1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
from __future__ import division
from math import sqrt, ceil
import random, pygame, sys
import os
import json
from pygame.locals import *
pygame.init()
GRAY = ( 182, 182, 182)
VIOLET = (150, 100, 190)
RED = (150, 0, 0)
GREEN = (0, 150, 0)
BLUE = (30, 30, 180)
VERYLIGHT = (210, 210, 210)
BLACK = (0,0,0)
WHITE = (255, 255, 255)
TIME_STEP = 0.01
K = 10000
X_SCREEN_BORDER = 1200
Y_SCREEN_BORDER = 800
INITIAL_SPEED_X = 50
INITIAL_SPEED_Y = 0
INITIAL_Y = 400
DEFAULT_OLD_X = 2 - INITIAL_SPEED_X*TIME_STEP
DEFAULT_OLD_Y = INITIAL_Y - INITIAL_SPEED_Y*TIME_STEP
def main():
#create the screen
window = pygame.display.set_mode((1200, 800))
colors = [GRAY, VIOLET, RED, GREEN, BLUE, VERYLIGHT, BLACK]
global INITIAL_SPEED_X
global INITIAL_SPEED_Y
global INITIAL_Y
#Initialize universe with some atoms
atom1 = Particle(1000, Vector2(500,500), Vector2(500,500), 20, BLUE)
atom2 = Particle(1, Vector2(2,400), Vector2(2-TIME_STEP*INITIAL_SPEED_X, INITIAL_Y- TIME_STEP*INITIAL_SPEED_Y), 1, RED)
universe = Universe([atom1, atom2])
screen = Screen(window, colors, universe)
screen.draw_surface()
keep_running = True
while keep_running:
screen.draw_surface()
universe.update_positions()
for event in pygame.event.get():
if event.type == pygame.QUIT:
keep_running = False
elif event.type == pygame.KEYUP:
if event.key == K_UP :
INITIAL_Y -= 10
elif event.key == K_DOWN:
INITIAL_Y += 10
elif event.key == K_RIGHT:
INITIAL_SPEED_X += 20
elif event.key == K_LEFT:
INITIAL_SPEED_X -= 20
if(INITIAL_SPEED_X < 0):
INITIAL_SPEED_X = 0
elif event.key == K_SPACE:
universe.add_particle(Particle(1, Vector2(2,INITIAL_Y),
Vector2(2-TIME_STEP*INITIAL_SPEED_X, INITIAL_Y- TIME_STEP*INITIAL_SPEED_Y),
1, random.choice(colors)))
print "Pygame thread exited."
class Screen:
def __init__(self, window, colors, universe):
self.communicates = []
self.communicates.append("Rutherford scattering")
self.window = window
self.universe = universe
self.colors = colors
self.color = WHITE
def change_color(self):
self.color = random.choice(self.colors)
def draw_universe(self):
self.draw_guide()
for particle in self.universe.particles:
self.draw_particle(particle)
def draw_particle(self, particle):
position = (int(ceil(particle.position.x)), int(ceil(particle.position.y)))
pygame.draw.circle(self.window, particle.color, position, 6+ int(particle.mass/100) )
def draw_guide(self):
pygame.draw.line(self.window, BLACK, (0, INITIAL_Y), (X_SCREEN_BORDER,INITIAL_Y), 2)
def draw_surface(self):
self.window.fill(self.color)
self.draw_universe()
for i, text in enumerate(self.communicates):
self.print_text(text, 20, 20 + i*20, (0, 0, 0), 30, self.window)
pygame.display.flip()
def print_text(self, text,xx,yy,color,text_size, screen):
font = pygame.font.SysFont(None,text_size)
ren = font.render(text,1,color)
screen.blit(ren, (xx,yy))
class Vector2:
def __init__(self, x, y):
self.x = x
self.y = y
class Particle:
def __init__(self, mass, position, old_position, charge, color):
self.mass = mass
self.position = position
self.old_position = old_position
self.acc = Vector2(0,0)
self.color = color
self.charge = charge
class Universe:
def __init__(self, particles):
self.particles = particles
print("Universe has just been created!")
def update_accelerations(self):
for particle in self.particles:
particle.acc = Vector2(0,0)
for x in range(1, len(self.particles)):
accelerations = self.compute_acc(self.particles[x], self.particles[0])
self.particles[x].acc = accelerations[0]
def update_positions(self):
self.update_accelerations()
for particle in self.particles:
temporary_x = particle.position.x
temporary_y = particle.position.y
particle.position.x = 2 * particle.position.x - particle.old_position.x
particle.position.x += particle.acc.x * TIME_STEP * TIME_STEP
particle.position.y = 2 * particle.position.y - particle.old_position.y
particle.position.y += particle.acc.y * TIME_STEP * TIME_STEP
particle.old_position.x = temporary_x
particle.old_position.y = temporary_y
particle = self.limit_position(particle)
def limit_position(self, particle):
if(particle.position.x > X_SCREEN_BORDER or particle.position.y > Y_SCREEN_BORDER or
particle.position.x < 0 or particle.position.y < 0):
random_offset = random.randrange(-20, 20)
particle.position.x = 2
particle.old_position.x = 2 - INITIAL_SPEED_X*TIME_STEP
particle.position.y = INITIAL_Y + random_offset
particle.old_position.y = INITIAL_Y - INITIAL_SPEED_Y*TIME_STEP + random_offset
return particle
def compute_acc(self, particle1, particle2):
vertical_distance = particle1.position.y - particle2.position.y
horizontal_distance = particle1.position.x - particle2.position.x
distance = sqrt((vertical_distance)**2 + (horizontal_distance)**2)
force = particle1.charge * particle2.charge *K/distance**2
acc1x = force/particle1.mass*horizontal_distance/distance
acc1y = force/particle1.mass*vertical_distance/distance
acc2x = -force/particle2.mass*horizontal_distance/distance
acc2y = -force/particle2.mass*vertical_distance/distance
return [Vector2(acc1x, acc1y), Vector2(acc2x, acc2y)]
def add_particle(self, particle):
self.particles.append(particle)
if __name__ == '__main__':
main()
|