Fuck you it works

master
q3k 2012-11-11 12:26:38 +01:00
commit bad2da32b4
6 changed files with 1140 additions and 0 deletions

87
Makefile Normal file
View File

@ -0,0 +1,87 @@
#******************************************************************************
#
# Makefile - Rules for building the uart_echo example.
#
# Copyright (c) 2012 Texas Instruments Incorporated. All rights reserved.
# Software License Agreement
#
# Texas Instruments (TI) is supplying this software for use solely and
# exclusively on TI's microcontroller products. The software is owned by
# TI and/or its suppliers, and is protected under applicable copyright
# laws. You may not combine this software with "viral" open-source
# software in order to form a larger program.
#
# THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
# NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
# NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
# CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
# DAMAGES, FOR ANY REASON WHATSOEVER.
#
# This is part of revision 9453 of the EK-LM4F120XL Firmware Package.
#
#******************************************************************************
#
# Defines the part type that this project uses.
#
PART=LM4F120H5QR
#
# Set the processor variant.
#
VARIANT=cm4f
#
# The base directory for StellarisWare.
#
ROOT=/home/q3k/sware/LM4F120H5QR
#
# Include the common make definitions.
#
include ${ROOT}/makedefs
#
# Where to find header files that do not live in the source directory.
#
IPATH=/home/q3k/sware/LM4F120H5QR
#
# The default rule, which causes the uart_echo example to be built.
#
all: ${COMPILER}
all: ${COMPILER}/uart_echo.axf
flash: all
@sudo openocd -f /home/q3k/busblaster.cfg -f /usr/share/openocd/scripts/target/stellaris.cfg --command "init" --command "reset halt" --command "flash write_image erase /home/q3k/hwaw-fw/gcc/uart_echo.bin" --command "reset" --command "exit" || true
#
# The rule to clean out all the build products.
#
clean:
@rm -rf ${COMPILER} ${wildcard *~}
#
# The rule to create the target directory.
#
${COMPILER}:
@mkdir -p ${COMPILER}
#
# Rules for building the uart_echo example.
#
${COMPILER}/uart_echo.axf: ${COMPILER}/startup_${COMPILER}.o
${COMPILER}/uart_echo.axf: ${COMPILER}/uart_echo.o
${COMPILER}/uart_echo.axf: ${ROOT}/driverlib/${COMPILER}-cm4f/libdriver-cm4f.a
${COMPILER}/uart_echo.axf: uart_echo.ld
SCATTERgcc_uart_echo=uart_echo.ld
ENTRY_uart_echo=ResetISR
CFLAGSgcc=-DTARGET_IS_BLIZZARD_RA1
#
# Include the automatically generated dependency files.
#
ifneq (${MAKECMDGOALS},clean)
-include ${wildcard ${COMPILER}/*.d} __dummy__
endif

