecmd, SPEED_1000);
else {
link = readl(&regs->FastLnkState);
if (link & LNK_100MB)
ethtool_cmd_speed_set(ecmd, SPEED_100);
else if (link & LNK_10MB)
ethtool_cmd_speed_set(ecmd, SPEED_10);
else
ethtool_cmd_speed_set(ecmd, 0);
}
if (link & LNK_FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
if (link & LNK_NEGOTIATE)
ecmd->autoneg = AUTONEG_ENABLE;
else
ecmd->autoneg = AUTONEG_DISABLE;
#if 0
/*
* Current struct ethtool_cmd is insufficient
*/
ecmd->trace = readl(&regs->TuneTrace);
ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
#endif
ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
return 0;
}
static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
u32 link, speed;
link = readl(&regs->GigLnkState);
if (link & LNK_1000MB)
speed = SPEED_1000;
else {
link = readl(&regs->FastLnkState);
if (link & LNK_100MB)
speed = SPEED_100;
else if (link & LNK_10MB)
speed = SPEED_10;
else
speed = SPEED_100;
}
link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
if (!ACE_IS_TIGON_I(ap))
link |= LNK_TX_FLOW_CTL_Y;
if (ecmd->autoneg == AUTONEG_ENABLE)
link |= LNK_NEGOTIATE;
if (ethtool_cmd_speed(ecmd) != speed) {
link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
switch (ethtool_cmd_speed(ecmd)) {
case SPEED_1000:
link |= LNK_1000MB;
break;
case SPEED_100:
link |= LNK_100MB;
break;
case SPEED_10:
link |= LNK_10MB;
break;
}
}
if (ecmd->duplex == DUPLEX_FULL)
link |= LNK_FULL_DUPLEX;
if (link != ap->link) {
struct cmd cmd;
printk(KERN_INFO "%s: Renegotiating link state\n",
dev->name);
ap->link = link;
writel(link, &regs->TuneLink);
if (!ACE_IS_TIGON_I(ap))
writel(link, &regs->TuneFastLink);
wmb();
cmd.evt = C_LNK_NEGOTIATION;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
}
return 0;
}
static void ace_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ace_private *ap = netdev_priv(dev);
strlcpy(info->driver, "acenic", sizeof(info->driver));
snprintf(info->version, sizeof(info->version), "%i.%i.%i",
ap->firmware_major, ap->firmware_minor,
ap->firmware_fix);
if (ap->pdev)
strlcpy(info->bus_info, pci_name(ap->pdev),
sizeof(info->bus_info));
}
/*
* Set the hardware MAC address.
*/
static int ace_set_mac_addr(struct net_device *dev, void *p)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
struct sockaddr *addr=p;
u8 *da;
struct cmd cmd;
if(netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
da = (u8 *)dev->dev_addr;
writel(da[0] << 8 | da[1], &regs->MacAddrHi);
writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
&regs->MacAddrLo);
cmd.evt = C_SET_MAC_ADDR;
cmd.code = 0;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
return 0;
}
static void ace_set_multicast_list(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
struct cmd cmd;
if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
cmd.evt = C_SET_MULTICAST_MODE;
cmd.code = C_C_MCAST_ENABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
ap->mcast_all = 1;
} else if (ap->mcast_all) {
cmd.evt = C_SET_MULTICAST_MODE;
cmd.code = C_C_MCAST_DISABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
ap->mcast_all = 0;
}
if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
cmd.evt = C_SET_PROMISC_MODE;
cmd.code = C_C_PROMISC_ENABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
ap->promisc = 1;
}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
cmd.evt = C_SET_PROMISC_MODE;
cmd.code = C_C_PROMISC_DISABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
ap->promisc = 0;
}
/*
* For the time being multicast relies on the upper layers
* filtering it properly. The Firmware does not allow one to
* set the entire multicast list at a time and keeping track of
* it here is going to be messy.
