OctoPrint/octoprint/util/util3d.py

318 lines
6.9 KiB
Python

from __future__ import absolute_import
import math
import numpy
class Vector3(object):
def __init__(self, x=0.0, y=0.0, z=0.0):
self.x = x
self.y = y
self.z = z
def __copy__(self):
return Vector3(self.x, self.y, self.z)
def copy(self):
return Vector3(self.x, self.y, self.z)
def __repr__(self):
return 'V[%s, %s, %s]' % ( self.x, self.y, self.z )
def __add__(self, v):
return Vector3( self.x + v.x, self.y + v.y, self.z + v.z )
def __sub__(self, v):
return Vector3( self.x - v.x, self.y - v.y, self.z - v.z )
def __mul__(self, v):
return Vector3( self.x * v, self.y * v, self.z * v )
def __div__(self, v):
return Vector3( self.x / v, self.y / v, self.z / v )
__truediv__ = __div__
def __neg__(self):
return Vector3( - self.x, - self.y, - self.z )
def __iadd__(self, v):
self.x += v.x
self.y += v.y
self.z += v.z
return self
def __isub__(self, v):
self.x += v.x
self.y += v.y
self.z += v.z
return self
def __imul__(self, v):
self.x *= v
self.y *= v
self.z *= v
return self
def __idiv__(self, v):
self.x /= v
self.y /= v
self.z /= v
return self
def almostEqual(self, v):
return (abs(self.x - v.x) + abs(self.y - v.y) + abs(self.z - v.z)) < 0.00001
def cross(self, v):
return Vector3(self.y * v.z - self.z * v.y, -self.x * v.z + self.z * v.x, self.x * v.y - self.y * v.x)
def vsize(self):
return math.sqrt( self.x * self.x + self.y * self.y + self.z * self.z )
def normalize(self):
f = self.vsize()
if f != 0.0:
self.x /= f
self.y /= f
self.z /= f
def min(self, v):
return Vector3(min(self.x, v.x), min(self.y, v.y), min(self.z, v.z))
def max(self, v):
return Vector3(max(self.x, v.x), max(self.y, v.y), max(self.z, v.z))
class AABB(object):
def __init__(self, vMin, vMax):
self.vMin = vMin
self.vMax = vMax
self.perimeter = numpy.sum(self.vMax - self.vMin)
def combine(self, aabb):
return AABB(numpy.minimum(self.vMin, aabb.vMin), numpy.maximum(self.vMax, aabb.vMax))
def overlap(self, aabb):
if aabb.vMin[0] - self.vMax[0] > 0.0 or aabb.vMin[1] - self.vMax[1] > 0.0 or aabb.vMin[2] - self.vMax[2] > 0.0:
return False
if self.vMin[0] - aabb.vMax[0] > 0.0 or self.vMin[1] - aabb.vMax[1] > 0.0 or self.vMin[2] - aabb.vMax[2] > 0.0:
return False
return True
def __repr__(self):
return "AABB:%s - %s" % (str(self.vMin), str(self.vMax))
class _AABBNode(object):
def __init__(self, aabb):
self.child1 = None
self.child2 = None
self.parent = None
self.height = 0
self.aabb = aabb
def isLeaf(self):
return self.child1 == None
class AABBTree(object):
def __init__(self):
self.root = None
def insert(self, aabb):
newNode = _AABBNode(aabb)
if self.root == None:
self.root = newNode
return
node = self.root
while not node.isLeaf():
child1 = node.child1
child2 = node.child2
area = node.aabb.perimeter
combinedAABB = node.aabb.combine(aabb)
combinedArea = combinedAABB.perimeter
cost = 2.0 * combinedArea
inheritanceCost = 2.0 * (combinedArea - area)
if child1.isLeaf():
cost1 = aabb.combine(child1.aabb).perimeter + inheritanceCost
else:
oldArea = child1.aabb.perimeter
newArea = aabb.combine(child1.aabb).perimeter
cost1 = (newArea - oldArea) + inheritanceCost
if child2.isLeaf():
cost2 = aabb.combine(child1.aabb).perimeter + inheritanceCost
else:
oldArea = child2.aabb.perimeter
newArea = aabb.combine(child2.aabb).perimeter
cost2 = (newArea - oldArea) + inheritanceCost
if cost < cost1 and cost < cost2:
break
if cost1 < cost2:
node = child1
else:
node = child2
sibling = node
# Create a new parent.
oldParent = sibling.parent
newParent = _AABBNode(aabb.combine(sibling.aabb))
newParent.parent = oldParent
newParent.height = sibling.height + 1
if oldParent != None:
# The sibling was not the root.
if oldParent.child1 == sibling:
oldParent.child1 = newParent
else:
oldParent.child2 = newParent
newParent.child1 = sibling
newParent.child2 = newNode
sibling.parent = newParent
newNode.parent = newParent
else:
# The sibling was the root.
newParent.child1 = sibling
newParent.child2 = newNode
sibling.parent = newParent
newNode.parent = newParent
self.root = newParent
# Walk back up the tree fixing heights and AABBs
node = newNode.parent
while node != None:
node = self._balance(node)
child1 = node.child1
child2 = node.child2
node.height = 1 + max(child1.height, child2.height)
node.aabb = child1.aabb.combine(child2.aabb)
node = node.parent
def _balance(self, A):
if A.isLeaf() or A.height < 2:
return A
B = A.child1
C = A.child2
balance = C.height - B.height
# Rotate C up
if balance > 1:
F = C.child1;
G = C.child2;
# Swap A and C
C.child1 = A;
C.parent = A.parent;
A.parent = C;
# A's old parent should point to C
if C.parent != None:
if C.parent.child1 == A:
C.parent.child1 = C
else:
C.parent.child2 = C
else:
self.root = C
# Rotate
if F.height > G.height:
C.child2 = F
A.child2 = G
G.parent = A
A.aabb = B.aabb.combine(G.aabb)
C.aabb = A.aabb.combine(F.aabb)
A.height = 1 + max(B.height, G.height)
C.height = 1 + max(A.height, F.height)
else:
C.child2 = G
A.child2 = F
F.parent = A
A.aabb = B.aabb.combine(F.aabb)
C.aabb = A.aabb.combine(G.aabb)
A.height = 1 + max(B.height, F.height)
C.height = 1 + max(A.height, G.height)
return C;
# Rotate B up
if balance < -1:
D = B.child1
E = B.child2
# Swap A and B
B.child1 = A
B.parent = A.parent
A.parent = B
# A's old parent should point to B
if B.parent != None:
if B.parent.child1 == A:
B.parent.child1 = B
else:
B.parent.child2 = B
else:
self.root = B
# Rotate
if D.height > E.height:
B.child2 = D
A.child1 = E
E.parent = A
A.aabb = C.aabb.combine(E.aabb)
B.aabb = A.aabb.combine(D.aabb)
A.height = 1 + max(C.height, E.height)
B.height = 1 + max(A.height, D.height)
else:
B.child2 = E
A.child1 = D
D.parent = A
A.aabb = C.aabb.combine(D.aabb)
B.aabb = A.aabb.combine(E.aabb)
A.height = 1 + max(C.height, D.height)
B.height = 1 + max(A.height, E.height)
return B
return A
def query(self, aabb):
resultList = []
if self.root != None:
self._query(self.root, aabb, resultList)
return resultList
def _query(self, node, aabb, resultList):
if not aabb.overlap(node.aabb):
return
if node.isLeaf():
resultList.append(node.aabb)
else:
self._query(node.child1, aabb, resultList)
self._query(node.child2, aabb, resultList)
def __repr__(self):
s = "AABBTree:\n"
s += str(self.root.aabb)
return s
if __name__ == '__main__':
tree = AABBTree()
tree.insert(AABB(Vector3(0,0,0), Vector3(0,0,0)))
tree.insert(AABB(Vector3(1,1,1), Vector3(1,1,1)))
tree.insert(AABB(Vector3(0.5,0.5,0.5), Vector3(0.5,0.5,0.5)))
print(tree)
print(tree.query(AABB(Vector3(0,0,0), Vector3(0,0,0))))