298
startup_ccs.c Normal file
View File

@ -0,0 +1,298 @@
//*****************************************************************************
//
// startup_ccs.c - Startup code for use with TI's Code Composer Studio.
//
// Copyright (c) 2012 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 9453 of the EK-LM4F120XL Firmware Package.
//
//*****************************************************************************
//*****************************************************************************
//
// Forward declaration of the default fault handlers.
//
//*****************************************************************************
void ResetISR(void);
static void NmiSR(void);
static void FaultISR(void);
static void IntDefaultHandler(void);
//*****************************************************************************
//
// External declaration for the reset handler that is to be called when the
// processor is started
//
//*****************************************************************************
extern void _c_int00(void);
//*****************************************************************************
//
// Linker variable that marks the top of the stack.
//
//*****************************************************************************
extern unsigned long __STACK_TOP;
//*****************************************************************************
//
// External declaration for the interrupt handler used by the application.
//
//*****************************************************************************
extern void UARTIntHandler(void);
//*****************************************************************************
//
// The vector table. Note that the proper constructs must be placed on this to
// ensure that it ends up at physical address 0x0000.0000 or at the start of
// the program if located at a start address other than 0.
//
//*****************************************************************************
#pragma DATA_SECTION(g_pfnVectors, ".intvecs")
void (* const g_pfnVectors[])(void) =
{
(void (*)(void))((unsigned long)&__STACK_TOP),
// The initial stack pointer
ResetISR, // The reset handler
NmiSR, // The NMI handler
FaultISR, // The hard fault handler
IntDefaultHandler, // The MPU fault handler
IntDefaultHandler, // The bus fault handler
IntDefaultHandler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // SVCall handler
IntDefaultHandler, // Debug monitor handler
0, // Reserved
IntDefaultHandler, // The PendSV handler
IntDefaultHandler, // The SysTick handler
IntDefaultHandler, // GPIO Port A
IntDefaultHandler, // GPIO Port B
IntDefaultHandler, // GPIO Port C
IntDefaultHandler, // GPIO Port D
IntDefaultHandler, // GPIO Port E
UARTIntHandler, // UART0 Rx and Tx
IntDefaultHandler, // UART1 Rx and Tx
IntDefaultHandler, // SSI0 Rx and Tx
IntDefaultHandler, // I2C0 Master and Slave
IntDefaultHandler, // PWM Fault
IntDefaultHandler, // PWM Generator 0
IntDefaultHandler, // PWM Generator 1
IntDefaultHandler, // PWM Generator 2
IntDefaultHandler, // Quadrature Encoder 0
IntDefaultHandler, // ADC Sequence 0
IntDefaultHandler, // ADC Sequence 1
IntDefaultHandler, // ADC Sequence 2
IntDefaultHandler, // ADC Sequence 3
IntDefaultHandler, // Watchdog timer
IntDefaultHandler, // Timer 0 subtimer A
IntDefaultHandler, // Timer 0 subtimer B
IntDefaultHandler, // Timer 1 subtimer A
IntDefaultHandler, // Timer 1 subtimer B
IntDefaultHandler, // Timer 2 subtimer A
IntDefaultHandler, // Timer 2 subtimer B
IntDefaultHandler, // Analog Comparator 0
IntDefaultHandler, // Analog Comparator 1
IntDefaultHandler, // Analog Comparator 2
IntDefaultHandler, // System Control (PLL, OSC, BO)
IntDefaultHandler, // FLASH Control
IntDefaultHandler, // GPIO Port F
IntDefaultHandler, // GPIO Port G
IntDefaultHandler, // GPIO Port H
IntDefaultHandler, // UART2 Rx and Tx
IntDefaultHandler, // SSI1 Rx and Tx
IntDefaultHandler, // Timer 3 subtimer A
IntDefaultHandler, // Timer 3 subtimer B
IntDefaultHandler, // I2C1 Master and Slave
IntDefaultHandler, // Quadrature Encoder 1
IntDefaultHandler, // CAN0
IntDefaultHandler, // CAN1
IntDefaultHandler, // CAN2
IntDefaultHandler, // Ethernet
