summaryrefslogtreecommitdiffstats
path: root/libraries/Sha/sha256.cpp
blob: b0c7a94d89b2eff36b34441d6d6e3bd1d84b9218 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/**
 * Cryptosuite - A cryptographic library for Arduino
 * Copyright (C) 2010 Peter Knight (Cathedrow)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <string.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include "sha256.h"

const uint32_t sha256K[] PROGMEM = {
  0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
  0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
  0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
  0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
  0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
  0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
  0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
  0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};

#define BUFFER_SIZE 64

const uint8_t sha256InitState[] PROGMEM = {
  0x67,0xe6,0x09,0x6a, // H0
  0x85,0xae,0x67,0xbb, // H1
  0x72,0xf3,0x6e,0x3c, // H2
  0x3a,0xf5,0x4f,0xa5, // H3
  0x7f,0x52,0x0e,0x51, // H4
  0x8c,0x68,0x05,0x9b, // H5
  0xab,0xd9,0x83,0x1f, // H6
  0x19,0xcd,0xe0,0x5b  // H7
};

void Sha256Class::init(void) {
  memcpy_P(state.b,sha256InitState,32);
  byteCount = 0;
  bufferOffset = 0;
}

uint32_t Sha256Class::ror32(uint32_t number, uint8_t bits) {
  return ((number << (32-bits)) | (number >> bits));
}

void Sha256Class::hashBlock() {
  uint8_t i;
  uint32_t a,b,c,d,e,f,g,h,t1,t2;

  a=state.w[0];
  b=state.w[1];
  c=state.w[2];
  d=state.w[3];
  e=state.w[4];
  f=state.w[5];
  g=state.w[6];
  h=state.w[7];
  
  for (i=0; i<64; i++) {
    if (i>=16) {
      t1 = buffer.w[i&15] + buffer.w[(i-7)&15];
      t2 = buffer.w[(i-2)&15];
      t1 += ror32(t2,17) ^ ror32(t2,19) ^ (t2>>10);
      t2 = buffer.w[(i-15)&15];
      t1 += ror32(t2,7) ^ ror32(t2,18) ^ (t2>>3);
      buffer.w[i&15] = t1;
    }
    t1 = h;
    t1 += ror32(e,6) ^ ror32(e,11) ^ ror32(e,25); // ∑1(e)
    t1 += g ^ (e & (g ^ f)); // Ch(e,f,g)
    t1 += pgm_read_dword(sha256K+i); // Ki
    t1 += buffer.w[i&15]; // Wi
    t2 = ror32(a,2) ^ ror32(a,13) ^ ror32(a,22); // ∑0(a)
    t2 += ((b & c) | (a & (b | c))); // Maj(a,b,c)
    h=g; g=f; f=e; e=d+t1; d=c; c=b; b=a; a=t1+t2;
  }
  state.w[0] += a;
  state.w[1] += b;
  state.w[2] += c;
  state.w[3] += d;
  state.w[4] += e;
  state.w[5] += f;
  state.w[6] += g;
  state.w[7] += h;
}

void Sha256Class::addUncounted(uint8_t data) {
  buffer.b[bufferOffset ^ 3] = data;
  bufferOffset++;
  if (bufferOffset == BUFFER_SIZE) {
    hashBlock();
    bufferOffset = 0;
  }
}

void Sha256Class::write(uint8_t data) {
  ++byteCount;
  addUncounted(data);
}

void Sha256Class::pad() {
  // Implement SHA-256 padding (fips180-2 §5.1.1)

  // Pad with 0x80 followed by 0x00 until the end of the block
  addUncounted(0x80);
  while (bufferOffset != 56) addUncounted(0x00);

  // Append length in the last 8 bytes
  addUncounted(0); // We're only using 32 bit lengths
  addUncounted(0); // But SHA-1 supports 64 bit lengths
  addUncounted(0); // So zero pad the top bits
  addUncounted(byteCount >> 29); // Shifting to multiply by 8
  addUncounted(byteCount >> 21); // as SHA-1 supports bitstreams as well as
  addUncounted(byteCount >> 13); // byte.
  addUncounted(byteCount >> 5);
  addUncounted(byteCount << 3);
}


uint8_t* Sha256Class::result(void) {
  // Pad to complete the last block
  pad();
  
  // Swap byte order back
  for (int i=0; i<8; i++) {
    uint32_t a,b;
    a=state.w[i];
    b=a<<24;
    b|=(a<<8) & 0x00ff0000;
    b|=(a>>8) & 0x0000ff00;
    b|=a>>24;
    state.w[i]=b;
  }
  
  // Return pointer to hash (20 characters)
  return state.b;
}

#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c

uint8_t keyBuffer[BLOCK_LENGTH]; // K0 in FIPS-198a
uint8_t innerHash[HASH_LENGTH];

void Sha256Class::initHmac(const uint8_t* key, int keyLength) {
  uint8_t i;
  memset(keyBuffer,0,BLOCK_LENGTH);
  if (keyLength > BLOCK_LENGTH) {
    // Hash long keys
    init();
    for (;keyLength--;) write(*key++);
    memcpy(keyBuffer,result(),HASH_LENGTH);
  } else {
    // Block length keys are used as is
    memcpy(keyBuffer,key,keyLength);
  }
  // Start inner hash
  init();
  for (i=0; i<BLOCK_LENGTH; i++) {
    write(keyBuffer[i] ^ HMAC_IPAD);
  }
}

uint8_t* Sha256Class::resultHmac(void) {
  uint8_t i;
  // Complete inner hash
  memcpy(innerHash,result(),HASH_LENGTH);
  // Calculate outer hash
  init();
  for (i=0; i<BLOCK_LENGTH; i++) write(keyBuffer[i] ^ HMAC_OPAD);
  for (i=0; i<HASH_LENGTH; i++) write(innerHash[i]);
  return result();
}
Sha256Class Sha256;