1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
import cv2
import cv2.cv
import numpy as np
from functools import partial
class AreaSelector(object):
def __init__(self, window_name, orig_img, max_areas = 4):
self.window_name = window_name
self.orig_img = orig_img
self.selection = False
self.area = 0
self.max_areas = max_areas
self.rects = []
for i in xrange(max_areas):
self.rects.append([])
self.colors = [
(0,255,0),
(255,0,127),
(0,127,255),
(255,255,0)
]
@staticmethod
def areasSelection(event, x, y, flags, self):
if event == cv2.EVENT_FLAG_RBUTTON:
self.area += 1
self.area %= self.max_areas
if self.selection:
self.selection = False
self.redrawRects()
elif event == cv2.EVENT_LBUTTONDOWN and not self.selection:
self.selection = True
self.first_x = x
self.first_y = y
elif event == cv2.EVENT_LBUTTONDOWN and self.selection:
self.selection = False
self.redrawRects()
elif event == cv2.EVENT_MOUSEMOVE and self.selection:
self.rects[self.area] = (min(self.first_x, x), min(self.first_y, y), max(self.first_x, x), max(self.first_y, y))
self.redrawRects()
def redrawRects(self):
cv2.imshow(self.window_name, self.orig_img)
new_img = self.orig_img.copy()
for i, r in enumerate(self.rects):
if not r:
continue
cv2.rectangle(new_img, (r[0], r[1]), (r[2], r[3]), self.colors[i], 4)
cv2.imshow(self.window_name, new_img)
class CorrectionSelector(object):
def __init__(self, window_name, orig_img):
self.selecting_rect = True
self.points = []
self.cur_point = 0
self.orig_img = orig_img
self.window_name = window_name
self.colors = [
(0,255,127),
(255,0,127),
(0,127,255),
(255,255,0)
]
self.transform = []
self.rect_x = 0
self.rect_y = 0
@staticmethod
def correctionSelection(event, x, y, flags, self):
if self.selecting_rect:
if event == cv2.EVENT_FLAG_RBUTTON:
self.selecting_rect = False
self.redraw()
elif event == cv2.EVENT_FLAG_LBUTTON:
self.rect_x = x
self.rect_y = y
elif event == cv2.EVENT_MOUSEMOVE:
self.rect = min(self.rect_x, x), min(self.rect_y, y), max(self.rect_x, x), max(self.rect_y, y)
self.redraw()
else:
if event == cv2.EVENT_FLAG_RBUTTON:
self.redraw()
self.calc_transform()
self.selecting_rect = True
elif event == cv2.EVENT_FLAG_LBUTTON:
if len(self.points) < 4:
self.points.append((x,y))
else:
self.points[self.cur_point] = (x,y)
self.cur_point += 1
self.cur_point %= 4
self.redraw()
def redraw(self):
cv2.imshow(self.window_name, self.orig_img)
new_img = self.orig_img.copy()
if self.rect:
cv2.rectangle(new_img, (self.rect[0], self.rect[1]), (self.rect[2], self.rect[3]), (0, 255, 0), 4)
self.points.sort()
for i, p in enumerate(self.points):
cv2.circle(new_img, p, 4, self.colors[i], -1)
cv2.imshow(self.window_name, new_img)
def calc_transform(self):
self.rect_points = [
(self.rect[0], self.rect[1]),
(self.rect[0], self.rect[3]),
(self.rect[2], self.rect[1]),
(self.rect[2], self.rect[3])
]
sorted_points = []
best_match = 0
for i in xrange(4):
min_delta = cap_width * cap_height
for j in xrange(4):
delta = (abs(self.rect_points[i][0] - self.points[j][0]), abs(self.rect_points[i][1] - self.points[j][1]))
print i, j, delta
if delta[0] + delta[1] < min_delta:
best_match = j
min_delta = delta[0] + delta[1]
print best_match
sorted_points.append(self.points[best_match])
print np.array(self.points), np.array(self.rect_points), np.array(sorted_points)
self.transform = cv2.getPerspectiveTransform(np.array(sorted_points, dtype=np.float32), np.array(self.rect_points, dtype=np.float32))
print self.transform
def get_transform(self):
return self.transform
def check_mess_fun(i, r):
print "Will check for mess on desk:", i, "rect:", r
def main():
vc = cv2.VideoCapture(1)
if not vc.isOpened():
raise RuntimeError("Failed to open camera!")
ret, img = vc.read()
if not ret:
raise RuntimeError("Failed to initialize camera!")
cap_width = int(vc.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH))
cap_height = int(vc.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT))
# CV_CAP_PROP_FPS not supported...
fps = 60.0
orig_img = np.array([0])
cnt = 0
while cnt < 100:
ret, orig_img = vc.read()
if not ret:
raise RuntimeError("Couldn't get non-mess image!")