IntDefaultHandler, // Hibernate
IntDefaultHandler, // USB0
IntDefaultHandler, // PWM Generator 3
IntDefaultHandler, // uDMA Software Transfer
IntDefaultHandler, // uDMA Error
IntDefaultHandler, // ADC1 Sequence 0
IntDefaultHandler, // ADC1 Sequence 1
IntDefaultHandler, // ADC1 Sequence 2
IntDefaultHandler, // ADC1 Sequence 3
IntDefaultHandler, // I2S0
IntDefaultHandler, // External Bus Interface 0
IntDefaultHandler, // GPIO Port J
IntDefaultHandler, // GPIO Port K
IntDefaultHandler, // GPIO Port L
IntDefaultHandler, // SSI2 Rx and Tx
IntDefaultHandler, // SSI3 Rx and Tx
IntDefaultHandler, // UART3 Rx and Tx
IntDefaultHandler, // UART4 Rx and Tx
IntDefaultHandler, // UART5 Rx and Tx
IntDefaultHandler, // UART6 Rx and Tx
IntDefaultHandler, // UART7 Rx and Tx
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // I2C2 Master and Slave
IntDefaultHandler, // I2C3 Master and Slave
IntDefaultHandler, // Timer 4 subtimer A
IntDefaultHandler, // Timer 4 subtimer B
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // Timer 5 subtimer A
IntDefaultHandler, // Timer 5 subtimer B
IntDefaultHandler, // Wide Timer 0 subtimer A
IntDefaultHandler, // Wide Timer 0 subtimer B
IntDefaultHandler, // Wide Timer 1 subtimer A
IntDefaultHandler, // Wide Timer 1 subtimer B
IntDefaultHandler, // Wide Timer 2 subtimer A
IntDefaultHandler, // Wide Timer 2 subtimer B
IntDefaultHandler, // Wide Timer 3 subtimer A
IntDefaultHandler, // Wide Timer 3 subtimer B
IntDefaultHandler, // Wide Timer 4 subtimer A
IntDefaultHandler, // Wide Timer 4 subtimer B
IntDefaultHandler, // Wide Timer 5 subtimer A
IntDefaultHandler, // Wide Timer 5 subtimer B
IntDefaultHandler, // FPU
IntDefaultHandler, // PECI 0
IntDefaultHandler, // LPC 0
IntDefaultHandler, // I2C4 Master and Slave
IntDefaultHandler, // I2C5 Master and Slave
IntDefaultHandler, // GPIO Port M
IntDefaultHandler, // GPIO Port N
IntDefaultHandler, // Quadrature Encoder 2
IntDefaultHandler, // Fan 0
0, // Reserved
IntDefaultHandler, // GPIO Port P (Summary or P0)
IntDefaultHandler, // GPIO Port P1
IntDefaultHandler, // GPIO Port P2
IntDefaultHandler, // GPIO Port P3
IntDefaultHandler, // GPIO Port P4
IntDefaultHandler, // GPIO Port P5
IntDefaultHandler, // GPIO Port P6
IntDefaultHandler, // GPIO Port P7
IntDefaultHandler, // GPIO Port Q (Summary or Q0)
IntDefaultHandler, // GPIO Port Q1
IntDefaultHandler, // GPIO Port Q2
IntDefaultHandler, // GPIO Port Q3
IntDefaultHandler, // GPIO Port Q4
IntDefaultHandler, // GPIO Port Q5
IntDefaultHandler, // GPIO Port Q6
IntDefaultHandler, // GPIO Port Q7
IntDefaultHandler, // GPIO Port R
IntDefaultHandler, // GPIO Port S
IntDefaultHandler, // PWM 1 Generator 0
IntDefaultHandler, // PWM 1 Generator 1
IntDefaultHandler, // PWM 1 Generator 2
IntDefaultHandler, // PWM 1 Generator 3
IntDefaultHandler // PWM 1 Fault
};
//*****************************************************************************
//
// This is the code that gets called when the processor first starts execution
// following a reset event. Only the absolutely necessary set is performed,
// after which the application supplied entry() routine is called. Any fancy
// actions (such as making decisions based on the reset cause register, and
// resetting the bits in that register) are left solely in the hands of the
// application.
//
//*****************************************************************************
void
ResetISR(void)
{
//
// Jump to the CCS C initialization routine. This will enable the
// floating-point unit as well, so that does not need to be done here.
//
__asm(" .global _c_int00\n"
" b.w _c_int00");
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a NMI. This
// simply enters an infinite loop, preserving the system state for examination
// by a debugger.
//
//*****************************************************************************
static void
NmiSR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a fault
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
FaultISR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives an unexpected
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while(1)
{
}
}