*/
if (!netdev_mc_empty(dev) && !ap->mcast_all) {
cmd.evt = C_SET_MULTICAST_MODE;
cmd.code = C_C_MCAST_ENABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
}else if (!ap->mcast_all) {
cmd.evt = C_SET_MULTICAST_MODE;
cmd.code = C_C_MCAST_DISABLE;
cmd.idx = 0;
ace_issue_cmd(regs, &cmd);
}
}
static struct net_device_stats *ace_get_stats(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_mac_stats __iomem *mac_stats =
(struct ace_mac_stats __iomem *)ap->regs->Stats;
dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
dev->stats.multicast = readl(&mac_stats->kept_mc);
dev->stats.collisions = readl(&mac_stats->coll);
return &dev->stats;
}
static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
u32 dest, int size)
{
void __iomem *tdest;
short tsize, i;
if (size <= 0)
return;
while (size > 0) {
tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
min_t(u32, size, ACE_WINDOW_SIZE));
tdest = (void __iomem *) &regs->Window +
(dest & (ACE_WINDOW_SIZE - 1));
writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
for (i = 0; i < (tsize / 4); i++) {
/* Firmware is big-endian */
writel(be32_to_cpup(src), tdest);
src++;
tdest += 4;
dest += 4;
size -= 4;
}
}
}
static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
{
void __iomem *tdest;
short tsize = 0, i;
if (size <= 0)
return;
while (size > 0) {
tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
min_t(u32, size, ACE_WINDOW_SIZE));
tdest = (void __iomem *) &regs->Window +
(dest & (ACE_WINDOW_SIZE - 1));
writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
for (i = 0; i < (tsize / 4); i++) {
writel(0, tdest + i*4);
}
dest += tsize;
size -= tsize;
}
}
/*
* Download the firmware into the SRAM on the NIC
*
* This operation requires the NIC to be halted and is performed with
* interrupts disabled and with the spinlock hold.
*/
static int ace_load_firmware(struct net_device *dev)
{
const struct firmware *fw;
const char *fw_name = "acenic/tg2.bin";
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
const __be32 *fw_data;
u32 load_addr;
int ret;
if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
printk(KERN_ERR "%s: trying to download firmware while the "
"CPU is running!\n", ap->name);
return -EFAULT;
}
if (ACE_IS_TIGON_I(ap))
fw_name = "acenic/tg1.bin";
ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
if (ret) {
printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
ap->name, fw_name);
return ret;
}
fw_data = (void *)fw->data;
/* Firmware blob starts with version numbers, followed by
load and start address. Remainder is the blob to be loaded
contiguously from load address. We don't bother to represent
the BSS/SBSS sections any more, since we were clearing the
whole thing anyway. */
ap->firmware_major = fw->data[0];
ap->firmware_minor = fw->data[1];
ap->firmware_fix = fw->data[2];
ap->firmware_start = be32_to_cpu(fw_data[1]);
if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
ap->name, ap->firmware_start, fw_name);
ret = -EINVAL;
goto out;
}
load_addr = be32_to_cpu(fw_data[2]);
if (load_addr < 0x4000 || load_addr >= 0x80000) {
printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
ap->name, load_addr, fw_name);
ret = -EINVAL;
goto out;
}
/*
* Do not try to clear more than 512KiB or we end up seeing
* funny things on NICs with only 512KiB SRAM
*/
ace_clear(regs, 0x2000, 0x80000-0x2000);
ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
out:
release_firmware(fw);
return ret;
}
/*
* The eeprom on the AceNIC is an Atmel i2c EEPROM.
*
* Accessing the EEPROM is `interesting' to say the least - don't read
* this code right after dinner.
*
* This is all about black magic and bit-banging the device .... I
* wonder in what hospital they have put the guy who designed the i2c
* specs.
*
* Oh yes, this is only the beginning!
