#ifndef CONFIGURATION_H #define CONFIGURATION_H // BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration //// The following define selects which electronics board you have. Please choose the one that matches your setup // Gen6 = 5, #define MOTHERBOARD 5 //// Thermistor settings: // 1 is 100k thermistor // 2 is 200k thermistor // 3 is mendel-parts thermistor #define THERMISTORHEATER 3 //// Calibration variables // X, Y, Z, E steps per unit - Metric Prusa Mendel with V9 extruder: float axis_steps_per_unit[] = {40, 40, 3333.92,76.2}; // Metric Prusa Mendel with Makergear geared stepper extruder: //float axis_steps_per_unit[] = {80,80,3200/1.25,1380}; //// Endstop Settings #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. const bool ENDSTOPS_INVERTING = false; //set to true to invert the logic of the endstops // This determines the communication speed of the printer #define BAUDRATE 250000 // Comment out (using // at the start of the line) to disable SD support: //#define SDSUPPORT //// ADVANCED SETTINGS - to tweak parameters #include "thermistortables.h" // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 #define X_ENABLE_ON 0 #define Y_ENABLE_ON 0 #define Z_ENABLE_ON 0 #define E_ENABLE_ON 0 // Disables axis when it's not being used. #define DISABLE_X false #define DISABLE_Y false #define DISABLE_Z true #define DISABLE_E false // Inverting axis direction #define INVERT_X_DIR false #define INVERT_Y_DIR true #define INVERT_Z_DIR false #define INVERT_E_DIR true //// ENDSTOP SETTINGS: // Sets direction of endstops when homing; 1=MAX, -1=MIN #define X_HOME_DIR -1 #define Y_HOME_DIR -1 #define Z_HOME_DIR -1 #define min_software_endstops false //If true, axis won't move to coordinates less than zero. #define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below. #define X_MAX_LENGTH 200 #define Y_MAX_LENGTH 200 #define Z_MAX_LENGTH 100 //// MOVEMENT SETTINGS #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E float max_feedrate[] = {60000, 60000, 170, 500000}; float homing_feedrate[] = {1500,1500,120,0}; bool axis_relative_modes[] = {false, false, false, false}; //// Acceleration settings // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. float acceleration = 2000; // Normal acceleration mm/s^2 float retract_acceleration = 7000; // Normal acceleration mm/s^2 float max_jerk = 20*60; long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts // Not used long max_travel_acceleration_units_per_sq_second[] = {500,500,50,500}; // X, Y, Z max acceleration in mm/s^2 for travel moves // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109 //#define WATCHPERIOD 5000 //5 seconds //// The minimal temperature defines the temperature below which the heater will not be enabled #define MINTEMP 5 // When temperature exceeds max temp, your heater will be switched off. // This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure! // You should use MINTEMP for thermistor short/failure protection. #define MAXTEMP 275 /// PID settings: // Uncomment the following line to enable PID support. //#define PIDTEMP #ifdef PIDTEMP //#define PID_DEBUG 1 // Sends debug data to the serial port. //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % #define PID_MAX 156 // limits current to nozzle #define PID_INTEGRAL_DRIVE_MAX 156.0 #define PID_dT 0.16 double Kp = 20.0; double Ki = 1.5*PID_dT; double Kd = 80/PID_dT; #endif // PIDTEMP // extruder advance constant (s2/mm3) // // advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2 // // hooke's law says: force = k * distance // bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant // so: v ^ 2 is proportional to number of steps we advance the extruder //#define ADVANCE #ifdef ADVANCE #define EXTRUDER_ADVANCE_K 0.02 #define D_FILAMENT 1.7 #define STEPS_MM_E 65 #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) #endif // ADVANCE #endif