349
startup_gcc.c Normal file
View File

@ -0,0 +1,349 @@
//*****************************************************************************
//
// startup_gcc.c - Startup code for use with GNU tools.
//
// Copyright (c) 2012 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 9453 of the EK-LM4F120XL Firmware Package.
//
//*****************************************************************************
#include "inc/hw_nvic.h"
#include "inc/hw_types.h"
//*****************************************************************************
//
// Forward declaration of the default fault handlers.
//
//*****************************************************************************
void ResetISR(void);
static void NmiSR(void);
static void FaultISR(void);
static void IntDefaultHandler(void);
//*****************************************************************************
//
// External declaration for the interrupt handler used by the application.
//
//*****************************************************************************
extern void UARTIntHandler(void);
extern void Timer0Handler(void);
//*****************************************************************************
//
// The entry point for the application.
//
//*****************************************************************************
extern int main(void);
//*****************************************************************************
//
// Reserve space for the system stack.
//
//*****************************************************************************
static unsigned long pulStack[64];
//*****************************************************************************
//
// The vector table. Note that the proper constructs must be placed on this to
// ensure that it ends up at physical address 0x0000.0000.
//
//*****************************************************************************
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) =
{
(void (*)(void))((unsigned long)pulStack + sizeof(pulStack)),
// The initial stack pointer
ResetISR, // The reset handler
NmiSR, // The NMI handler
FaultISR, // The hard fault handler
IntDefaultHandler, // The MPU fault handler
IntDefaultHandler, // The bus fault handler
IntDefaultHandler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // SVCall handler
IntDefaultHandler, // Debug monitor handler
0, // Reserved
IntDefaultHandler, // The PendSV handler
IntDefaultHandler, // The SysTick handler
IntDefaultHandler, // GPIO Port A
IntDefaultHandler, // GPIO Port B
IntDefaultHandler, // GPIO Port C
IntDefaultHandler, // GPIO Port D
IntDefaultHandler, // GPIO Port E
UARTIntHandler, // UART0 Rx and Tx
IntDefaultHandler, // UART1 Rx and Tx
IntDefaultHandler, // SSI0 Rx and Tx
IntDefaultHandler, // I2C0 Master and Slave
IntDefaultHandler, // PWM Fault
IntDefaultHandler, // PWM Generator 0
IntDefaultHandler, // PWM Generator 1
IntDefaultHandler, // PWM Generator 2
IntDefaultHandler, // Quadrature Encoder 0
IntDefaultHandler, // ADC Sequence 0
IntDefaultHandler, // ADC Sequence 1
IntDefaultHandler, // ADC Sequence 2
IntDefaultHandler, // ADC Sequence 3
IntDefaultHandler, // Watchdog timer
Timer0Handler, // Timer 0 subtimer A
IntDefaultHandler, // Timer 0 subtimer B
IntDefaultHandler, // Timer 1 subtimer A
IntDefaultHandler, // Timer 1 subtimer B
IntDefaultHandler, // Timer 2 subtimer A
IntDefaultHandler, // Timer 2 subtimer B
IntDefaultHandler, // Analog Comparator 0
IntDefaultHandler, // Analog Comparator 1
IntDefaultHandler, // Analog Comparator 2
IntDefaultHandler, // System Control (PLL, OSC, BO)
IntDefaultHandler, // FLASH Control
IntDefaultHandler, // GPIO Port F
IntDefaultHandler, // GPIO Port G
IntDefaultHandler, // GPIO Port H
IntDefaultHandler, // UART2 Rx and Tx
IntDefaultHandler, // SSI1 Rx and Tx
IntDefaultHandler, // Timer 3 subtimer A
IntDefaultHandler, // Timer 3 subtimer B
IntDefaultHandler, // I2C1 Master and Slave
IntDefaultHandler, // Quadrature Encoder 1
IntDefaultHandler, // CAN0
IntDefaultHandler, // CAN1
IntDefaultHandler, // CAN2
IntDefaultHandler, // Ethernet
IntDefaultHandler, // Hibernate
IntDefaultHandler, // USB0
IntDefaultHandler, // PWM Generator 3
IntDefaultHandler, // uDMA Software Transfer
IntDefaultHandler, // uDMA Error
IntDefaultHandler, // ADC1 Sequence 0
IntDefaultHandler, // ADC1 Sequence 1
IntDefaultHandler, // ADC1 Sequence 2
IntDefaultHandler, // ADC1 Sequence 3
IntDefaultHandler, // I2S0
IntDefaultHandler, // External Bus Interface 0
IntDefaultHandler, // GPIO Port J
IntDefaultHandler, // GPIO Port K
IntDefaultHandler, // GPIO Port L
IntDefaultHandler, // SSI2 Rx and Tx
IntDefaultHandler, // SSI3 Rx and Tx
IntDefaultHandler, // UART3 Rx and Tx
IntDefaultHandler, // UART4 Rx and Tx
IntDefaultHandler, // UART5 Rx and Tx
IntDefaultHandler, // UART6 Rx and Tx
