summaryrefslogtreecommitdiffstats
path: root/rutherford.py
blob: 60230c61449b0648c6ad4a01b92288437cf89bf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from __future__ import division
from math import sqrt, ceil, atan, sin, cos
import random, pygame, sys
import os
import json
from pygame.locals import *

pygame.init()

GRAY = ( 182, 182, 182)
VIOLET = (150, 100, 190)
RED = (150, 0, 0)
GREEN = (0, 150, 0)
BLUE = (30, 30, 180)
VERYLIGHT = (210, 210, 210)
BLACK = (0,0,0)
WHITE = (255, 255, 255)
GRAYISH = (210, 210, 255)

TIME_STEP = 0.01

K = 50000

X_SCREEN_BORDER = 1200
Y_SCREEN_BORDER = 800

INITIAL_SPEED_X = 200
INITIAL_SPEED_Y = 0
INITIAL_Y = 400
DEFAULT_OLD_X = 2 - INITIAL_SPEED_X*TIME_STEP
DEFAULT_OLD_Y = INITIAL_Y - INITIAL_SPEED_Y*TIME_STEP
BEAM_WIDHT = 20

def main():
    #create the screen
    window = pygame.display.set_mode((1200, 800))
    colors = [GRAY, VIOLET, RED, GREEN, BLUE, VERYLIGHT, BLACK]
    
    settings = SimulationSettings(K, TIME_STEP, INITIAL_Y, INITIAL_SPEED_X, BEAM_WIDHT, colors)
    #Initialize universe with some atoms
    universe = Universe(settings)

    screen = Screen(window, colors, universe)
    screen.draw_surface()
    keep_running = True
    simulation_running = True
    while keep_running:
        if(simulation_running):
            screen.draw_surface()
            universe.update_positions()
        else:
            screen.draw_static_surface()

        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                keep_running = False
            elif event.type == pygame.KEYUP:
                if event.key == K_UP :
                    universe.settings.initial_y -= 10
                elif event.key == K_DOWN:
                    universe.settings.initial_y += 10
                elif event.key == K_RIGHT:
                    universe.settings.speed_x += 20
                elif event.key == K_LEFT:
                    universe.settings.speed_x -= 20
                    if(universe.settings.speed_x < 0):
                        universe.settings.speed_x = 0
                elif event.key == K_SPACE:
                    universe.add_particle()
                elif event.key == K_h:
                    if(universe.settings.show_instructions):
                        universe.settings.show_instructions = False
                    else:
                        universe.settings.show_instructions = True
                elif event.key == K_RETURN:
                    if(simulation_running):
                        simulation_running = False
                    else:
                        simulation_running = True 
                elif event.key == K_COMMA:
                    universe.settings.beam_width -= 5
                    if(universe.settings.beam_width < 5):
                        universe.settings.beam_width = 5
                elif event.key == K_PERIOD:
                    universe.settings.beam_width += 5



    print "Pygame thread exited."




class Screen:
    def __init__(self, window, colors, universe):
        self.communicates = []
        self.communicates.append("Rutherford scattering")
        self.window = window
        self.universe = universe
        self.colors = colors
        self.color = WHITE

    def change_color(self):
        self.color = random.choice(self.colors)

    def draw_universe(self):
        self.draw_guide()
        for particle in self.universe.particles:
            self.draw_particle(particle)

    def draw_static_universe(self):
        self.draw_guide()
        for particle in self.universe.particles:
            self.draw_particle(particle)
        for x in range(1, len(self.universe.particles)):
            self.draw_particle_vector(self.universe.particles[x])

    def draw_particle(self, particle):
        position = (int(ceil(particle.position.x)), int(ceil(particle.position.y)))
        pygame.draw.circle(self.window, particle.color, position, 6+ int(particle.mass/100) )

    def draw_particle_vector(self, particle):
        factor = 20
        arrow_head_x = 0.50
        arrow_head_y = 0.30
        start_position = (particle.position.x, particle.position.y)
        end_position = (int((particle.position.x - particle.old_position.x)*factor +particle.position.x), 
            int((particle.position.y -particle.old_position.y)*factor + particle.position.y))
        
        pygame.draw.aaline(self.window, BLUE, start_position, end_position, 4)
        pygame.draw.circle(self.window, RED, end_position, 2)
    def draw_guide(self):
        y = self.universe.settings.initial_y
        offset = self.universe.settings.beam_width
        for x in range(0, 39, 2):
            pygame.draw.aaline(self.window, BLACK, (X_SCREEN_BORDER*x/40, y), (X_SCREEN_BORDER*(x+1)/40, y), 4)
        for x in range(0, 79, 2):
            pygame.draw.aaline(self.window, RED, (X_SCREEN_BORDER*x/80, y + offset), (X_SCREEN_BORDER*(x+1)/80, y + offset), 2)
        for x in range(0, 79, 2):
            pygame.draw.aaline(self.window, RED, (X_SCREEN_BORDER*x/80, y - offset), (X_SCREEN_BORDER*(x+1)/80, y - offset), 2)