*
* Thanks to Stevarino Webinski for helping tracking down the bugs in the
* code i2c readout code by beta testing all my hacks.
*/
static void eeprom_start(struct ace_regs __iomem *regs)
{
u32 local;
readl(&regs->LocalCtrl);
udelay(ACE_SHORT_DELAY);
local = readl(&regs->LocalCtrl);
local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local |= EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local &= ~EEPROM_DATA_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local &= ~EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
}
static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
{
short i;
u32 local;
udelay(ACE_SHORT_DELAY);
local = readl(&regs->LocalCtrl);
local &= ~EEPROM_DATA_OUT;
local |= EEPROM_WRITE_ENABLE;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
for (i = 0; i < 8; i++, magic <<= 1) {
udelay(ACE_SHORT_DELAY);
if (magic & 0x80)
local |= EEPROM_DATA_OUT;
else
local &= ~EEPROM_DATA_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local |= EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
}
}
static int eeprom_check_ack(struct ace_regs __iomem *regs)
{
int state;
u32 local;
local = readl(&regs->LocalCtrl);
local &= ~EEPROM_WRITE_ENABLE;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_LONG_DELAY);
local |= EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
/* sample data in middle of high clk */
state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
udelay(ACE_SHORT_DELAY);
mb();
writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
return state;
}
static void eeprom_stop(struct ace_regs __iomem *regs)
{
u32 local;
udelay(ACE_SHORT_DELAY);
local = readl(&regs->LocalCtrl);
local |= EEPROM_WRITE_ENABLE;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local &= ~EEPROM_DATA_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local |= EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
local |= EEPROM_DATA_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_LONG_DELAY);
local &= ~EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
mb();
}
/*
* Read a whole byte from the EEPROM.
*/
static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
unsigned long flags;
u32 local;
int result = 0;
short i;
/*
* Don't take interrupts on this CPU will bit banging
* the %#%#@$ I2C device
*/
local_irq_save(flags);
eeprom_start(regs);
eeprom_prep(regs, EEPROM_WRITE_SELECT);
if (eeprom_check_ack(regs)) {
local_irq_restore(flags);
printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
result = -EIO;
goto eeprom_read_error;
}
eeprom_prep(regs, (offset >> 8) & 0xff);
if (eeprom_check_ack(regs)) {
local_irq_restore(flags);
printk(KERN_ERR "%s: Unable to set address byte 0\n",
ap->name);
result = -EIO;
goto eeprom_read_error;
}
eeprom_prep(regs, offset & 0xff);
if (eeprom_check_ack(regs)) {
local_irq_restore(flags);
printk(KERN_ERR "%s: Unable to set address byte 1\n",
ap->name);
result = -EIO;
goto eeprom_read_error;
}
eeprom_start(regs);
eeprom_prep(regs, EEPROM_READ_SELECT);
if (eeprom_check_ack(regs)) {
local_irq_restore(flags);
printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
ap->name);
result = -EIO;
goto eeprom_read_error;
}
for (i = 0; i < 8; i++) {
local = readl(&regs->LocalCtrl);
local &= ~EEPROM_WRITE_ENABLE;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
udelay(ACE_LONG_DELAY);
mb();
local |= EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
/* sample data mid high clk */
result = (result << 1) |
((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
udelay(ACE_SHORT_DELAY);
mb();
local = readl(&regs->LocalCtrl);
local &= ~EEPROM_CLK_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
udelay(ACE_SHORT_DELAY);
mb();
if (i == 7) {
local |= EEPROM_WRITE_ENABLE;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
}
}
local |= EEPROM_DATA_OUT;
writel(local, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
udelay(ACE_LONG_DELAY);
writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
readl(&regs->LocalCtrl);
mb();
udelay(ACE_SHORT_DELAY);
eeprom_stop(regs);
local_irq_restore(flags);
out:
return result;
eeprom_read_error:
printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
ap->name, offset);
goto out;
}