IntDefaultHandler, // UART7 Rx and Tx
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // I2C2 Master and Slave
IntDefaultHandler, // I2C3 Master and Slave
IntDefaultHandler, // Timer 4 subtimer A
IntDefaultHandler, // Timer 4 subtimer B
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // Timer 5 subtimer A
IntDefaultHandler, // Timer 5 subtimer B
IntDefaultHandler, // Wide Timer 0 subtimer A
IntDefaultHandler, // Wide Timer 0 subtimer B
IntDefaultHandler, // Wide Timer 1 subtimer A
IntDefaultHandler, // Wide Timer 1 subtimer B
IntDefaultHandler, // Wide Timer 2 subtimer A
IntDefaultHandler, // Wide Timer 2 subtimer B
IntDefaultHandler, // Wide Timer 3 subtimer A
IntDefaultHandler, // Wide Timer 3 subtimer B
IntDefaultHandler, // Wide Timer 4 subtimer A
IntDefaultHandler, // Wide Timer 4 subtimer B
IntDefaultHandler, // Wide Timer 5 subtimer A
IntDefaultHandler, // Wide Timer 5 subtimer B
IntDefaultHandler, // FPU
IntDefaultHandler, // PECI 0
IntDefaultHandler, // LPC 0
IntDefaultHandler, // I2C4 Master and Slave
IntDefaultHandler, // I2C5 Master and Slave
IntDefaultHandler, // GPIO Port M
IntDefaultHandler, // GPIO Port N
IntDefaultHandler, // Quadrature Encoder 2
IntDefaultHandler, // Fan 0
0, // Reserved
IntDefaultHandler, // GPIO Port P (Summary or P0)
IntDefaultHandler, // GPIO Port P1
IntDefaultHandler, // GPIO Port P2
IntDefaultHandler, // GPIO Port P3
IntDefaultHandler, // GPIO Port P4
IntDefaultHandler, // GPIO Port P5
IntDefaultHandler, // GPIO Port P6
IntDefaultHandler, // GPIO Port P7
IntDefaultHandler, // GPIO Port Q (Summary or Q0)
IntDefaultHandler, // GPIO Port Q1
IntDefaultHandler, // GPIO Port Q2
IntDefaultHandler, // GPIO Port Q3
IntDefaultHandler, // GPIO Port Q4
IntDefaultHandler, // GPIO Port Q5
IntDefaultHandler, // GPIO Port Q6
IntDefaultHandler, // GPIO Port Q7
IntDefaultHandler, // GPIO Port R
IntDefaultHandler, // GPIO Port S
IntDefaultHandler, // PWM 1 Generator 0
IntDefaultHandler, // PWM 1 Generator 1
IntDefaultHandler, // PWM 1 Generator 2
IntDefaultHandler, // PWM 1 Generator 3
IntDefaultHandler // PWM 1 Fault
};
//*****************************************************************************
//
// The following are constructs created by the linker, indicating where the
// the "data" and "bss" segments reside in memory. The initializers for the
// for the "data" segment resides immediately following the "text" segment.
//
//*****************************************************************************
extern unsigned long _etext;
extern unsigned long _data;
extern unsigned long _edata;
extern unsigned long _bss;
extern unsigned long _ebss;
//*****************************************************************************
//
// This is the code that gets called when the processor first starts execution
// following a reset event. Only the absolutely necessary set is performed,
// after which the application supplied entry() routine is called. Any fancy
// actions (such as making decisions based on the reset cause register, and
// resetting the bits in that register) are left solely in the hands of the
// application.
//
//*****************************************************************************
void
ResetISR(void)
{
unsigned long *pulSrc, *pulDest;
//
// Copy the data segment initializers from flash to SRAM.
//
pulSrc = &_etext;
for(pulDest = &_data; pulDest < &_edata; )
{
*pulDest++ = *pulSrc++;
}
//
// Zero fill the bss segment.
//
__asm(" ldr r0, =_bss\n"
" ldr r1, =_ebss\n"
" mov r2, #0\n"
" .thumb_func\n"
"zero_loop:\n"
" cmp r0, r1\n"
" it lt\n"
" strlt r2, [r0], #4\n"
" blt zero_loop");
//
// Enable the floating-point unit. This must be done here to handle the
// case where main() uses floating-point and the function prologue saves
// floating-point registers (which will fault if floating-point is not
// enabled). Any configuration of the floating-point unit using DriverLib
// APIs must be done here prior to the floating-point unit being enabled.
//
// Note that this does not use DriverLib since it might not be included in
// this project.
//
HWREG(NVIC_CPAC) = ((HWREG(NVIC_CPAC) &
~(NVIC_CPAC_CP10_M | NVIC_CPAC_CP11_M)) |
NVIC_CPAC_CP10_FULL | NVIC_CPAC_CP11_FULL);
//
// Call the application's entry point.
//
main();
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a NMI. This
// simply enters an infinite loop, preserving the system state for examination
// by a debugger.
//
//*****************************************************************************
static void
NmiSR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a fault
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
FaultISR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives an unexpected
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while(1)
{
}
}