cnt += 1
#print "Got image on frame", cnt
ret, orig_img = vc.read()
orig_img = cv2.medianBlur(orig_img, 3)
cv2.namedWindow("detection_areas")
#cv2.imshow("detection_areas", orig_img)
#correction_selector = CorrectionSelector("detection_areas", orig_img)
#cv2.setMouseCallback("detection_areas", CorrectionSelector.correctionSelection, correction_selector)
#cv2.waitKey()
#perspective = correction_selector.get_transform()
perspective = np.array(
[[ 1.33036171e+00, 3.18020707e-01, -1.38751879e+02],
[ -1.71116647e-01, 1.55350072e+00, -8.06609130e+00],
[ -3.52454848e-04, 1.09892154e-03, 1.00000000e+00]]
)
orig_img = cv2.warpPerspective(orig_img, perspective, (orig_img.shape[1], orig_img.shape[0]))
#cv2.imshow("detection_areas", orig_img)
area_selector = AreaSelector("detection_areas", orig_img)
#cv2.setMouseCallback("detection_areas", AreaSelector.areasSelection, area_selector)
#cv2.waitKey()
#print area_selector.rects
area_selector.rects = [(107, 68, 282, 209), (313, 67, 493, 308), (316, 323, 489, 475), (105, 209, 288, 476)]
cv2.destroyWindow("detection_areas")
cv2.namedWindow("test")
orig_img_bw = cv2.cvtColor(orig_img, cv2.cv.CV_BGR2GRAY)
#tmp_buf = np.zeros((16,16), dtype=np.float32)
#for i in xrange(0, cap_height, 16):
# for j in xrange(0, cap_width, 16):
# cv2.normalize(orig_img_bw[i:i+16,j:j+16].astype(np.float32), tmp_buf, 0, 255, cv2.NORM_MINMAX)
# orig_img_bw[i:i+16,j:j+16] = tmp_buf.astype(np.uint8)
#orig_img_bw = orig_img_bw[:,:,0]/255.0 * 0.2 + orig_img_bw[:,:,1]/255.0 * 0.4 + orig_img_bw[:,:,2]/255.0 * 0.4
#orig_img_bw *= 255
#orig_img_bw = orig_img_bw.astype(np.uint8)
#orig_img_bw /= np.iinfo(orig_img.dtype).max
#cv2.normalize(orig_img[:,:,0].astype(np.float32), orig_img_bw, 0.0, 1.0, norm_type=cv2.NORM_MINMAX)
cv2.imshow("test", orig_img_bw)
#print orig_img_bw.min(), orig_img_bw.max()
cv2.waitKey()
avgimg = np.zeros((cap_height, cap_width), dtype=np.float32)
tmp_img_bw = np.zeros((cap_height, cap_width), dtype=np.float32)
"""while True:
ret, img = vc.read()
if not ret:
raise RuntimeError("Failed to read image!")
img_bw = cv2.cvtColor(img, cv2.cv.CV_BGR2GRAY)
#img_bw = img_bw[:,:,0]/255.0 * 0.2 + img_bw[:,:,1]/255.0 * 0.4 + img_bw[:,:,2]/255.0 * 0.4
#img_bw *= 255
#img_bw = img_bw.astype(np.uint8)
#tmp_img_bw = cv2.medianBlur(img_bw, 17)
#tmp_img_bw /= np.iinfo(img_bw.dtype).max
#cv2.normalize(img_bw.astype(np.float32), tmp_img_bw, 0.0, 1.0, norm_type=cv2.NORM_MINMAX)
img_bw = cv2.medianBlur(img_bw, 9)
for i in xrange(0, cap_height, 16):
for j in xrange(0, cap_width, 16):
cv2.normalize(img_bw[i:i+16,j:j+16].astype(np.float32), tmp_buf, 0, 255, cv2.NORM_MINMAX)
img_bw[i:i+16,j:j+16] = tmp_buf.astype(np.uint8)
diffimg = cv2.absdiff(orig_img_bw, img_bw)
cv2.accumulateWeighted(diffimg.astype(np.float32)/255.0, avgimg, 0.3)
#diffimg /= diffimg.max()
cv2.imshow("test", avgimg)
if cv2.waitKey(10) == 27:
break
print np.sum(diffimg)
"""
fg_mask = np.zeros((cap_height, cap_width), dtype=np.uint8)
from threading import Timer
timeout = 5.0
timers = []
check_mess = []
for i, r in enumerate(area_selector.rects):
fun = partial(check_mess_fun, i, r)
check_mess.append(fun)
if not r:
timers.append(None)
else:
t = Timer(timeout, fun)
timers.append(t)
t.start()
for i, f in enumerate(check_mess):
print i, id(check_mess[i])
bgsub = cv2.BackgroundSubtractorMOG(int(1*fps), 2, 0.05)
bgsub.apply(orig_img_bw)
while True:
ret, img = vc.read()
if not ret:
raise RuntimeError("Failed to read image!")
img = cv2.medianBlur(img, 3)
img = cv2.warpPerspective(img, perspective, (img.shape[1], img.shape[0]))
img_bw = cv2.cvtColor(img, cv2.cv.CV_BGR2GRAY)
bgsub.apply(img_bw, fg_mask, 0.03)
fg_mask2 = cv2.cvtColor(fg_mask, cv2.cv.CV_GRAY2RGB)
for i, rect in enumerate(area_selector.rects):
if rect:
if np.any(fg_mask[rect[1]:rect[3],rect[0]:rect[2]]):
timers[i].cancel()
timers[i] = Timer(timeout, check_mess[i])
timers[i].start()
cv2.rectangle(fg_mask2, (rect[0], rect[1]), (rect[2], rect[3]), area_selector.colors[i], 4)
else:
#print rect
cv2.rectangle(fg_mask2, (rect[0], rect[1]), (rect[2], rect[3]), area_selector.colors[i], 1)
cv2.imshow("test", fg_mask2)
if cv2.waitKey(20) == 27:
break
for t in timers:
t.cancel()
if __name__ == "__main__":
main()
|