    

    def draw_static_surface(self):
        self.window.fill(GRAYISH)
        self.draw_static_universe()
        description_of_simulation_settings = self.prepare_settings_description(self.universe.settings)
        for i, text in enumerate(self.communicates + description_of_simulation_settings):
            self.print_text(text, 20, 20 + i*20, (0, 0, 0), 24, self.window)
        if(self.universe.settings.show_instructions):
            for i, text in enumerate(self.universe.settings.instructions):
                self.print_text(text, 350, 20 + i*20, (0, 0, 0), 24, self.window)
        pygame.display.flip()

    def prepare_settings_description(self, settings):
        description = []
        line = "K = {0:d}".format(settings.K)
        description.append(line)
        line = "Position of the beam is {0:d}".format(settings.initial_y)
        description.append(line)
        line = "Initial speed of the beam is {0:d}".format(settings.speed_x)
        description.append(line)
        line = "Width of the beam is {0:d}".format(settings.beam_width)
        description.append(line)
        line = "Time step is set to {0:f}".format(settings.time_step)
        description.append(line)
        line = "Press H to show/hide instructions"
        description.append(line)
        return description


    def draw_surface(self):
        self.window.fill(self.color)
        self.draw_universe()
        description_of_simulation_settings = self.prepare_settings_description(self.universe.settings)
        for i, text in enumerate(self.communicates + description_of_simulation_settings):
            self.print_text(text, 20, 20 + i*20, (0, 0, 0), 24, self.window)
        if(self.universe.settings.show_instructions):
            for i, text in enumerate(self.universe.settings.instructions):
                self.print_text(text, 350, 20 + i*20, (0, 0, 0), 24, self.window)
        pygame.display.flip()

    def print_text(self, text,xx,yy,color,text_size, screen):
        font = pygame.font.SysFont(None,text_size)
        ren = font.render(text,1,color)
        screen.blit(ren, (xx,yy))


class Vector2:
    def __init__(self, x, y):
        self.x = x
        self.y = y



class Particle:
    def __init__(self, mass, position, old_position, charge, color):
        self.mass = mass
        self.position = position
        self.old_position = old_position
        self.acc = Vector2(0,0)
        self.color = color
        self.charge = charge

class SimulationSettings:
    def __init__(self, K, time_step, initial_y, speed_x, beam_width, colors):
        self.K = K
        self.time_step = time_step
        self.initial_y = initial_y
        self.speed_x = speed_x
        self.beam_width = beam_width
        self.colors = colors
        self.show_instructions = True
        self.instructions = [ "Instructions:",
                                "To change speed, use right and left arrow keys",
                                "To change position of the beam, use up and down arrow keys",
                                "To change width of the beam, use , and . keys",
                                "To add particle, press space",
                                "To stop/restart simulation, press enter"]


class Universe:
    def __init__(self, settings):
        self.settings = settings
        atom1 = Particle(1000, Vector2(500,500), Vector2(500,500), 20, BLUE)
        atom2 = Particle(1, Vector2(2,400), Vector2(2-TIME_STEP*INITIAL_SPEED_X,
            INITIAL_Y- TIME_STEP*INITIAL_SPEED_Y), 1, RED)

        self.particles = [atom1, atom2]
        print("Universe has just been created!")

    def update_accelerations(self):
        for particle in self.particles:
            particle.acc = Vector2(0,0)
        for x in range(1, len(self.particles)):
            accelerations = self.compute_acc(self.particles[x], self.particles[0])
            self.particles[x].acc = accelerations[0]

    def update_positions(self):
        self.update_accelerations()
        for particle in self.particles:
            temporary_x = particle.position.x 
            temporary_y = particle.position.y
            particle.position.x = 2 * particle.position.x - particle.old_position.x 
            particle.position.x += particle.acc.x * TIME_STEP * TIME_STEP
            particle.position.y = 2 * particle.position.y - particle.old_position.y 
            particle.position.y += particle.acc.y * TIME_STEP * TIME_STEP
            particle.old_position.x = temporary_x
            particle.old_position.y = temporary_y
            particle = self.limit_position(particle)

    def limit_position(self, particle):
        if(particle.position.x > X_SCREEN_BORDER or particle.position.y > Y_SCREEN_BORDER or
            particle.position.x < 0 or particle.position.y < 0):
            y = self.settings.initial_y
            speed = self.settings.speed_x
            random_offset = random.randrange(-self.settings.beam_width, self.settings.beam_width)
            particle.position.x = 2
            particle.old_position.x = 2 - speed*self.settings.time_step
            particle.position.y = y + random_offset
            particle.old_position.y = y + random_offset
        return particle

    def compute_acc(self, particle1, particle2):
        vertical_distance = particle1.position.y - particle2.position.y
        horizontal_distance = particle1.position.x - particle2.position.x
        distance = sqrt((vertical_distance)**2 + (horizontal_distance)**2)
        force = particle1.charge * particle2.charge *K/distance**2
        acc1x = force/particle1.mass*horizontal_distance/distance
        acc1y = force/particle1.mass*vertical_distance/distance
        acc2x = -force/particle2.mass*horizontal_distance/distance
        acc2y = -force/particle2.mass*vertical_distance/distance
        return [Vector2(acc1x, acc1y), Vector2(acc2x, acc2y)]

    def add_particle(self):
        y = self.settings.initial_y
        speed = self.settings.speed_x
        colors = self.settings.colors
        random_offset = random.randrange(-self.settings.beam_width, self.settings.beam_width)
        particle = Particle(1, Vector2(2, y + random_offset), 
                        Vector2(2-self.settings.time_step*speed, y + random_offset), 1, random.choice(colors))
        self.particles.append(particle)

    


if __name__ == '__main__':
    main()