9
test.py Normal file
View File

@ -0,0 +1,9 @@
import serial
import sys
s = serial.Serial("/dev/ttyACM0", 115200, timeout=10)
s.write("r")
print s.read()
s.write("a" + chr(int(sys.argv[1])))
print s.read()

340
uart_echo.c Normal file
View File

@ -0,0 +1,340 @@
//*****************************************************************************
//
// uart_echo.c - Example for reading data from and writing data to the UART in
// an interrupt driven fashion.
//
// Copyright (c) 2012 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 9453 of the EK-LM4F120XL Firmware Package.
//
//*****************************************************************************
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "driverlib/timer.h"
//*****************************************************************************
//
//! \addtogroup example_list
//! <h1>UART Echo (uart_echo)</h1>
//!
//! This example application utilizes the UART to echo text. The first UART
//! (connected to the USB debug virtual serial port on the evaluation board)
//! will be configured in 115,200 baud, 8-n-1 mode. All characters received on
//! the UART are transmitted back to the UART.
//
//*****************************************************************************
//*****************************************************************************
//
// The error routine that is called if the driver library encounters an error.
//
//*****************************************************************************
#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif
//*****************************************************************************
//
// The UART interrupt handler.
//
//*****************************************************************************
//*****************************************************************************
//
// Send a string to the UART.
//
//*****************************************************************************
void
UARTSend(const unsigned char *pucBuffer, unsigned long ulCount)
{
//
// Loop while there are more characters to send.
//
while(ulCount--)
{
//
// Write the next character to the UART.
//
ROM_UARTCharPutNonBlocking(UART0_BASE, *pucBuffer++);
}
}
#define DSET_SERVO1 'a'
#define DSET_SERVO2 'b'
#define DSET_DA 'c'
#define DEST_DB 'd'
#define DSET_DC 'e'
typedef unsigned char u8;
typedef char s8;
typedef unsigned int u32;
struct {
struct {
u32 Servo1 : 1,
Servo2 : 1;
struct {
u32 A : 1,
B : 1,
C : 1;
} Digital;
} NextReceive;
u8 Servo1;
u8 Servo2;
struct {
u32 A : 1,
B : 1,
C : 1;
} Digital;
} g_OutputControl;
void CommitState(void)
{
// F4 = fire
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_4, g_OutputControl.Digital.A ? GPIO_PIN_4 : 0);
}
void ClearNext(void)
{
g_OutputControl.NextReceive.Servo1 = 0;
g_OutputControl.NextReceive.Servo2 = 0;
g_OutputControl.NextReceive.Digital.A = 0;
g_OutputControl.NextReceive.Digital.B = 0;
g_OutputControl.NextReceive.Digital.C = 0;
}
u32 Timer0Counter = 0;
void Timer0Handler(void)
{
ROM_TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
Timer0Counter++;
if (Timer0Counter >= 2000)
Timer0Counter = 0;
if (Timer0Counter == 0)
{
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_2, GPIO_PIN_2);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3, GPIO_PIN_3);
}
if (Timer0Counter == 100 + g_OutputControl.Servo1)
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_2, 0);
if (Timer0Counter == 100 + g_OutputControl.Servo2)
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3, 0);
}
void
UARTIntHandler(void)
{
unsigned long ulStatus;
//
// Get the interrrupt status.
//
ulStatus = ROM_UARTIntStatus(UART0_BASE, true);
//
// Clear the asserted interrupts.
//
ROM_UARTIntClear(UART0_BASE, ulStatus);
//
// Loop while there are characters in the receive FIFO.
//
while(ROM_UARTCharsAvail(UART0_BASE))
{
//
// Read the next character from the UART and write it back to the UART.
//
u8 Data = ROM_UARTCharGetNonBlocking(UART0_BASE);
u8 Sent = 0;
if (g_OutputControl.NextReceive.Digital.A)
{
g_OutputControl.Digital.A = Data > 0 ? 1 : 0;
Sent = 1;
}
else if (g_OutputControl.NextReceive.Servo1)
{
g_OutputControl.Servo1 = (Data * 100) / 256;
//UARTSend("a", 1);
Sent = 1;
}
else if (g_OutputControl.NextReceive.Servo2)
{
g_OutputControl.Servo2 = (Data * 100) / 256;
//UARTSend("b", 1);
Sent = 1;
}
ClearNext();
if (!Sent)
{
if (Data == 'a')
{
g_OutputControl.NextReceive.Servo1 = 1;
//UARTSend("A", 1);
}
else if (Data == 'b')
{
g_OutputControl.NextReceive.Servo2 = 1;
//UARTSend("B", 1);
}
else if (Data == 'c')
{
g_OutputControl.NextReceive.Digital.A = 1;
}
else if (Data == 'r')
{
UARTSend("R", 1);;
}
}
CommitState();
//
// Blink the LED to show a character transfer is occuring.
//
//GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_4, GPIO_PIN_4);
//
// Delay for 1 millisecond. Each SysCtlDelay is about 3 clocks.
//
//SysCtlDelay(SysCtlClockGet() / (1000 * 3));
//
// Turn off the LED
//
//GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
}
}
//*****************************************************************************
//
// This example demonstrates how to send a string of data to the UART.
//
//*****************************************************************************
int
main(void)
{
// initialize crap
g_OutputControl.Servo1 = 0;
g_OutputControl.Servo2 = 0;
g_OutputControl.Digital.A = 0;
g_OutputControl.Digital.B = 0;
g_OutputControl.Digital.C = 0;
g_OutputControl.NextReceive.Servo1 = 0;
g_OutputControl.NextReceive.Servo2 = 0;
g_OutputControl.NextReceive.Digital.A = 0;
g_OutputControl.NextReceive.Digital.B = 0;
g_OutputControl.NextReceive.Digital.C = 0;
//
// Enable lazy stacking for interrupt handlers. This allows floating-point
// instructions to be used within interrupt handlers, but at the expense of
// extra stack usage.
//
ROM_FPUEnable();
ROM_FPULazyStackingEnable();
//
// Set the clocking to run directly from the crystal.
//
ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
//
// Enable the GPIO port that is used for the on-board LED.
//
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
//
// Enable the GPIO pins for the LED (PF2).
//
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);
// digital
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_4);
// servos (PA2, PA3)
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_2);
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_3);
//
// Enable the peripherals used by this example.
//
// Enable processor interrupts.
//
ROM_IntMasterEnable();
//
// Set GPIO A0 and A1 as UART pins.
//
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
//
// Configure the UART for 115,200, 8-N-1 operation.
//
ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));
ROM_TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC);
ROM_TimerLoadSet(TIMER0_BASE, TIMER_A, ROM_SysCtlClockGet() / 100000);
//
// Enable the UART interrupt.
//
ROM_IntEnable(INT_UART0);
ROM_IntEnable(INT_TIMER0A);
ROM_TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
ROM_UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);
ROM_TimerEnable(TIMER0_BASE, TIMER_A);
//
// Loop forever echoing data through the UART.
//
while(1)
{
}
}

57
uart_echo.ld Normal file
View File

@ -0,0 +1,57 @@
/******************************************************************************
*
* uart_echo.ld - Linker configuration file for uart_echo.
*
* Copyright (c) 2012 Texas Instruments Incorporated. All rights reserved.
* Software License Agreement
*
* Texas Instruments (TI) is supplying this software for use solely and
* exclusively on TI's microcontroller products. The software is owned by
* TI and/or its suppliers, and is protected under applicable copyright
* laws. You may not combine this software with "viral" open-source
* software in order to form a larger program.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
* NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
* NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
* CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
* DAMAGES, FOR ANY REASON WHATSOEVER.
*
* This is part of revision 9453 of the EK-LM4F120XL Firmware Package.
*
*****************************************************************************/
MEMORY
{
FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x00040000
SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00008000
}
SECTIONS
{
.text :
{
_text = .;
KEEP(*(.isr_vector))
*(.text*)
*(.rodata*)
_etext = .;
} > FLASH
.data : AT(ADDR(.text) + SIZEOF(.text))
{
_data = .;
*(vtable)
*(.data*)
_edata = .;
} > SRAM
.bss :
{
_bss = .;
*(.bss*)
*(COMMON)
_ebss = .;
} > SRAM
}